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Abstract: The White Paper on Peak Carbon and Carbon Neutral Action 2022 states that China is to
achieve peak carbon by 2030 and carbon neutrality by 2060. Based on the “3060 dual-carbon” goal,
how to improve the efficiency of energy performance is an important prerequisite for building a
low-carbon, energy-saving, green, and beautiful China. The office performance building studied in
this paper is located in the urban area of Turpan, where the climate is characterized by an extremely
hot summer environment and a cold winter environment. At the same time, the building is oriented
east–west, with the main façade facing west, and the main façade consists of a large area of single-
layer glass curtain wall, which is affected by western sunlight. As a result, there are serious problems
with the building’s energy consumption, which in turn leads to excessive carbon emissions and high
life cycle costs for the building. To address the above problems, this paper analyzes and optimizes
the following four dimensions. First, the article creates a Convolutional Neural Network (CNN)
prediction model with Total Energy Use in Buildings (TEUI), Global Warming Potential (GWP), and
Life Cycle Costs (LCC) as the performance objectives. After optimization, the R2 of the three are 0.9908,
0.9869, and 0.9969, respectively, thus solving the problem of low accuracy of traditional prediction
models. Next, the NSGA-II algorithm is used to optimize the three performance objectives, which are
reduced by 41.94%, 40.61%, and 31.29%, respectively. Then, in the program decision stage, this paper
uses two empowered Topsis methods to optimize this building performance problem. Finally, the
article analyzes the variables using two sensitivity analysis methods. Through the above research,
this paper provides a framework of optimization ideas for office buildings in extremely hot and cold
regions while focusing on the four major aspects of machine learning, multi-objective optimization,
decision analysis, and sensitivity analysis systematically and completely. For the development of
office buildings in the region, whether in the early program design or in the later stages, energy-saving
measures to optimize the design have laid the foundation of important guidelines.

Keywords: convolutional neural network (CNN); NSGA-II algorithm; extremely hot and cold areas;
office building performance optimization; sensitivity analysis

1. Introduction

The world today is undergoing a major change not seen in a century, and human soci-
ety is facing unprecedented global challenges and changes. These challenges and changes
come from a variety of sources, including the economy, the environment, and energy, and
their impact is far-reaching, comprehensive, and long-lasting. Among other things, in
terms of energy consumption, China already accounts for 15% of the world in terms of
GDP levels. Regarding the level of energy consumption, China has accounted for 23.2%
of the world’s total energy consumption and 33.6% of the world’s energy consumption
growth rate. Building energy use accounts for a significant proportion of China’s energy
consumption level. By the end of 2020, China’s buildings with high energy usage will reach
70 billion square meters, and the amount of energy consumed by buildings will be equal to
108.9 billion tons of standard coal. In addition, buildings have relatively long life cycles

Sustainability 2024, 16, 4268. https://doi.org/10.3390/su16104268 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16104268
https://doi.org/10.3390/su16104268
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su16104268
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16104268?type=check_update&version=3


Sustainability 2024, 16, 4268 2 of 40

with complex and dynamic behaviors. Therefore, more research is needed to incorporate
building performance factors into building design standards. Under China’s proposal to
achieve a carbon peak by 2030 and carbon neutrality by 2060 (dual-carbon policy), it is
especially important to know how to effectively save energy and reduce emissions at the
office building level. The case studied in this paper is located in the city of Turpan, a region
whose climate is characterized by hot summers, cold winters, extreme solar radiation, and
annual precipitation of only 15 mm. As a result, there is an overconsumption of energy use
in buildings, which also creates a series of problems in the built environment, e.g., excessive
energy consumption in office buildings, excessive carbon emissions from buildings, high
life cycle costs, and poor building thermal comfort, to name a few. Based on the above
status quo, it is urgent to optimize how to improve these problems. At the same time, how
to effectively optimize these issues is also in line with the concept of “Beautiful China” pro-
posed by China in recent years. The so-called “Beautiful China” concept is to build a green
civilization and integrate it into all aspects of cultural, economic, and social construction. It
is specifically divided into two aspects: one is the establishment of a good ecological green
environment, and the other is the implementation of low-carbon, green, and energy-saving
forms of production and lifestyles. The measures proposed in this paper to optimize the
performance of office buildings in Turpan fall into the category of green, energy-saving, and
low-carbon production methods. At the same time, on the one hand, building performance
optimization can guide the sustainable development of the construction industry, maximize
the efficiency of energy use, and promote the effective implementation of energy-saving
strategies. On the other hand, building performance optimization can drive change in
human society, taking into account the energy−economy balance. Therefore, this paper con-
ducts a performance optimization study for office buildings in Turpan to explore the climate
adaptation law of office buildings in extremely hot and cold areas from the perspective of
multiple performances, exploring practical optimization and design strategies applicable to
local climate characteristics. This is of great practical significance for improving the energy
consumption and economic costs of local office buildings, better tapping and inheriting
the wisdom of construction, and even realizing China’s “dual-carbon” target strategy. The
article is divided into the following sections: The first part is the introduction to the article.
The second part of the paper is a literature review. The third part is the methodology of the
thesis, which includes various methods of analysis and the main framework of the thesis.
The fourth part is a simulation study of the performance of office buildings in Turpan. The
fifth part is a visual analysis of the results of predictive optimization of office building
performance. The sixth part of the article is the discussion section of the paper. The seventh
part is the conclusion of the paper and the coming outlook extension.

2. Literature Review

Currently, predictive optimization of office building performance focuses on energy
consumption, economics, environmental impact, and thermal comfort. Specific detailing
studies transition from building performance simulation to data-driven model creation,
multi-objective optimization, sensitivity analysis, and more. In the following, we will
analyze the research related to the optimization measures of office building performance
prediction by scholars from different perspectives and in regard to several aspects.

2.1. At the Level of Building Energy Consumption

Building energy use has a profound impact on the performance issues of office build-
ings during their life cycle phases [1–17]. Several scholars have conducted relevant research
on how to use effective energy saving and environmental protection optimization strategies
to improve the energy performance of office buildings. Liu et al. studied the energy-saving
strategies in terms of energy consumption in office buildings in Turpan. The article con-
cludes that the west façade of the building, using double-glazed curtain wall circulation,
combined with the east façade of the east-light south-oriented measures to reduce energy
consumption, is the largest, affecting the program heating level by 64.14%, the cooling level
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by 77.12%, and the total energy consumption level by 69.67% [1]. Valladares-Rendón et al.
investigated the effect of overhangs on the energy performance of the building, as well as
on the light performance, while studying the effect of overhangs. The results show that
the use of the Overhanging Device-Single Edge Single Level (OD-SEL) system has great
potential to reduce the energy consumption of building cooling [2]. Khabir et al. inves-
tigated the effect of energy consumption in office buildings by studying the double skin
façade. The results show that a double skin façade with cooling materials can reduce energy
consumption by 62–63% and a double skin façade with cooling materials can reduce CO2
emissions by 76–77% [4]. AI-Tamimi scholars found a 26.81% reduction in total building
energy consumption by studying different building envelope optimization strategies, such
as changing the window glazing type and adding insulation [6]. Huo et al. investigated the
effect of external blinds on the energy performance of office buildings. The article shows
that, by changing different shading performance measures such as shading angle, window-
to-wall ratio, and orientation, it is possible to improve the energy efficiency of buildings
and reduce the energy consumption of office buildings [8]. Hashemi scholars studied the
impact of automatic reflective blind systems on the energy performance of buildings by
showing that the measure can save up to 60% of a building’s energy consumption [10].
Cuce scholars investigated an insulated solar glass (HISG) technology. The results of the
study showed that HISG can reduce building energy consumption by 38% and 48% during
the heating and cooling seasons, respectively [15]. Ihara et al. explored the impact on
building energy consumption by examining four characteristics related to energy efficiency
in office buildings. The article shows that improving the SHGC and U-value of windows
and increasing the solar reflectance of opaque parts can efficiently reduce building energy
consumption [16].

2.2. At the Building GWP Level

At the level of carbon emissions from buildings, excessive carbon emissions can lead
to a sharp increase in greenhouse gases and waste of energy resources, which in turn can
lead to building environmental problems such as the heat island effect. The issue of how to
effectively reduce carbon emissions is critical to improving building performance [18–35].
For example, the following scholars have conducted relevant studies: Zhang et al. in-
vestigated the impact of three objectives, GWP, global cost (GC), and operational energy
(OE), on the ability to optimize building performance. The article found that the use of
meta-model optimization resulted in a reduction of 12.7%, 6.7%, and 7.4% in the three
metrics, respectively [22]. Yu et al. optimized the design process by establishing a para-
metric optimization to minimize GWP, energy consumption, and life cycle costs (LCCs).
The results showed that optimizing all variables can achieve good building performance
results [23]. Wang et al. examined the abatement potential of HFC emissions. The results
indicated that the total GHG reduction capacity by 2050 is approximately equal to 10%
of the total carbon emissions from the Chinese construction sector [24]. Honarvar et al.
examined the evolution of buildings over their life cycle, and the results showed that the
environmental impact of new materials increases fivefold in terms of GWP. Additionally,
according to the circular economy concept, 10% of old and 3% of new housing materials
can be returned to the chain, which in turn can reduce the GWP of the building during the
life cycle [26]. Zhang et al. examined the effectiveness of buildings in reducing emissions
during energy efficiency retrofits. The results show that retrofitting existing buildings
can reduce considerable CO2 equivalent and economic costs [27]. Wang et al. went on to
improve environmental issues by examining building performance issues at life cycle costs.
The results of the study showed that optimizing energy consumption, thermal comfort,
and GWP using a multi-objective optimization algorithm can save the designer time and
costs while reducing the range of alternatives [29]. Ansah et al. examined the impact of
different façade materials on the environmental and economic costs of buildings in Ghana.
The results show that stabilized earth block curtain wall is the most energy-efficient façade
material with the highest potential for development, which can reduce GWP by 18.07% and
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LCC by 47.87% [30]. Javid et al. studied the impact of energy consumption and GWP on
buildings. In their paper, economic cost and GWP are used as the optimization objectives,
and the results show that the use of optimization can lead to a reduction of 17.79% and
20.8% CO2 equivalent for the two case buildings in the paper, respectively. In addition,
buildings should be retrofitted from a life cycle perspective [32]. Hossain et al. studied the
impact of building materials on GWP. The results showed that the construction of a 1 m
hoarding produces three tons of CO2 equivalent GWP [34]. Van Ooteghem et al. conducted
a life cycle perspective to investigate which part of the building’s structure would have
the greatest impact on energy consumption and GWP. The results show that the building
operation energy level is more influential, accounting for about 91% of the total energy
consumption and 88% of the total GWP in terms of GWP [35].

2.3. At the Level of Building Life Cycle Costs

Incorporating buildings into the study of life cycle costs in turn improves building
performance issues from the perspective of the whole-life economics of buildings [36–56].
The following scholars have studied how to make improvements at the LCC level: Lei et al.
examined the application of green building design costs across the life cycle stages. The
results showed that the cost of the operational phase of the building was the highest at
65.4% [36]. Kazem et al. went on to explore the effectiveness of energy efficiency retrofits
in Cairo buildings through a whole-life-cycle cost analysis. The results showed that the
most cost-effective façade retrofit was the installation of 1 m long external shading facilities,
which reduced LCC by 1.4% and energy consumption by 18% [37]. Weerasinghe et al.
went on to analyze the impact of green building costs in Sri Lanka by examining the
life cycle costs of the building in its aspect. The results show that, although the initial
construction cost of green buildings is 29% higher than that of conventional buildings, green
buildings can save 23% and 15% of economic costs in the operation and maintenance phases,
respectively, over their entire life cycle [39]. Yuan et al. examined how the performance of
buildings changes by looking at energy savings and life cycle costs. The results showed
that the 16 buildings corresponding to the use of the 16 envelope schemes met the green
building evaluation criteria. At the same time, the article shows that life cycle costs rise as
energy efficiency rates increase [43]. Xue et al. developed an LCA-LCC model by targeting
building sustainability. The article’s research found that economic costs were highest during
the operational phase of the life cycle and that ADP-fossil and GWP metrics were most
prominent throughout the life cycle [45]. Dwaikat et al. studied the application of life cycle
cost in the construction industry. The article showed that the future costs of the studied
buildings were 3.6 times their initial investment and construction costs, also showing that
energy consumption accounts for 48% of the total life cycle costs and that reducing energy
consumption reduces the total life cycle costs [47]. Schwartz et al. investigated the impact of
buildings on energy use by taking a life cycle perspective, and the article optimized the LCC
and Life Cycle Carbon Footprint (LCCF) through a multi-objective optimization genetic
algorithm. The results showed that LCCF and LCC could be reduced by this method [49].
Invidiata et al. analyzed four shading systems that affected the energy performance of
buildings by looking at them from a life cycle cost perspective. The results showed that the
use of wooden double-opening blinds and PVC roller shades was the most appropriate
window shading solution, efficiently reducing the building’s energy consumption [50].
Abdallah et al. went on to reduce the life cycle cost of buildings by studying building
optimization measures. The article proposed a model that identified the best building
optimization measures and also significantly reduced the life cycle cost of a building [51].
Han et al. used numerical sensitivity analysis to understand the role of life cycle analysis
(LCA) in building design. The results showed a significant correlation between energy
modeling and life cycle costs. Also, wall assemblies had a much greater impact on life cycle
costs than window performance [52]. Kneifel scholars have verified this by examining the
effectiveness of new buildings in saving energy, reducing carbon, and lowering economic
costs over their life cycles. Research results have shown that conventional technologies can
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reduce the energy consumption of new buildings by 20–30%, while the carbon footprint
can be reduced by 16% [55].

2.4. At the Level of Multi-Objective Optimization

The NSGA-II algorithm (a type of multi-objective optimization algorithm) uses a
fast non-dominated sorting algorithm, which makes the computational complexity much
lower than NSGA. At the same time, it introduces congestion and crowding operators
that enable individuals in a quasi-Pareto domain to extend to the entire Pareto domain,
ensuring population diversity. Finally, it introduces elite strategies that greatly increase the
speed of computation in optimizing building performance metrics. Therefore, the method
is widely used in the field of building performance optimization [57–63]. For example,
the following scholars have performed relevant research in this area. Zhou et al. used a
multi-objective optimization approach for building performance objective optimization,
which in turn resulted in performance objective alternatives with optimal solutions [57].
Wang et al. performed a multi-objective optimization by targeting low energy consumption,
better thermal comfort, and light performance. The results show that multi-objective
optimization of the target indicators can reduce building energy consumption and improve
energy efficiency [58]. Harkouss et al. present a method for simulating near-zero energy
building (NZEB) optimization. The results show that the use of the NSGA-II algorithm can
significantly reduce the thermal, electrical, and life cycle costs of buildings [63].

2.5. At the Machine Learning Level

The CNN deep neural network model is used to predict the building performance,
and it can abolish problems such as the low prediction accuracy of traditional data-driven
models. Meanwhile, CNNs with backpropagation algorithms can automatically adjust the
network parameters to minimize the loss function, thus improving the performance of the
network, i.e., it can enhance the predictive performance of buildings and minimize the
time cost [64–77]. For example, the following scholars have conducted relevant studies
at this level: Yue et al. investigated the application of data-driven modeling to building
energy consumption and indoor environments by studying. Yue et al. investigated the
impact of data-driven modeling on building performance through the application of data-
driven models to building energy consumption and indoor environment. The results of
the study showed that the use of data-driven models can greatly reduce the time cost,
while, at the same time, the prediction results are more accurate [64]. Xu et al. went on
to analyze issues such as improving the energy performance of buildings by studying
building performance strategies. The results show that, by using the CNN data-driven
model, building energy consumption can be optimized to reduce it by 24.53% [70]. Pal
et al. went about predicting target metrics by employing a data-driven model using CNN
combined with the NSGA-II algorithm. The results showed an accuracy of 94.83% and
94.96% on the two case datasets [73]. Bakar et al. attempted to optimize the target metrics
by using a CNN combined with the NSGA-II algorithm, and the results showed that the
CNN data-driven model has a better adaptive capability [77].

However, compared to the above literature studies, there are fewer studies on the
building performance of office buildings throughout their life cycle in the cold regions
of China. The Turpan region has increasingly hot summers and cold winters, and the
maximum outdoor temperature in the Turpan region in 2023 reached 52.2 ◦C, the highest
temperature recorded in China, indicating the relatively harsh environmental conditions
in the region. In addition to this, after researching the office buildings in the region,
it was found that several problems are common in the office buildings in the region,
such as excessive building energy consumption, high carbon emissions from buildings,
high building construction costs, and poor building thermal comfort. At the same time,
office buildings in the region have relatively poor insulation and airtightness. A low-
performing building envelope can cause a building to lose more heat in the winter. Poor
airtightness increases the risk of cold air infiltration, which in turn leads to increased
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energy consumption and running time of the heating equipment. In addition to this,
office buildings in the region still face many dilemmas when it comes to optimizing them
during their life cycle phases. For example, it is known from the research that local office
buildings are reluctant to fund improvements in performance optimization due to the
limitations of the local economic level and environmental awareness. Government makers
are more focused on reducing greenhouse gas emissions, while office workers are more
concerned with improving indoor comfort. Therefore, it is challenging to carry out office
building performance optimization strategies in this region. However, elsewhere, several
researchers have improved and optimized the above problem. For example, Luo et al.
proposed a framework for whole-life optimization of building performance that takes
climate change into account, it was implemented in two case buildings in the UK. The
results show that the life cycle cost of a building was underestimated by 2.0−1.7% and the
carbon emissions were underestimated by 1.2−6.9% when the optimized scenario decided
in 2019 was adopted in the years between 2021 and 2024 [78]. Zhang et al. studied building
performance in extremely dry and hot climatic conditions. That is, the effects of wall
thermal resistance, roof thermal resistance, hole-to-wall area ratio, and wall interior height
on the indoor environment were analyzed by numerical simulation, and the results of the
study found that the hole-to-wall area ratio is the most important parameter affecting the
indoor environment of life cycle buildings [79]. At the same time, in the study of office
buildings in the Turpan region, it is necessary to further explore more optimized designs
of office buildings so that the buildings in the region can adopt low-cost optimization
strategies and have high performances in order to improve the comprehensive performance
of the life cycle of office buildings in the region.

Based on the above analysis and research, the research of this paper is shown below:
(1) Creating data-driven predictive models with high accuracy. Data-driven models repre-
sent a capability for fast analytical calculations with an accuracy close to that of dynamic
simulations. They can be used as a strategy for conducting independent variable parameter
studies and optimizing future building performance predictions. In this paper, eight data-
driven models are selected to predict each of the three target indicators. (2) Multi-objective
optimization is performed for three objective values. In this paper, the NSGA-II optimiza-
tion algorithm is used to optimize the TEUI, GWP, and LCC, which leads to the results of the
optimization scheme. (3) Decision analysis. In this part of the article, two Topsis methods
are used to evaluate the performance optimization of office buildings. They are the entropy
law form and the subjective empowerment form, respectively. There is use of multiple
decision research methods for analysis, which in turn can increase the transparency of
decision design. (4) Sensitivity analysis of variables. Two sensitivity analysis methods are
used in this paper: the RBD-FAST method and the DMIM method. The article uses the
method to visualize the variables analytically.

The main innovations of this paper are shown below:

(1) In this paper, the CNN data-driven model is used to predict the performance target.
Under the condition of guaranteeing accuracy, the target is realized to optimize quickly.
Compared with the traditional prediction method, it improves the performance-driven
design efficiency.

(2) In this paper, the NSGA-II multi-objective optimization algorithm is used to quickly
optimize the performance objectives, and the resulting optimization can provide ideas
for builders in the area when performing building design.

(3) The article provides an entropy-based decision-making method for Topsis. The
method can help designers to make trade-off judgments in decision-making.

3. Methodology
3.1. BPS

Building Performance Simulation (BPS) is a powerful tool for studying the perfor-
mance of a building’s physical environment, and it can be used to achieve desired results
with its easy hands-on capabilities. Therefore, it is increasingly used for research and
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prediction of building energy consumption, measurement and verification, carbon emis-
sions, and economic evaluation. It has played an indelible role in the design strategy of
low-energy, high-performance office buildings and has been a good guide in promoting
China’s “dual-carbon” approach. In this paper, Rhion software (Rhino 7.0) is used for
building performance simulation tools, and the GH plug-in that comes with the software
can be easily used for office building performance simulation and analysis. Since the targets
studied in this paper are TEUI, GWP, and LCC, the Rhion software and GH plug-in are
divided as follows: In the office building energy consumption section, this article uses
Ladybug Tools and the Honeybee plug-in. The Honeybee plug-in is embedded with the
EnergyPlus energy calculation engine to facilitate the calculation of energy consumption.
For carbon emission and life cycle cost calculations, this paper uses the Python module
of the GH plug-in, which utilizes programming techniques that allow for quick analysis
and calculations.

3.2. Machine Learning Neural Networks

When using physical models of building performance for analysis, traditional pro-
cesses typically calibrate the model to match previous data through statistical inversion
strategies. To reduce such errors between the model and the observed data, this matching
process is time-consuming and costly, while, at the same time, most building performance
simulation software is computationally intensive [80,81]. The resulting emergence of data-
driven models can significantly reduce the cost of time. Data-driven modeling represents a
form of fast execution of calculations with an accuracy close to that of dynamic simulation.
It helps decision-makers to quickly examine high-dimensional performance simulations
and immediately derive solutions under various constraints. Therefore, the deep learning
model used in this paper can effectively solve the problem of high time cost. Currently, the
commonly used learning algorithms in the field of building performance prediction and
optimization are RNN, LSTM, and GAN, while CNN is less used in this field. CNNs are
highly adaptable in terms of local feature capture performance. It can be used in the field
of building performance by constructing high-dimensional features, which can effectively
learn the relationship between the nonlinear interactions among the variables affecting
TEUI, GWP, and LCC. In this paper, eight data-driven models are used to analyze and
optimize building performance objectives; these eight data-driven models are Backpropa-
gation network (BP), Support Vector Machine (SVM), Genetic algorithm-based optimized
BP neural network (GA-BP), BP neural network based on particle swarm optimization
algorithm (PSO-BP), SVM based on particle swarm optimization algorithm (PSO-SVM),
CNN(SGDM) based on different optimizers, CNN(Adam) based on different optimizers,
and CNN(RMSprop) based on different optimizers.

Among them, at the CNN level, CNNs can reduce the problem of too many model
parameters due to excessive dimensionality by dealing with local correlations in the input
data. The key feature of CNN operations is weight sharing [82]. When the convolutional
kernel scans for local features in the data, the mechanism by which the convolutional kernel
extracts the data after moving a certain number of steps remains unchanged. After the
constant movement of the convolution kernel, the data scanning is completed and fewer
parameters are obtained. CNNs generally include a convolutional layer, an activation layer,
a pooling layer, and a fully connected layer. Convolutional layers extract information from
foreign data and can be categorized as row-by-row and column-by-column, depending
on the direction of scanning along the input features. Input features from all individual
moment points are first combined by CNN line-by-line scanning. All combined features
are then learned in a time series by transposing the input data into two dimensions when
importing it into the training model, which in turn transitions to column-by-column
scanning. This facilitates the convolution kernel to extract features from the data to form a
feature mapping map, i.e., the convolution kernel operates by regularly sweeping through
the input features, making matrix element multiplicative summations of the input features
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within the receptive field and superimposing the amount of bias. The relevant equations
are expressed below.

Zl+1(i, j) = [Zl ⊗ wl+1](i, j) + b = ∑Kl
k=1 ∑ f

x=1 ∑ f
y=1 [Z

l
k(s0i + x,s0 j + y)]wl+1

k (1)

(i, j) ∈ {0, 1, . . . Ll+1} Ll+1 =
Ll+2p − f

s0
+1 (2)

The summation part of Equation (1) is equivalent to solving a cross-correlation. b is
the amount of deviation. Zl and Zl+1 denote the convolutional input and output of layer
l + 1. Ll+1 is the size of Zl+1. Z(i,j) corresponds to the pixels of the feature map. K is the
number of channels of the feature map. f, s0, and p are convolutional layer parameters
corresponding to the convolutional kernel size, convolutional step size, and number of
filled layers. A schematic diagram of the convolution operation is shown in Figure 1.
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The feature is delivered through a nonlinear activation function that accelerates the
CNN’s processing of complex relationships between data. Activation functions can gen-
erally be linear or nonlinear. The output of the former is simply a weighted sum of the
inputs and cannot be backpropagated. While nonlinear functions have nonlinear functions,
they can also solve linear functions. The activation functions routinely used are shown in
Table 1. In this paper, the ReLU function is used.

Table 1. Activation functions in CNN data-driven models.

Function ReLU Tanh Sigmoid Linear

Formula y = max(0,x) y = 1
(1+ e−x) y = ex−e−x

ex+e−x y = ax
Nature
Range

Nonlinear
[0, inf]

Nonlinear
[−1, 1]

Nonlinear
[0, 1]

Linear
[−inf, inf]

Response
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After feature extraction in the convolutional layer, the output feature map is passed to
the pooling layer for feature selection and information filtering. The pooling layer contains
predefined pooling functions whose function is to replace the result of a single point in
the feature map with the feature map statistics of its neighboring regions. The pooling
layer is inspired by the hierarchical structure within the visual cortex, which is generally
represented by the model:

Al
k(i, j) =

[
∑ f

x=1 ∑ f
y=1 Al

k(s0i + x, s0 j + y)p
] 1

p (3)
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where the step size s0, and pixel(i,j) have the same meaning as the convolutional layer. p
is a pre-specified parameter. When p is equal to 1, it takes the mean value in the pooling
region and is called mean pooling. When p tends to infinity, it takes an extreme value in the
pooling region and is called extreme pooling. This paper is extremely pooled.

In addition, CNNs use optimizers that can change weights, learning rates, etc., to
minimize the loss function. At the optimization level, the gradient descent method is
the conventional method. In this, the gradient of the loss function for the parameters is
operated and the parameters are updated by backpropagation on this basis. The parameter
update equation is Equation (4).

θt+1 = θt − ηdt (4)

where dt denotes the gradient of the objective function J(θ) based on the parameter θ at
time t, and η represents the learning rate.

The difficulty of the gradient descent method is in the optimal value of the learning
rate. Smaller learning rates require more training, while larger learning rates cause the
network to converge quickly to a suboptimal solution.

Another aspect involves the adaptive learning rate methods. The most common are
RMSprop and Adam. RMSprop can solve the difficulty of AdaGrad learning rate decay.
The RMSprop weight update can divide the learning rate by the square root of the squared
mean of the exponential decay gradient, R[d2]t. The weight update formula is Equation (5).

θt+1 = θt −
η√

R[d2]t+ϵ

dt (5)

The Adam optimizer retains the exponentially decaying mean of the gradient squared
and the exponentially decaying mean of the gradient.

The parameter-related calculation of the Adam optimizer is given in Equation (6).

θt+1 = θt − η√
υ̂t+ϵ

m̂t (6)

where mt and υt represent the estimates of the first-order and second-order moments of
the gradient, respectively. m̂t and υ̂t represent the corrected mt and υt. The estimated
first-order and second-order moments of the gradient are shown in the following table.

At the level of data-driven model evaluation, root mean square error (RMSE), mean
absolute error (MAE), and coefficient of determination (R2) are selected as the evaluation
metrics of the results in this paper. Where R2 shows the degree of deviation between the
predicted and actual values of the model, the closer R2 is to 1 (indicating that the direction
between the predicted and actual values is more similar), the better the prediction effect.
MAE and RMSE reflect the predictive accuracy of the data-driven model, with smaller
values corresponding to a better predictive performance. Meanwhile, the various data-
driven models analyzed in the article’s study, as well as the construction of the various
models, were analyzed and completed via Python (version 3.11) software.

RMSE =

√
1
n∑n

i=1(ŷi − yi)
2 (7)

R2= 1 − ∑i(ŷi − yi)
2

∑i(yi − yi)
2 (8)

MAE =
1
n∑n

i=1|yi − ŷi| (9)

where yi is expressed as the i actual value, ŷi is expressed as the i predicted value of the
model, yi is the mean value, and n is the sample size of the data.
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3.3. LHS

For data processing, this paper uses Latin Hypercube Sampling (LHS). It is a more
advanced form of Monte Carlo sampling. It can divide the space of independent variable
parameters into equal parts and then randomly sample on that basis. It effectively prevents
aggregation of parameters and samples the entire space of variables. At the same time,
the number of this sample is generally equal in number to about 5–15 times the number
of parameters of the independent variable. At the level of data-driven model accuracy, to
optimize its prediction performance, 2000 samples are taken for simulation in this paper to
obtain the data set of the independent variable—the target variable. The specific procedure
for Latin Hypercube Sampling (LHS) is as follows:

(1) The sample size M of the independent variable and the number of dimensions m are
established first.

(2) Equalize the interval of the independent variable parameter X as [lb, ub]. That is, it is
the maximum and minimum values of the parameters of the independent variables.

(3) The interval of the independent variable parameter X is transformed into a homoge-
neous region of M equal parts.

(4) Selection point samples were performed in each interval of each dimension.
(5) All the points of the interval are added together to form a vector.

3.4. MOP Algorithm

In this paper, the NSGA-II algorithm is used for multi-objective optimization of ob-
jective values (TEUI, GWP, and LCC). The algorithm is a fast non-dominated solution
MOP algorithm with an elite reservation mechanism [83]. Its superior performance charac-
teristics have been widely used in various building industry designs and green building
performance evaluations. In this paper, the population size and maximum number of
generations were set to 45 and 100, and the probability of variation and crossover rate were
set to 0.07 and 0.90. The optimization criterion is to minimize the TEUI, GWP, and LCC
objective values by adjusting the parameters of the independent variables. Its expression is:

F(
→
x ) =


f1 = f

(→
x , TEUI

)
min

f2 = f
(→

x , GWP
)

min
f3 = f

(→
x , LCC

)
min

(10)

3.5. Decision Analysis

In the decision analysis section, this paper uses the entropy-based Topsis method [84–93]
when making decisions on the optimization scheme. The method has the following advan-
tages: The entropy weighting method can confirm the weighting information of the target
indicators by analyzing the entropy value of the target indicators of each scenario, which
in turn can provide a reference for the multi-objective assessment later. Topsis analysis
uses matrix extrapolation to calculate the worst and optimal solutions and then derives
the distance between the objective and the first two. Finally, the closeness of each target
solution to the first two ideal solutions is derived. If the indicator is close to the positive
ideal solution and far from the negative ideal solution, the result is good. Finally, the
above two methods are fused into one, with the entropy weighting method being used to
calculate the weights and the Topsis method being used for ranking. The specific practices
are as follows:

(1) Establishment of the matrix.

Use the initial data to build the matrix for m indicators and n objects.

(2) Calculate the entropy value of the target variable.
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According to the importance of each indicator to the comprehensive evaluation, the
information entropy is used to calculate each entropy value.

ej =
−1

lnm∑m
1 pijlnpij

(11)

(3) The coefficient of variation in the target variable was established.

Let gj be the coefficient of variation of target indicator j.

gj = 1 − ej (12)

(4) Determination of entropy weights of target indicators.

Let Hj be the entropy weight of target indicator j. Normalize gj to obtain the indicator
Hj.

Hj =
gj

n
− ∑n

1 dj (13)

(5) Analyze the distance between the result and the two ideal solutions.

Di+ =

√
∑n

j=1

(
zij − zj

+
)2 (14)

Di− =

√
∑n

j=1

(
zij − zj

−)2 (15)

where Di+ and Di− denote the distance of the i evaluation object from the optimal and
worst solutions, respectively.

(6) Calculation of relative progress for each target indicator.

Ci =
Di

−

Di
+ + Di

− (16)

where Ci denotes the final score for each scenario. The value is 0 ≤ Ci ≤ 1.

3.6. Sensitivity Analysis

Sensitivity analysis refers to the change in the outcome of the target variable, as the
independent variable changes when a variable is varied within a certain range. Since
sensitivity analysis can respond to the degree of influence of characteristic parameters
on the performance of office buildings, it plays an important role in green building per-
formance analysis, retrofitting of existing office buildings, and evaluation of building
performance models. Two sensitivity analysis methods are used in this paper: RED-FAST
and DMIM analytical methods. The DMIM method is a density-based global analysis
method with proven authority at the methodological level of sensitivity analysis [94]. It has
two types of visualization of analysis results when results are analyzed on the independent
variable−target variable data set, TOI and FOI. FOI indicates the contribution of a single
independent variable parameter to the output results. TOI indicates the contribution of a
single independent variable and the interaction of that variable with other variables to the
output result. The RBD-FAST method introduces the RBD concept at the level of the FAST
method and then goes on to solve the shortcomings of the FAST method, which has too
many sample points and too many time costs. At the same time, it is a complementary FOI
to DMIM [95].

3.7. Research Framework for the Thesis

The full frame content of this paper is presented in Figure 2.
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Brief analysis: The content of the research framework of this paper is divided into
the following sections. The first is building performance simulation. The independent-
target variables were brought into the Rhion software to derive TEUI, GWP, and LCC.
This involves bringing in the building envelope, the transparent envelope, and some other
boundary conditions. The dataset was collected based on Latin Hypercube Sampling (LHS).
Next, CNN data-driven model prediction, multi-objective optimization, decision analysis,
and sensitivity analysis are performed based on building performance objectives (TEUI,
GWP, and LCC), respectively. At the data-driven model prediction level, the article uses
eight different prediction models to predict the three target values. In the multi-objective
optimization phase, the article uses the NSGA-II algorithm to optimize the three objectives.
In the decision analysis section, the article uses the entropy-based Topsis method and
subjective empowerment to analyze the objectives. Finally, a sensitivity analysis of the
variables was conducted using two methods.

4. Building Performance Simulation
4.1. Climate Analysis

The building site studied in this paper is located in the Turpan area of the Xinjiang
Uygur Autonomous Region. The region is located in the eastern part of the Tien Shan
Mountains and is shaped like an oval-shaped basin. It is surrounded by high mountains.
The climate of the region is a continental warm temperate desert climate. In the thermal
division of China, Turpan is located in the cold region. The region has hot, dry, and windy
summers and cold winters. The total area of the Turpan region is 69,000 km2 and the annual
evaporation is 3100 mm, but the precipitation is only 15 mm. Temperature-wise, the area is
over 37 ◦C for one-third of the year. Temperature extremes reach 52.2 ◦C in summer and
−28 ◦C in winter. At the same time, the region is characterized by strong solar radiation,
with an average daily total solar radiation rate of 16 KJ. At the level of data selection, this
paper selects the CSWD literature climate data information of the Turpan area. CSWD
meteorological data sources are compiled by the China Meteorological Administration
(CMA), which are more in line with the meteorological data used for building design
in China. These data are visualized in this paper by Ladybug Tools for climate data.
Figure 3 represents typical meteorological annual radiation data for Turpan Point. Figure 4
represents additional data.
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4.2. Office Building Case Presentations

In terms of location selection, the office building case selected in this paper is located
in Turpan City. The building area is 4966 m2, the number of floors is five, the height
above ground is 32 m, the length is 62 m, and the width is 18 m. The building blocks are
oriented east–west, with the main façade facing west, and the whole is symmetrical on
the central axis. The façade of the building is in the form of a single-story glass curtain
wall construction, with no snap caps on the surface of the glass curtain wall. There is a
13 m long, 4.5 m wide awning at the foyer. The east elevation of the building is framed
by 70 mesh windows. The north and south elevations of the building are strips of glass
curtain walls intended to provide light to the corridors. Figure 5 shows the office building
portraits and models. Figure 6 shows the standard floor plan of the office building.
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4.3. Parameter Selection

Parametric modeling is an approach that makes use of geometric attribute variables.
It enables designers to use mathematical and programming techniques to assemble to
numerical models [96]. In this paper, in terms of parameter selection, 19 parameter variables
that may affect the TEUI, GWP, and LCC of office buildings in Turpan are selected. It
contains five building construction variables as well as 14 building geometry variables.
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The type of exterior wall insulation (WIT), the type of roof insulation (RIT), and the
type of windows (WT) are used as office building construction variables in this paper.
According to the research, the commonly used insulation materials in the region are
Expanded Polystyrene (EPS), Extruded Polystyrene (XPS), and Polyurethane (PU) boards,
among others. Therefore, this paper selects the external insulation material aspects for
the above three. At the window perspective level, this paper selects five types of external
windows with different thermal properties, which are ranked as follows according to the
level of performance, as shown in Table 2. In terms of architectural geometric variables,
this paper includes five types: they are window-to-wall area ratio (WWR_N, WWR_E,
WWR_S, WWR_W), shading system louver length (DEP_N, DEP_E, DEP_S, DEP_W),
number of shading system louvers (Shade count_N, Shade count_E, Shade count_S, Shade
count_W), shading angle of the east and west wall louvers of the shading system (Angle_E,
Angle_W), thickness of the exterior wall insulation (TW), and thickness of roof insulation
(TR), as shown in Table 3. In contrast to other conventional research analyses, this study
considers the heat transfer process in different dimensions of the facade and the roof. At
the same time, careful differentiation of the thickness of insulation between the two types
of external walls and roofs can lead to finer optimization of energy saving and carbon
reduction. Meanwhile, vertical and horizontal louvers are used for east–west and north–
south directions, respectively. Defining the length and number of shading systems can
be explored to study the extent to which exterior building shading systems affect the
performance of office buildings in the Turpan region.

Table 2. Thermal performance data for office building materials.

Categories Names No. Conductivity
[W/(m·K)]

Specific Heat Capacity
[J/kg·K]

Insulation
EPS 0 0.037 1380
XPS 1 0.030 1380
PU 2 0.024 1380

Categories Names No. Conductivity
[W/(m·K)] SHGC

Window

Double pane, Low-e 0 2.1 0.6
Double pane, Low-e, argon 1 1.7 0.6

Triple pane, Low-e 2 1.3 0.55
Triple pane, Low-e(green) 3 0.9 0.5

Table 3. Distribution data for 19 variables.

No. Categories Symbol Unit Range

1 Wall insulation type WIT / [0–2]
2 Roof insulation type RIT / [0–2]
3 Window type WT / [0–3]
4 Window-to-wall radio of north wall WWR_N / [0–0.6]
5 Window-to-wall radio of east wall WWR_E / [0–0.6]
6 Window-to-wall radio of south wall WWR_S / [0–0.6]
7 Window-to-wall radio of west wall WWR_W / [0–0.6]
8 North-facing louver depth DEP_N m [0–1.5]
9 East-facing louver depth DEP_E m [0–1.5]
10 South-facing louver depth DEP_S m [0–1.5]
11 West-facing louver depth DEP_W m [0–1.5]
12 Number of north-facing louvers SC_N / [0–5]
13 Number of East-facing louvers SC_E / [0–5]
14 Number of South-facing louvers SC_S / [0–5]
15 Number of West-facing louvers SC_W / [0–5]
16 East-facing louver shading angle A_E (◦) [0–90]
17 West-facing louver shading angle A_W (◦) [0–90]
18 Wall insulation thickness TW mm [0–330]
19 Roof insulation thickness TR mm [0–330]
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4.4. Research Indicators
4.4.1. TEUI

Energy consumption is the energy consumed during the use of a building. This
includes energy consumption at the building heating level, cooling level, lighting level,
and equipment level. Since office buildings are fundamentally different from residential
buildings in terms of use functions, their total energy consumption is much greater than the
latter. The building energy consumption studied in this paper is the sum of heating energy
consumption per unit area (HEUI), cooling energy consumption per unit area (CEUI), and
lighting energy consumption per unit area (LEUI). Combined, these are the total energy
use per unit area (TEUI). The TEUI expression is:

Etotal =
Eheat + Ecool + Elight

A1
(17)

where Etotal—Total building energy consumption (kWh/m2); Eheat—Building heating
energy consumption (kWh/m2); Ecool—Building cooling energy consumption cooling
(kWh/m2); Elight—Energy consumption of building lighting (kWh/m2); A1—Office floor
space (m2).

4.4.2. GWP

In this paper, GWP is selected as an environmental indicator for office building
performance evaluation. It can be used to screen the heat storage capacity of other gases
in the atmosphere, such as CO2, in terms of CO2 equivalent. Therefore, this indicator
was selected as the target indicator, representing the impact on the environment. In this
paper, the calculation part of this GWP consists of two parts: carbon emissions during
the production phase of building materials and the operational phase of the building.
The formula is as follows, and the method used is the CEF calculation method. Table 4
represents the relevant parameter variables’ economic costs and carbon emission factors.

GWP = ∑M
m=1 Qm× fm+a ×

[
QH ·H

ηH
· fc+(

Qc

ηc
+ EL) · fe

]
(18)

where m—type of construction material; Qm—Quality of construction materials; fm—CEF
for construction materials; fc—CEF for coal energy; fe—CEF for electrical energy; a—The
number of years of the survey, which is 50 years in this study.

Table 4. Construction material prices and carbon emission factor data.

Categories Names No. Cost CEF

Insulation
EPS 0 360 CNY/m3 5.7 kgCO2/kg
XPS 1 450 CNY/m3 20.1 kgCO2/kg
PU 2 1050 CNY/m3 5.1 kgCO2/kg

Window

Double pane, Low-e 0 340 CNY/m2 92 kgCO2/m2

Double pane, Low-e, argon 1 430 CNY/m2 101 kgCO2/m2

Triple pane, Low-e 2 620 CNY/m2 130 kgCO2/m2

Triple pane, Low-e (green) 3 740 CNY/m2 141 kgCO2/m2

Energy Coal \ 0.45 CNY/kg 2.62 kg/kg
Electricity \ 0.48 CNY/kWh 0.89 kg/kWh

4.4.3. LCC

The life cycle cost is selected as the sum of the economic costs of the initial investment
phase of the building and the operational phase of the building (LCC). It includes the
economic cost of running the office building and the initial investment cost. It is the
sum of the cost values over the entire life cycle. The life cycle for this study was chosen
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to be 50 years, and only the initial construction and annual energy economic costs were
considered for their impact on life cycle costs. The relevant formulas are as follows:

LCC =
DLC+∑50

i=1[EC·Rd(i)]
Afloor

(19)

Rd(i) =
1 − (1 + Rr)

−i

Rr
(20)

Rr =
Ri − Re

1 + Re
(21)

where LCC—Total Life Cycle Cost of Office Buildings; DLC—Difference in investment costs
between the optimized building case and the reference building case (CNY); including
the increased economic cost of the passive technology compared to the initial building;
EC—Energy cost (CNY) in year i; Afloor—Gross floor area of office buildings (m2); Rd(i)—
Discount rate for year i; Rr—Real Rate of Interest; Re—Rate of escalation of costs, = 1.2%;
Ri—market interest rate; = 4.25%. It is assumed that this energy demand remains constant
over the number of years calculated.

Where EC is the economic cost of energy for the year. The formula is as follows:

EC =
QH ·H

ηH
·PH+(

Qc

ηc
+ EL)·PE (22)

where H—Electricity and coal conversion factor (kg/kWh); ηH—Heating efficiency, =0.82;
PH—Local area coal prices (CNY/kg); ηc—Cooling efficiency, =3; PE—Price of Electricity
(CNY/kWh).

4.5. Office Building Performance Simulation Modeling
4.5.1. Boundary Condition Setting

Office building performance model creation: For the Turpan office building studied in
this paper, the thermal performance information of the relevant building materials and the
carbon emission-related indexes are brought into the GH and Honeybee plug-ins during
the creation of the performance model to provide the building envelope and transparent
envelope performance information. At the same time, the geometric information required
to create an office building is created via the Rhion software. The two are then blended into
one in Ladybug Tools. Meanwhile, this paper samples the parameters of the independent
variables using the LHS method, which is a commonly used sampling method in deep
neural network model prediction. It avoids the problem of overlapping samples. Among
them, in terms of the original office building performance data, this paper sets the ther-
mal performance of the enclosure structure in the cold region of Turpan by the General
Specification for the “General Specification for Energy Efficiency and Renewable Energy
Utilization in Buildings” (GB55015-2021 [97]). From the field study, the office building has
a body shape factor of 0.21. In terms of thermal parameters of building models, the K-value
of the building’s exterior walls is 2.65 W/(m2·K). The K-value of the roof is 0.88 W/(m2·K),
and the K-value of the exterior windows is 2.70 W/(m2·K), with a SHGC of 0.30. This
results in an initial TEUI of 258.76 kWh/m2, a GWP of 116.51 kg/m2, and an LCC of
270,192.01 CNY/m2 for the office building (baseline model).

Aspects of setting operational parameters for office buildings: In terms of the build-
ing’s energy consumption, heating temperatures, cooling temperatures, and human activity
affect the results. The building performance model studied in this paper refers to the
General Specification for the “General Specification for Energy Efficiency and Renewable
Energy Utilization in Buildings” (GB55015-2021) (hereinafter collectively referred to as the
Specification). At the level of personnel activity rate influencing factors, the personnel
presence rate, number of personnel, and personnel category all have important influencing
effects on the TEUI, GWP, and LCC of this office building. The building’s personnel density
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is set at 10 m²/person according to the code. Personnel in the room rate by the norms of
the basis and then combined with the specific local work and rest time in the Turpan set,
as shown in Figure 6. The room rate of personnel in the room is set accordingly with the
specific local work and rest time in Turpan based on compliance with the specification, as
shown in Figure 7.The cooling and heating temperatures in this paper are set concerning the
temperatures in the code and combination with the local climatic characteristics of Turpan.
In this paper, the indoor cooling temperature is set to 28 ◦C and the heating temperature
is set to 18 ◦C. Cooling and heating schedules are set according to local working hours.
The electrical equipment parameters are set at 15 W/m2 according to the specifications.
The hour-by-hour usage schedule of electrical equipment, the lighting usage schedule, and
the building fresh air operation schedule are set in conjunction with specific local working
hours, as shown in Figure 7.
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4.5.2. Other Condition Settings

Building performance data organization. In this paper, the Calibri Aggregator plug-in
was chosen to statistically organize the building performance indicators (TEUI, GWP, and
LCC). In addition, two widgets were connected to it: CP Plugin—which was mainly used as
a target indicator for statistical building performance—and CI Plugin—which was mainly
used to link the required samples. Finally, the Folder plug-in was used to save the records
of the three target metrics of the building (TEUI, GWP, and LCC) to the Computer Specific
Information folder. The target metrics obtained above are collected and organized and
finally read into the xlsx file format for next use and analysis.
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4.6. Building Performance Prediction Model Boundary Setting

After performing the independent variable-target variable dataset creation, this paper
samples 2000 samples. An amount of 80% of these samples are used to train the model,
and a 20% sample size is used to validate the accuracy of the model. The model consists of
19 input values (independent variable parameters) and three target values (TEUI, GWP,
and LCC) with data of numerical type. After carrying out the prediction modeling, the
selection of hyperparameters is also a difficult part of building a high-precision prediction
model. In Deep Learning Convolutional Neural Networks (CNNs), the 2000 sample set is
divided into 80% and 20% training and validation sets. To prevent the emergence of model
overfitting risk, K-fold cross-validation is used in this paper for suppression. It can make
the training set obtain more information and ensure the stability of the deep learning model.
At the same time, outliers need to be culled. Outliers in the data that are not dealt with
have no real meaning in the simulation, even though a deep learning model with higher
accuracy can be obtained in the end. Therefore, the above method is used to establish a
high-precision data-driven model with practical significance.

5. Results
5.1. Model Creation

Convolutional Neural Network (CNN) model creation. In this paper, three optimizers
are chosen to change the weights, namely Adam, Sgdm, and RMSprop. The batch size for
each model is 128. For the learning rate setting, the initial value is set to 0.01 in this paper.
The input data are also standardized according to the standardization formula to eliminate
the effect of the scale between the data. Meanwhile, to prevent the CNN data-driven model
from encountering the overfitting phenomenon, this paper adopts the Dropout mechanism
and K-fold cross-validation. The Dropout mechanism indicates that each neuron has a
certain probability of being dropped, i.e., its output is 0 and the weights are not updated. In
this paper, the Dropout value is set to 0.2, i.e., it means that 20% of randomly selected nodes
will not be trained. Meanwhile, 7-fold cross-validation is used to improve the stability of
deep learning models.

5.2. CNN Hyperparameter Settings

In CNN deep neural network models, more CNN layers lead to greater feature loss be-
cause the independent variable-target variable dataset is itself highly expressive. Therefore,
this paper uses three layers for prediction. Meanwhile, the size of the convolution kernel in
this paper is set to 3 × 3, and the step size of each move of the convolution kernel is 1. The
information about the hyperparameter settings of the CNN deep neural network in this
paper is shown in Table 5.

Table 5. Visualization of CNN Convolutional and Pooling Layer Settings.

Layer Filter Size Pool Size No.of Filters Stride Padding Strategy Activation
Functions

Conv-1 3 × 3 --- 32 1 0 ReLU
Pool-1 --- 2 × 2 --- 2 --- ---
Conv-2 3 × 3 --- 64 1 0 ReLU
Pool-2 --- 2 × 2 --- 2 --- ---
Conv-3 3 × 3 --- 128 1 0 ReLU
Pool-3 --- 2 × 2 --- 2 --- ---

5.3. TEUI Forecasting Model Analysis

The training process of the TEUI convolutional neural network model for the Turpan
office building is shown in Figure 8.
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Figure 8. The CNN model training process for TEUI.

Analysis: In the case of the office building TEUI, the data information for the eight-
building performance data-driven models is shown in Table 6. Also, the visualization
results of R2, RMSE, and MAE are shown in Figure 9. It is found through the figure that,
among the eight models, the CNN(Adam) model has the highest correlation coefficient
and the lowest RMSE and MAE. At the same time, other evaluation models have shown
some advantages. The building performance modeling accuracy (R2) sizes are in the fol-
lowing order: CNN(Adam), GA-BP, PSO-BP, BP, PSO-SVM, CNN(RMSprop), CNN(Sgdm),
SVM. Meanwhile, the order of size in terms of RMSE evaluation metrics is as follows:
CNN(Adam), PSO-BP, GA-BP, BP, PSO-SVM, CNN(RMSprop), CNN(Sgdm), SVM. Addi-
tionally, the order of magnitude in terms of MAE evaluation metrics: CNN(Adam), GA-BP,
PSO-BP, BP, CNN(RMSprop), CNN(Sgdm), SVM, PSO-SVM.

Table 6. TEUI data-driven model accuracy visualization results.

Sort Model RMSE MAE R2

1 BP 0.2522 0.1917 0.9733
2 SVM 0.9272 0.8880 0.9361
3 GA-BP 0.1986 0.1354 0.9889
4 PSO-BP 0.1963 0.1503 0.9870
5 PSO-SVM 0.2964 0.9671 0.9699
6 CNN(Sgdm) 0.4082 0.2997 0.9408
7 CNN(Adam) 0.1871 0.1254 0.9908
8 CNN(RMSprop) 0.3170 0.2541 0.9628
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In terms of deep learning models versus traditional regression models, CNN(Adam)
reduces 0.0651, 0.7401, 0.0115, 0.0092, and 0.1093 in terms of RMSE compared to BP, SVM,
GA-BP, PSO-BP, and PSO-SVM, respectively. MAE decreased by 0.0663, 0.7626, 0.01, 0.0249,
and 0.8417, respectively. As for R2, CNN(Adam) ranked the highest. The above analytical
study shows that the CNN(Adam) algorithm outperforms all other data-driven models
in predicting the error of the network prediction model concerning the data. It has the
highest R2 score and the smallest RMSE and MAE values. This means that CNN(Adam)
can be better generalized to new sample data and can be effectively used to predict data for
architectural TEUI.

5.4. GWP Prediction Model Visualization Results

The training process of the GWP convolutional neural network model of the Turpan
office building is shown in Figure 10.
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Analysis: In terms of office building GWP, the data information for the eight-building
performance data-driven models is shown in Table 7. Also, the visualization results of R2,
RMSE, and MAE are shown in Figure 11. It is found through the figure that, among the eight
models, the CNN(Adam) model has the highest correlation coefficient and the lowest RMSE
and MAE. At the same time, other evaluation models have shown some advantages. The
building performance modeling accuracy (R2) sizes are in the following order: CNN(Adam),
PSO-BP, PSO-SVM, CNN(RMSprop), GA-BP, BP, CNN(Sgdm), SVM. Additionally, the order
of size in terms of RMSE evaluation metrics is as follows: CNN(Adam), CNN(RMSprop),
GA-BP, PSO-SVM, BP, CNN(Sgdm), SVM, PSO-BP. Finally, the order of magnitude in terms
of MAE evaluation metrics is as follows: CNN(Adam), BP, CNN(Sgdm), CNN(RMSprop),
SVM, PSO-BP, PSO-SVM, GA-BP.

Table 7. GWP data-driven model accuracy visualization results.

Sort Model RMSE MAE R2

1 BP 0.1817 0.1501 0.9485
2 SVM 0.4141 0.4013 0.9029
3 GA-BP 0.1325 0.9471 0.9727
4 PSO-BP 0.8934 0.6774 0.9818
5 PSO-SVM 0.1447 0.7568 0.9797
6 CNN(Sgdm) 0.1966 0.1512 0.9436
7 CNN(Adam) 0.1263 0.1153 0.9869
8 CNN(RMSprop) 0.1292 0.2975 0.9796
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In terms of deep learning models versus traditional regression models, CNN(Adam)
reduces 0.0554, 0.2878, 0.0062, 0.7671, and 0.0184 in terms of RMSE compared to BP, SVM,
GA-BP, PSO-BP, and PSO-SVM, respectively. MAE decreased by 0.0348, 0.286, 0.8318,
0.5621, and 0.6415, respectively. As for R2, CNN(Adam) ranked the highest. The above
analytical study shows that the CNN(Adam) algorithm outperformed all other data-driven
models in predicting the error of the network prediction model concerning the data. It had
the highest R2 score and the smallest RMSE and MAE values. This means that CNN(Adam)
can be better generalized to new sample data and can be effectively used to predict data for
building GWP.

5.5. LCC Prediction Model Visualization Results

The training process of the LCC convolutional neural network model for the Turpan
office building is shown in Figure 12.
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Analysis: In terms of building LCC, the eight building performance models are shown
in Table 8. Also, the results of R2, RMSE, and MAE are shown in Figure 13. It is found
through the figure that, among the eight models, the CNN(RMSprop) model has the highest
correlation coefficient and the lowest RMSE and MAE. At the same time, other evaluation
models have shown some advantages. The building performance modeling accuracy
(R2) sizes are in order: CNN(RMSprop), GA-BP, CNN(Adam), PSO-BP, BP, PSO-SVM,
CNN(Sgdm), SVM. Additionally, the order of size in terms of RMSE evaluation metrics is
as follows: CNN(RMSprop), GA-BP, PSO-SVM, BP, CNN(Adam), CNN(Sgdm), PSO-BP,
SVM. Finally, the order of magnitude in terms of MAE evaluation metrics is as follows:
CNN(RMSprop), PSO-SVM, GA-BP, BP, CNN(Adam), CNN(Sgdm), PSO-BP, SVM.
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Table 8. LCC data-driven model accuracy visualization results.

Sort Model RMSE MAE R2

1 BP 0.2387 0.1482 0.9824
2 SVM 0.8413 0.5415 0.9145
3 GA-BP 0.1945 0.1421 0.9899
4 PSO-BP 0.6756 0.5348 0.9856
5 PSO-SVM 0.1965 0.1307 0.9775
6 CNN(Sgdm) 0.6187 0.4632 0.9616
7 CNN(Adam) 0.3572 0.2639 0.9881
8 CNN(RMSprop) 0.1772 0.1295 0.9969
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In terms of deep learning models versus traditional regression models, CNN(RMSprop)
is reduced by 0.0615, 0.6641, 0.0173, 0.4984, and 0.0193 in terms of RMSE compared to BP,
SVM, GA-BP, PSO-BP, and PSO-SVM, respectively. MAE is decreased by 0.0187, 0.412,
0.0126, 0.4053, and 0.0012, respectively. As for R2, CNN(RMSprop) is ranked the highest.
The above analytical study shows that the CNN(RMSprop) algorithm outperforms all other
data-driven models in predicting the error of the network prediction model concerning the
data. It has the highest R2 score and the smallest RMSE and MAE values. This means that
the CNN(RMSprop) can be better generalized to new sample data and can be effectively
used to predict data for building LCC.

Summary: In terms of time cost, CNN prediction models can significantly reduce
time cost compared to baseline models (parametric performance models created by Rhino
software). In terms of energy prediction, the CNN prediction model takes only 129 s for a
single run compared to 21.57 min if a traditional arithmetic model (baseline model) is used.
A comprehensive comparison reveals that CNN(Adam) reduces the time cost by 90.21%.
For GWP prediction, the CNN prediction model takes only 149 s to run once, while the
baseline model takes 27.45 min. A comprehensive comparison reveals that CNN(Adam)
reduces the time cost by 91.06%. For LCC prediction, the CNN prediction model takes only
138 s to run once, while the baseline model takes 23.29 min. A comprehensive comparison
reveals that CNN(RMSprop) reduces the time cost by 90.20%, as shown in Figure 14. It can
be concluded that the efficiency of the model can be greatly improved and the time cost
can be saved by the method based on deep learning model prediction.
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5.6. Visualization of Multi-Objective Optimization Results
5.6.1. Three Types of Objective Function Analysis

As shown in Figure 15, in this paper the NSGA-II algorithm is used for multi-
objective optimization. After traversing the data for 100 generations, a sample set of
4500 is obtained. The distribution of the three target indicators (TEUI, GWP, and LCC)
is shown in Figure 11. A study and analysis of the optimized solution set (indepen-
dent parameter-objective variable) shows the range of distribution of the three objec-
tives TEUI, GWP, and LCC. In terms of TEUI, the data are mainly distributed between
148.25 kWh/m2 and 165.22 kWh/m2. In terms of GWP, the data are mainly distributed
between 67.82 kg/m2 and 77.97 kg/m2. In terms of LCC, the values are mainly concen-
trated between 178,407.20 CNY/m2–189,508.02 CNY/m2. The three target values for the
original office building are a TEUI of 198.89 kWh/m2, a GWP of 91.51 kg/m2, and an
LCC of 267,731.96 CNY/m2. After the optimization of the objectives, the optimal in-
dex and the original building index are reduced by 108.53 kWh/m2, 47.31 kg/m2, and
84,537.83 CNY/m2, respectively. The three target values were reduced by 41.94%, 40.61%,
and 31.29%, respectively.
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5.6.2. Analysis of Variables

Based on the obtained 45 Pareto solutions in parallel coordinate plots, the distribution
of each variable can be seen, as shown in Figure 16. In terms of insulation type, WIT
is focused on EPS and PU, and RIT is focused on PU. Optimization variables show that
exterior walls have a wider range of insulation options compared to roofs. This is mainly
due to the large area of building coverage on the exterior walls compared to the roof.
Although EPS has a poor thermal performance compared to XPS and PU. However, in the
case of large office buildings with large surface areas, coupled with relatively affordable
prices, EPS has a significant advantage in terms of economic cost.
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Analysis in terms of insulation thickness. TW is mainly distributed around 0.32 and
TR between 0.02 and 0.11. Analyze the reasons for its existence in a cold region like Turpan,
where winters are cold and summers are hot. Since it has very strong solar radiation, take
the maximum number of uses at the TW insulation level.

In terms of window types, the last option was chosen for all scenarios. The reason for
this is that it has a small heat transfer coefficient, which effectively prevents heat loss in
winter. It also has a relatively high SHGC, which increases the absorption of solar radiation
in office buildings in winter. In addition to this, WT with good thermal performance has a
profound impact on the life cycle of office buildings in cold regions like Turpan.

In terms of WWR distribution. The distributions of WWR_S and WWR_N are more
concentrated compared to WWR_W and WWR_E, which are distributed around 0.55
and 0.01, respectively. This allows the building to receive more solar radiation in the
winter, allowing more heat to be gained inside while avoiding heat loss. For high-latitude
places like Turpan, where buildings in the region are more susceptible to western sunlight,
which in turn leads to overheating indoors, WWR_W has a smaller distribution than
WWR_E. Therefore reducing WWR_W minimizes the cooling energy consumption of the
air conditioner in the summer and also reduces the LCC and GWP.

In terms of shade depth, DEP_S is mainly distributed between 0 and 0.3, and DEP_E
is mainly distributed around 1.1; additionally, their average values are lower than those of
DEP_N and DEP_W. The reason for this is that increasing the length of shading at these
two levels of this office building, although it reduces the entry of hot outdoor heat into
the interior during the summer months, has the negative effect of making the interior less
thermally comfortable during the winter months. Meanwhile, in terms of WWR_E and
WWR_W, their values are relatively widely distributed due to the long summer period in
Xinjiang. West-facing shading can effectively improve indoor thermal comfort while also
reducing energy consumption and economic costs.

5.7. Analysis of Entropy-Based Evaluation Models for the Topsis Method

In evaluating the 45 programs on the Pareto frontier using the entropy-based Topsis
method, the target metrics are first selected. That is, TEUI, GWP, and LCC are selected in
this paper. Secondly, the type of indicator is established, and the three indicators selected
in this paper are all of the very small value type. That is, the smaller the value representing
the Turpan office building performance capacity, the better, and the more environmentally
friendly the energy-saving emission reduction adjustment ability will be In the third step,
information on the various indicators for the three objectives is established, as shown in
Table 9 below.
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Table 9. Indicator information for the three objectives of the entropy weighting method.

Type Total Energy Consumption
(TEUI)

Global Warming Potential
(GWP)

Life Cycle Costs
(LCC)

Information entropy values (e) 0.955 0.954 0.962

Information utility value (d) 0.045 0.046 0.038

Weights (%) 35.10 35.63 29.27

Table 10 shows the matrix calculation information for the Topsis method. The ranking
data information for each target scenario was analyzed and compiled based on the Topsis
methodology. Meanwhile, Table 10 shows the top 10 highest-rated results.

Table 10. Entropy-based Topsis method program data information (Top 10).

Optimal Type Positive Ideal
Solution (D+)

Negative Ideal
Solution (D−)

Composite
Score Sort

Option 1 0.368924 0.758328 0.672722 1
Option 2 0.387277 0.780325 0.668314 2
Option 3 0.352599 0.695340 0.663531 3
Option 4 0.389703 0.760765 0.661266 4
Option 5 0.375661 0.712357 0.654729 5
Option 6 0.375361 0.685431 0.646150 6
Option 7 0.474827 0.839538 0.638740 7
Option 8 0.371605 0.656131 0.638423 8
Option 9 0.371808 0.649367 0.635901 9
Option 10 0.450525 0.782468 0.634609 10

Analysis: Visualize the above table in a graph. As shown in Figure 17, the higher the
square block rises, the higher the score for the program. As can be seen from the graph,
option 1 scored 0.672722, which is the highest score. It has an optimal solution: TEUI is
150.23 kWh/m2, GWP is 69.20 kg/m2 and LCC is 185,654.18 CNY/m2.
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5.8. Evaluation Model Analysis of the Topsis Method Based on Subjective Empowerment

The program ranking scores are analyzed in this subsection by varying the weighting
factors. Based on changing different weighting factors, two schemes are derived from this:
The first one is to set TEUI, GWP, and LCC as preferred targets in order, with preferred
targets weighted at 1 and others at 0. The second option is to assign 0.33 to each of the three
indicators to visualize the study analysis.

5.8.1. The First Empowerment Scheme

Analysis: In terms of TEUI, it is shown in Table 11. The optimal solution score is 1.
The corresponding optimal solutions are WIT for PU, RIT for EPS, WT for Triple pane
Low-e(green), WWR_N for 0.05, WWR_E for 0.01, WWR_S for 0.59, WWR_W for 0.03,
DEP_N for 1.11 m, DEP_E for 1.38 m, DEP_S for 0.12 m, DEP_W for 1.06 m, SC_N for 0,
SC_E for 0, SC_S for 0, SC_W for 1, A_E for 8.52◦, A_W for 25.76◦, TW for 0.33 m, TR for
0.02 m, TEUI for 148.25 kWh/m2, GWP for 67.92 kg/m2, and LCC for 188,149.84 CNY/m2.

Table 11. Graphical representation of the top 10 program rankings when TEUI weight information
is 1.

Optimal Type Positive Ideal
Solution (D+)

Negative Ideal
Solution (D−)

Composite
Score Sort

Option 1 0.000000 0.999988 1.000000 1
Option 2 0.003536 0.996452 0.996464 2
Option 3 0.011905 0.988084 0.988095 3
Option 4 0.039309 0.960679 0.960691 4
Option 5 0.043257 0.956731 0.956742 5
Option 6 0.067008 0.932981 0.932992 6
Option 7 0.074139 0.925850 0.925860 7
Option 8 0.082979 0.917009 0.917020 8
Option 9 0.110913 0.889075 0.889085 9
Option 10 0.116925 0.883064 0.883074 10

In terms of GWP, as shown in Table 12, the optimal solution score is 1. The corre-
sponding optimal solutions are WIT for PU, RIT for PU, WT for Triple pane Low-e(green),
WWR_N for 0.01, WWR_E for 0.01, WWR_S for 0.55, WWR_W for 0.03, DEP_N for 1.11 m,
DEP_E for 1.37 m, DEP_S for 0.12 m, DEP_W for 1.19 m, SC_N for 2, SC_E for 0, SC_S for
0, SC_W for 2, A_E for 13.97◦, A_W for 25.66◦, TW for 0.32 m, TR for 0.02 m, TEUI for
148.31 kWh/m2, GWP for 67.82 kg/m2, and LCC for 189,508.02 CNY/m2.

Table 12. Graphical representation of the top 10 program rankings when GWP weight information
is 1.

Optimal Type Positive Ideal
Solution (D+)

Negative Ideal
Solution (D−)

Composite
Score Sort

Option 1 0.000000 0.999980 1.000000 1
Option 2 0.004948 0.995032 0.995052 2
Option 3 0.009693 0.990287 0.990307 3
Option 4 0.052566 0.947414 0.947432 4
Option 5 0.072996 0.926984 0.927002 5
Option 6 0.078864 0.921117 0.921135 6
Option 7 0.101570 0.898411 0.898428 7
Option 8 0.122356 0.877624 0.877642 8
Option 9 0.135865 0.864116 0.864133 9
Option 10 0.172855 0.827125 0.827142 10

In terms of LCC, as shown in Table 13. The optimal solution score is 1. The corre-
sponding optimal solutions are WIT for PU, RIT for EPS, WT for Triple pane Low-e(green),
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WWR_N for 0.01, WWR_E for 0.50, WWR_S for 0.58, WWR_W for 0.21, DEP_N for 0.38 m,
DEP_E for 1.47 m, and DEP_S for 0.07 m, DEP_W is 1.19 m, SC_N is 3, SC_E is 0, SC_S is 0,
SC_W is 0, A_E is 64.12◦, A_W is 83.90◦, TW is 0.33 m, TR is 0.02 m, TEUI is 165.22 kWh/m2,
GWP is 77.97 kg/m2, and LCC is 178,407.20 CNY/m2.

Table 13. Graphical representation of the top 10 program rankings when the LCC weight information
is 1.

Optimal Type Positive Ideal
Solution (D+)

Negative Ideal
Solution (D−)

Composite
Score Sort

Option 1 0.000000 1.000000 1.000000 1
Option 2 0.003347 0.996653 0.996653 2
Option 3 0.018799 0.981201 0.981201 3
Option 4 0.043928 0.956072 0.956072 4
Option 5 0.063234 0.936766 0.936766 5
Option 6 0.081126 0.918874 0.918874 6
Option 7 0.119132 0.880868 0.880868 7
Option 8 0.124258 0.875742 0.875742 8
Option 9 0.149042 0.850958 0.850958 9
Option 10 0.154563 0.845437 0.845437 10

5.8.2. The Second Empowerment Scheme

In this subsection, TEUI, GWP, and LCC are visualized and analyzed with weights set
to 0.33, as shown in Table 14.

Table 14. Graphical representation of data information for three targets with weight information of
0.33 (Top 10).

Optimal Type Positive Ideal
Solution (D+)

Negative Ideal
Solution (D−)

Composite
Score Sort

Option 1 0.390863 0.740950 0.654658 1
Option 2 0.366709 0.683724 0.650897 2
Option 3 0.411852 0.760994 0.648844 3
Option 4 0.413608 0.742166 0.642138 4
Option 5 0.394783 0.697264 0.638493 5
Option 6 0.391516 0.672434 0.632017 6
Option 7 0.382523 0.646877 0.628402 7
Option 8 0.381307 0.641183 0.627080 8
Option 9 0.506743 0.815601 0.616784 9
Option 10 0.479964 0.760820 0.613177 10

As shown in Table 14, the optimal solution score is 0.654658 under this scheme. The
corresponding optimal solutions are WIT for PU, RIT for EPS, WT for Triple pane Low-
e(green), WWR_N for 0.05, WWR_E for 0.02, WWR_S for 0.59, WWR_W for 0.14, DEP_N
for 0.92 m, DEP_E for 0.03 m, DEP_S for 0.19 m, DEP_W is 1.18 m, SC_N is 0, SC_E is
0, SC_S is 0, SC_W is 1, A_E is 8.52◦, A_W is 34.65◦, TW is 0.33 m, TR is 0.01 m, TEUI is
150.23 kWh/m2, GWP is 69.20 kg/m2, and LCC is 185,654.18 CNY/m2.

5.9. Comparative Analysis between Optimal Solutions

The three objectives of the Pareto frontier solution are sequentially ranked, using
the entropy-based Topsis method and subjective assignment. Obtain five solutions to
visualization: Topsis optimal, TEUI optimal, GWP optimal, LCC optimal, and each of the
three objective value weights is 0.33, as shown in Table 15.
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Table 15. Optimal Solution Objective Indicators and Distribution of Variables.

Categories TOPSIS
Optimal

TEUI
Optimal

GWP
Optimal

LCC
Optimal

Weighting
0.33 Each

WIT PU PU PU PU PU
RIT EPS EPS PU EPS EPS

WT Triple pane
Low-e(green)

Triple pane
Low-e(green)

Triple pane
Low-e(green)

Triple pane
Low-e(green)

Triple pane
Low-e(green)

WWR_N 0.05 0.05 0.01 0.01 0.05
WWR_E 0.02 0.01 0.01 0.50 0.02
WWR_S 0.59 0.59 0.55 0.58 0.59
WWR_W 0.14 0.03 0.03 0.21 0.14
DEP_N 0.92 1.11 1.11 0.38 0.92
DEP_E 0.03 1.38 1.37 1.47 0.03
DEP_S 0.19 0.12 0.12 0.07 0.19
DEP_W 1.18 1.06 1.19 1.19 1.18
SC_N 0 0 2 3 0
SC_E 0 0 0 0 0
SC_S 0 0 0 0 0
SC_W 1 1 2 0 1
A_E 8.52 8.52 13.97 64.12 8.52
A_W 34.65 25.76 25.66 83.90 34.65
TW 0.33 m 0.33 m 0.32 m 0.33 m 0.33 m
TR 0.01 m 0.02 m 0.02 m 0.02 m 0.01 m

TEUI 150.23 148.25 148.31 165.22 150.23
GWP 69.20 67.92 67.82 77.97 69.20
LCC 185,654.18 188,149.84 189,508.02 178,407.20 185,654.18

As can be seen from the above table, for the entropy-based Topsis method, the TEUI
is 150.23 kWh/m2, the GWP is 69.20 kg/m2, and the LCC is 185,654.18 CNY/m2. In
terms of optimal TEUI, the TEUI is 148.25 kWh/m2, GWP is 67.92 kg/m2, and LCC is
188,149.84 CNY/m2. In terms of optimal GWP, the TEUI is 148.31 kWh/m2, GWP is
67.82 kg/m2, and LCC is 189,508.02 CNY/m2. In terms of LCC optimization, TEUI is
165.22 kWh/m2, GWP is 77.97 kg/m2, and LCC is 178,407.20 CNY/m2. For each of the
three target value weights of 0.33 scenarios, TEUI is 150.23 kWh/m2, GWP is 69.20 kg/m2,
and LCC is 185,654.18 CNY/m2.

6. Article Discussion
6.1. Comparative Analysis of Data with the Original Office Building Program
6.1.1. Comparison of the Results of the Optimal Scheme of the Entropy-Based Topsis
Method with the Initial Data

From Section 4.5.1, the TEUI of the original office building is 258.76 kWh/m2, the
GWP is 116.51 kg/m2, and the LCC is 270,192.01 CNY/m2. After comparing the optimal
solution with the entropy-based Topsis method, it is shown in Figure 18. The TEUI of the
office building was reduced by 108.53 kWh/m2, the GWP by 47.31 kg/m2, and the LCC
by 84,537.83 CNY/m2. The TEUI, GWP, and LCC were reduced by 41.94%, 40.61%, and
31.29%, respectively.
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6.1.2. Comparison of the Results of the Optimal TEUI-Based Scheme with the Initial Data

In the optimal TEUI scheme, as shown in Figure 19, the optimal TEUI for office
buildings is 148.25 kWh/m2. Compared with the original building TEUI, the reduction is
110.51 kWh/m2, which is 42.71% energy saving.
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6.1.3. Comparison of the Results of the Optimal GWP-Based Scheme with the Initial Data

In the optimal GWP scheme, this GWP consists of two parts, i.e., the carbon dioxide
emissions during the initial phase cycle (CO2_DLC) and the carbon dioxide emissions
during the operational phase cycle (CO2_OP) of this Turpan office building. As shown
in Figure 20, the optimal GWP value of the office building is 69.20 kg/m2, CO2_DLC
is 143,209.39 kgCO2, and CO2_OP is 3,247,800 kgCO2, while the GWP of the original
building is 116.51 kg/m2, CO2_DLC is 294,752 kgCO2, and CO2_OP is 5,530,748 kgCO2.
The comparison shows that GWP is reduced by 47.31 kg/m2, CO2_DLC is reduced by
151,542.60 kgCO2, and CO2_OP is reduced by 2,282,948 kgCO2. They were reduced by
40.61%, 51.41%, and 41.28%, respectively.
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6.1.4. Comparison of the Results of the Optimal LCC-Based Scheme with the Initial Data

In the optimal LCC scheme, as shown in Figure 21. The LCC of this scheme is
178,407.20 CNY/m2 and the building operating cost (EC) is 240,006 CNY. Compared to
the original LCC, the LCC was reduced by 91,784.81 CNY/m2 and the EC was reduced by
122,473 CNY. They were reduced by 33.97% and 33.79%, respectively.
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6.2. Visualization of Sensitivity Analysis

The Pareto frontier solution can only give the set of regional solutions within the
optimal range of the three metrics, but it does not give information about the ranked
situation or the importance of the characteristics of the parameters of the independent
variables. Therefore, on this basis, this paper uses the sensitivity analysis strategy to
define the degree of influence of the parameters of the independent variables on the target
variables. After the methodology has been used to derive the degree of influence between
the variables, it can be used as a basis for further screening under specific conditions and
the prioritization of important parameters, which enhances the performance of the office
building. At the level of sensitivity analysis carried out in this article, the article uses two
different schemes, the RBD-FAST and DMIM methods.

6.2.1. RBD-FAST Methodology Analysis

In the RBD-FAST method, for the variables affecting TEUI, the top four are
TR > WWR_W > WWR_E > TW. These four variables account for 43.31% of the over-
all, as shown in Figure 22a. For GWP, the top four influences are TR > WWR_W > WWR_E
> TW. These four variables accounted for 85.96% of the total, as shown in Figure 22b. In
terms of LCC, the top four influences are TR > TW > WT > SC_E, respectively. These four
variables accounted for 88.75% of the total, as shown in Figure 22c.
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6.2.2. DMIM Methodology Analysis

In the DMIM sensitivity approach, as shown in Figure 23, for TEUI, the top four TOI
and FOI rankings are TR > WWR_W > WWR_E > TW and TR > TW > WWR_W > WWR_E,
respectively. They represent 43.30% and 80.30% of the TOI and FOI as a whole, respectively.
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For GWP, the top four TOI and FOI rankings are WWR_W > WWR_E > TR > WIT and
TR > WWR_W > WWR_E > TW, respectively. These four variables accounted for 41.12%
and 73.13% of the overall TOI and FOI, respectively. Figure 24 shows the results of the
analytical visualization of the DMIM method for GWP.
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For LCC, the top four TOI and FOI rankings are TR > TW > WT > WWR_W and TR >
TR > TW > WT > SC_E, respectively. They accounted for 34.38% and 82.25% of the overall
TOI and FOI, respectively. Figure 25 shows the results of the analytical visualization of the
DMIM method for LCC.
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6.2.3. Analysis of Results

For TEUI and GWP, the big impacts are TR, WWR_W, and WWR_E. More attention
should be paid to the TR aspect of the design in future building construction. The design can
be carried out in such a way as to increase the TR according to the specific construction. In
addition, when building a new construction or remodeling, designers should be more likely
to consider the impact of WWR_W and WWR_E on the performance of office buildings.
Shading not only reduces the TEUI of office buildings but also reduces carbon emissions. It
is also in line with the “dual-carbon” policy that China has proposed in recent years. In
terms of LCC, increasing TR with TW is an optimized form of measurement to reduce LCC.
A modest increase in TR and TW will allow office buildings to reduce some of the solar
radiation during the summer months. It also provides insulation in the winter months. In
the long run, the impact on the performance characteristics of office buildings in the region
will be far-reaching. SC_N and SC_S are ranked very close to 0 for the three target indicator
impacts. Therefore, the above two independent variable parameters have little impact on
the results of the study when conducting the design, and the designer can make trade-offs
according to the specific scenario when making decisions.

6.3. Comparison and Linkage of Findings to Existing Research
6.3.1. At the Level of Multi-Objective Optimization

The starting point of the research content of this paper is to optimize the TEUI, GWP,
and LCC of the building and analyze them using the NSGA-II algorithm, then go on to
provide a guiding idea for the optimization of the building performance in extremely hot
and cold regions. The results of the study show that, when optimizing the performance
objectives (TEUI, GWP, and LCC), the WWR_N and WWR_S of the building are presented
as minimized and maximized, respectively. This optimization can result in a building that
can gain more heat in the winter while also reducing heat loss. Existing studies have found
that Zhang et al. went about studying office building GWP and LCC by utilizing the NSGA-
II algorithm [22]. Song et al. used the NSGA-II algorithm to optimize the LCC and HTD
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(hours of thermal discomfort) for residential buildings in Turpan [98]. The multi-objective
optimization results of the above two scholars are consistent with this paper. That is, the
distribution of WWR_N and WWR_S is the most concentrated, and WWR_N and WWR_S
show the tendency of minimization and maximization in the multi-objective optimization
process. It can be seen that, especially in very hot and cold regions and severe cold regions,
WWR has a great influence on the building performance when optimizing the building
performance in a multi-objective way. Therefore, the impact of WWR on buildings should
be considered in future designs.

6.3.2. At the Level of Decision Analysis

The article uses two decision analysis methods, the entropy-based Topsis method, and
the subjective empowerment Topsis method. In this case, when the entropy-based Topsis
method is used, the optimization results in a reduction in the TEUI, GWP, and LCC of
41.94%, 40.61%, and 31.29%, respectively. Literatures [37,98] used the entropy-based Topsis
method to go for the effect of optimization of building energy efficiency in extremely hot
and cold regions and severe cold regions, respectively. In the above optimization results, in
terms of building performance improvement strategies at the level of the building envelope,
at the level of the building shading measures, and at the level of the building’s thermal
insulation performance, the method objectively evaluates and measures the optimization
results to quickly and efficiently improve the building’s performance potential. Thus, they
can provide some advice to the designers involved in the analysis phase of future decisions.

6.3.3. At the Level of Sensitivity Analysis

The article uses two sensitivity analyses to investigate the effect of independent
variable parameters on building performance goals. It was found that, for reducing the
TEUI, GWP, and LCC, the optimized measure is the selection of high-performance windows.
The optimization in this paper results in the use of Triple pane, Low-e(green) type windows.
Secondly, increasing the WWR_S and decreasing the WWR_N and WWR_E of a building
is critical to improving building performance. Literatures [37,98] are more consistent at
the level of performance sensitivity analysis compared to the results derived from the
optimization in this paper. It can be seen that window performance and the WWR of a
building have a very significant effect on building performance, so more attention should
be paid to this aspect in future research.

6.4. Limitations of Future Research

In the framework content studied in this paper, the internal heat flow direction in
office buildings is not considered. Subsequent research could look at issues related to
heat flow inside buildings in terms of fluid dynamics. Also, in terms of the building’s
internal wind environment, a good wind environment direction can improve the indoor
air quality and enhance the comfort of office workers. Therefore, it can also be included in
the analysis of subsequent studies. Analyzed in terms of life cycle stages, the dismantling
stage can be added to the study in subsequent research. Changes in various economic cost
rates over time can also affect LCC. The unexplored life cycle years of office buildings in
extremely hot and cold regions can have a direct impact on GWP and LCC. In addition, the
development of passive technologies has been accompanied by subtle changes in building
performance, e.g., the economic costs and carbon emissions associated with improved
thermal insulation and changes in high-performance windows, which in turn lead to
improvements in building airtightness, are difficult to demonstrate quantitatively at the
initial investment stage and will still require some realistic assessment and measurement in
future research.
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7. Conclusions
7.1. Applicability of the Article’s Research

In the course of the research in this paper, the content of the framework is not im-
mutable; it is malleable. For example, this article examines the energy consumption, CO2
emissions, and economics of office buildings in Turpan only. Subsequent studies could
add other performance metrics to this, such as optical performance indicators and thermal
comfort indicators (PMV, UTCI, PET, SET). Additionally, research from different climate
zone levels can have more options and applications. At the same time, the content of
the framework studied in this paper is variable. For example, when considering a larger
number of independent variable parameters and multiple performance targets, a sensitivity
analysis can be performed to retain the more influential independent variable parameters.
This greatly reduces the time spent on analysis, which in turn improves the efficiency of
building performance. In addition to this, other MCDM methods can be added when a
larger number of performance objectives needs to be considered. Analysis through multiple
methods at the decision-making stage can, in turn, increase the transparency and credibility
of decisions.

7.2. Article Conclusions

This paper takes the optimization of office building performance prediction in the
Turpan area as the research objective. It uses TEUI, GWP, and LCC as the target indicators
for performance prediction optimization analysis, and then proceeds to explore the energy-
saving strategies in performance prediction optimization of office buildings in the cold
region of Turpan. The conclusions of the article are divided into the following areas:

(1) This paper creates three deep neural network data-driven prediction models based
on office building performance objectives (TEUI, GWP, and LCC). In this analysis,
each performance metric was compared using eight separate data-driven models
for prediction. Finally, in the prediction results, the optimal data-driven model in
terms of TEUI is CNN(Adam), which is a deep learning model with R2 of 0.9908,
RMSE of 0.1871, and MAE of 0.1254. In terms of GWP, the optimal data-driven
model is CNN(Adam), which is a deep learning model with an R2 of 0.9869, RMSE
of 0.1263, and MAE of 0.1153. In terms of LCC, the optimal data-driven model is
CNN(RMSprop), which is a deep learning model with R2 of 0.9969, RMSE of 0.1772,
and MAE of 0.1295.

(2) In this paper, a multi-objective optimization of the performance objectives of office
buildings in the Turpan region is carried out. The article uses the NSGA-II optimiza-
tion algorithm to optimize the three objectives. The optimized three objectives were
then compared against the initial data for the office building. The results of the analy-
sis were as follows: The TEUI was reduced by 108.53 kWh/m2 from the initial value,
and its reduction was 41.94%. The GWP was reduced by 43.71 kg/m2 from the initial
value, and its reduction was 40.61%. The LCC was reduced by 84,537.83 CNY/m2

from the initial value and its reduction was 31.29%.
(3) In the program decision part, this paper adopts the entropy-based Topsis method and

subjective empowerment method for decision analysis. In the entropy-based Topsis
method scheme, the three metrics of the optimal solution are TEUI of 150.23 kWh/m2,
GWP of 69.20 kg/m2, and LCC of 185,654.18 CNY/m2. In the subjective assignment
method, the three target indicators of the optimal TEUI scheme are 148.25 kWh/m2 for
TEUI, 67.92 kg/m2 for GWP, and 188,149.84 CNY/m2 for LCC. The three target metrics
for the optimal GWP scheme are TEUI of 148.31 kWh/m2, GWP of 67.82 kg/m2, and
LCC of 189,508.02 CNY/m2. The three target indicators of the optimal LCC scheme are
165.22 kWh/m2 for TEUI, 77.97 kg/m2 for GWP, and 178,407.20 CNY/m2 for LCC. The
target indicators under each of the three performance objectives weighted at 0.33 pro-
gram are 150.23 kWh/m2 for TEUI, 69.20 kg/m2 for GWP, and 185,654.18 CNY/m2

for LCC.
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(4) In the sensitivity analysis section. Two methods of analysis are used in this paper:
In the RBD-FAST method, the top four variables affecting TEUI are TR > WWR_W >
WWR_E > TW. The top four variables affecting GWP are TR > WWR_W > WWR_E >
TW. The top four variables affecting LCC are TR > TW > WT > SC_E. In the DMIM
method, the top four variables affecting the TEUI are TR > WWR_W > WWR_E > TW.
The top four variables affecting GWP are WWR_W > WWR_E > TR > WIT. The top
four variables affecting LCC are TR > TW > WT > WWR_W.

The above findings were analyzed mainly with office buildings in extremely hot and
cold regions. In future research, the building’s internal thermal comfort conditions, wind
environment design, and acoustic environment design can be included in the study, which
will improve the completeness and comprehensiveness of office building performance
research. At the same time, the theme of this paper can be extended outwards. For example,
the office building performance indicators (TEUI, GWP, and LCC) studied in this paper
can be applied to time series forecasting in the future [99–103]. Finally, the research in this
paper can provide references and ideas for the design of building performance in other
different climate zones, such as hot summer and cold winter regions, hot summer and
warm winter regions, and mild regions [104–108].
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