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Abstract: Incorporating battery electric buses into bus fleets faces three primary challenges: a BEB’s
extended refuel time, the cost of charging, both by the consumer and the power provider, and large
compute demands for planning methods. When BEBs charge, the additional demands on the grid
may exceed hardware limitations, so power providers divide a consumer’s energy needs into separate
meters even though doing so is expensive for both power providers and consumers. Prior work
has developed a number of strategies for computing charge schedules for bus fleets; however, prior
work has not worked to reduce costs by aggregating meters. Additionally, because many works use
mixed integer linear programs, their compute needs make planning for commercial-sized bus fleets
intractable. This work presents a multi-program approach to computing charge plans for electric
bus fleets. The proposed method solves a series of subproblems where the solution to the charge
problem becomes more refined with each problem, moving closer to the optimal schedule. The results
demonstrate how runtimes are reduced by using intermediate subproblems to refine the bus charge
solution so that the proposed method can be applied to large bus fleets of 100+ buses. Not only will
we demonstrate that runtimes scale linearly with the number of buses but we will also show how
the proposed method scales to large bus fleets of over 100 buses while managing the monthly cost
of energy.

Keywords: battery electric bus; charge schedule; mixed integer linear program; bus fleet; grid
management

1. Introduction

Battery electric buses (BEBs) are replacing diesel and natural gas buses in public
transportation because they offer many benefits [1], including reduced maintenance [2],
zero emissions [3], and access to renewable energy [4]. The challenge of prolonged charging
times has been addressed in prior research with distributed charging networks [5], bus
availability, environmental impact [6], route scheduling [7], battery health [8], the cost of
electricity [9], and the cost of charging infrastructure [10].

One way in which previous authors have proposed managing the charge time of
electric buses is through dynamic charging, which uses additional infrastructure to charge
the vehicle while the vehicle is in motion. To this end, both overhead and inductive chargers
have been proposed [11,12].

Inductive charging makes use of specialized hardware that is manufactured as part of
the road or installed beneath to charge electric vehicles as they pass overhead. The benefits
of such technology lie in how they wirelessly charge vehicles while they are in motion and
reduce the need to stop for lengthy charge sessions. Unfortunately, such infrastructure is
expensive and difficult to add once the road has already been constructed, which increases
the cost of installation unless completed at the time of construction.

Overhead charging reaps similar benefits in that the vehicles under charge need not
stop but differ in execution. Where inductive chargers operate wirelessly and remain part
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of the road, overhead chargers are installed separately and rely on mechanical hardware
for connecting the BEB to the charging infrastructure. While easier to install after the initial
road construction, the mechanical components require additional maintenance and the
apparatus/overhead infrastructure is not aesthetically pleasing.

In the absence of dynamic charging solutions, many prefer to use static chargers to
manage their energy needs. Static charging requires each BEB to stop for a period of time
and connect to a charger to charge its battery. Unfortunately, charging in this manner leads
to lengthy charge times, which requires careful planning to both meet the energy needs for
BEBs and comply with the temporal scheduling demands of public transportation.

High-power chargers offer an alternative to slow charge times, decreasing the charge
times by using increased rates of charge. Unfortunately, fast charging also increases the
demands on the underlying electrical infrastructure [13] and can make power networks
unreliable [14]. Power providers must then apply expensive upgrades [15] to the infras-
tructure, which can make fast charging cost-prohibitive.

Therefore, using static chargers to meet the energy requirements of an electric bus
fleet requires a great deal of forethought and planning to meet both the temporal and
energy demands of each BEB while managing the impact on the underlying electrical
infrastructure [16]. Such foresight is generally too complex for any one individual and
must be derived from a planning algorithm.

Planning methods can generally be considered either a heuristic approach [17], which
trades optimality in favor of speed, or an exact approach, which considers all solutions
to guarantee optimality. The exact approaches are also diverse, including graph-based
network flow approaches [18,19], reinforcement learning [20], or other formulations using
mixed integer linear programs (MILP) [21,22]. Generally, each method minimizes cost
by either decreasing the instantaneous power needs for the fleet or optimizing around
time-of-use tariffs [23,24].

The aforementioned approaches are feasible for many applications and are supported
by additional work that estimates route times and energy demands [25], although the
current methods do not scale with the number of buses while bounding the optimality of
their solution.

Scaling these methods to large bus fleets (>100 BEBs) and numerous chargers is a
challenge due to the size of the optimization problem that must be solved. For small fleets
(<50 BEBs) and less than 10 chargers, the optimization problems in [18,21,23] have over
105 variables (including binary and integer variables) and over 105 constraints. Scaling
to larger fleets and more chargers stresses computational resources and requires lengthy
solve times.

This paper continues the theme of prior work, which is to develop charging schedules
for electric buses that minimize the monthly electricity bill (energy consumption plus power
demand) while satisfying route constraints that demand buses be in specific locations
at specific times. One novelty is that our formulation considers the aggregated effects
of loading across multiple meters. While meter aggregation is not widespread today,
distribution networks must be built to supply worst case loads to each metered circuit.
Therefore, our approach begins to explore how optimization of loads across multiple meters
can reduce the overall impact of BEB charging on the grid. In this work, meter aggregation
is modeled through the inclusion of uncontrolled (i.e., non-BEB charging) loads. Specifically,
we incorporate historical load data from an electric train (UTA TRAX) that visits a central
intermodal hub transit site in Salt Lake City, Utah, which is also a charging stop for BEBs.

The main contribution of the present paper is addressing the matter of scale. Rather
than posing a single large MILP that incorporates every aspect of the charging problem, we
solve a series of small subproblems in which the solution to the charging problem becomes
successively more refined and moves closer to the optimal schedule. Our results show that
intermediate subproblems can be solved with a dramatic reduction in runtimes, allowing
our method to be applied to significantly larger bus fleets.
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2. Methodology

In a sense, this work explores what is gained in runtime by sacrificing some optimality
in the schedule. The subproblems fall into three groups as shown in Figure 1. Each
subproblem is solved using a linear, quadratic, or integer program, and, when used together,
the series of programs provide a near optimal charge plan. Each subproblem addresses
elements from one of three areas: energy allocation and bus grouping, session length and
bus-to-charger assignments, and second-by-second optimization.

Energy Allocation and
Group Assignment

Session Time and
Charger Assignment

Final
Optimization

Figure 1. Overall processing chain.

The energy allocation and bus grouping section has two objectives. The first deter-
mines a relaxed charge schedule that does not account for a limited number of chargers.
The relaxed schedule provides information about ideal charge times for each bus that
is refined in subsequent problems to account for the additional constraints. The second
objective separates buses into groups where only buses in the same group may share
chargers. Dividing buses into groups allows each group to be treated independently in
future programs, which greatly simplifies the compute complexity of each subproblem.

The session-length and bus-to-charger assignment problems refine the relaxed solution
provided in the first set of problems to account for a limited number of chargers and uses
the unconstrained solution from the first part to compute a high-level charge schedule
that includes a charger assignment, energy requirement, and start/end time for each bus’s
charge session.

The second-by-second optimization section uses the schedule from the previous
problems to compute a second-by-second plan of how energy will be delivered to each
bus, resulting in a charge plan that includes when, at which charger, and how energy will
be delivered to each bus to optimally manage the cost of energy. The table provided in
Figure 2 lists each subproblem and which features each problem incorporates.

Feature P1 P2 P3 P4 P5 P6 P7 P8
Battery State of Charge x x x x x
Minimize Cost x x x x x
Charger Capacity x x x x x x x
Energy Placement x x x x x
Smooth Charge Plan x x
Computationally Scalable x x x
Small Number of Charge Sessions x x x
Number of Chargers x x x
Efficient Charger Use x x x
Precise Charge Plan x x

Figure 2. Descriptions for which problem features are addressed.

Note: A table with each variable in the paper is contained in Appendix A Table A1.

2.1. Energy Allocation and Group Assignment

The first set of problems answers two primary questions: (1) at what time should
energy be delivered to each bus, and (2) which buses are most able to share a charger.
These questions are addressed through three subproblems: unconstrained charge schedule,
smooth charge schedule, and group separation as shown in Figure 3.

The unconstrained schedule problem (denoted P1), which is described in Section 2.1.1,
computes an optimal charge schedule that minimizes the monthly cost of power in the
presence of uncontrolled loads under the assumption that each bus has a dedicated charger.
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The smooth schedule problem (denoted P2), which is described in Section 2.1.2, has
the same form as P1 except for two differences. First, the monthly cost is required to
match the optimal cost from the solution to the unconstrained scheduling problem P1.
Second, the objective for the smooth schedule problem P2 penalizes change in the scheduled
charge rates.

The group assignment problem (denoted P3), which is described in Section 2.1.3, uses
the charge schedules from P2 to separate buses into groups such that the bus schedules
within a group overlap as little as possible. Separating the scheduling problem into groups
helps to manage the number of computations in succeeding optimization problems by
reducing the size of these problems.

Energy Allocation and Group Assignment

P1
Unconstrained

Schedule

P2
Smoothed
Schedule

P3
Group

Assignment

Session Time and
Charger Placement

Figure 3. Processing chain for the energy allocation and group assignment problems.

2.1.1. Unconstrained Schedule (P1)

This section describes a program that finds a charge schedule where buses are allowed
to charge without regard for the number of available chargers. This solution is considered
“optimal” and will be used in later sections to formulate a feasible solution that accounts
for the actual number of chargers available.

Formulation

The cost objective we minimize is based on the rate schedule from [26], which con-
tains two primary elements: the cost of energy and power demand. Energy is billed per
kWh using different rates for on-peak and off-peak hours. Demand is divided into two
components. The first is a facilities charge, which is billed per kW for the highest 15 min
average power use over the course of the month. The second is a demand charge, which
is also billed per kW but is only billed for the highest 15 min average power used during
on-peak hours. The rates for each component are provided in Table 1.

Table 1. Description of the billing structure.

On-Peak Off-Peak Facilities (Both)

Energy Rate USD 0.058282/kWh USD 0.029624/kWh None
Energy Rate Symbol µe-on µe-off None

Power Rate USD 15.73/kW None USD 4.81/kW
Power Rate Symbol µp-on None µp-all

Before computing the total monthly cost of electricity, we must define expressions for
average power and energy over time. Let each day be divided into time intervals of length
∆T where the average power consumed by bus i during time j is denoted p(i, j) as shown
in Figure 4. Note that ∆T may be chosen to be on the order of a second or minute, and
expressions for 15 min averages will be derived later. The solution will yield the average
power consumed by each bus during each time interval.
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Bus 1

Bus 2

Bus 3

t1 t2

p(1, 1)

p(2, 1)

p(3, 1)

t3

p(1, 2)

p(2, 2)

p(3, 2)

t4

p(1, 3)

p(2, 3)

p(3, 3)

t5

p(1, 4)

p(2, 4)

p(3, 4)

t6

p(1, 5)

p(2, 5)

p(3, 5)

t7

p(1, 6)

p(2, 6)

p(3, 6)

t8

p(1, 7)

p(2, 7)

p(3, 7)

t9

p(1, 8)

p(2, 8)

p(3, 8)

tend

p(1, 9)

p(2, 9)

p(3, 9)

. . .

Figure 4. Demonstrates how bus power use is conceptualized.

The time windows when each bus is available for charging must be accounted for
as constraints. The maximum average power is set to zero when a bus is away from the
station. For example, if bus 1 were out on route for times t5, t6, and t7, then the average
power for those periods would be equal to zero as shown in Figure 5. Let bp(i,j) be the
average power used by bus i at time index j, and b be a vector that contains bp(i,j) for each
bus and time index. Also, let A ⊂ i × j be the set of all indices where bus i is in the station
during time tj and let Ã be its complement. Also, let pmax be the maximum power that a
charger can deliver.

Bus 1

t1 t2

p(1, 1)

t3

p(1, 2)

t4

p(1, 3)

t5

p(1, 4)

t6

p(1, 5)

t7

p(1, 6)

t8

p(1, 7)

t9

p(1, 8)

tend

p(1, 9)

. . .

Figure 5. Bus schedule with availability, where the x-axis represents time from left to right and the
faded areas represent times when bus 1 is unavailable for charging.

The set of constraints that buses do not use power when not in the station are provided
by

bp(i,j) = 0 ∀i, j ∈ Ã (1)

0 ≤ bp(i,j) ≤ pmax ∀i, j ∈ A (2)

Battery

Each bus must also maintain its state of charge above a minimum acceptable level
throughout the day. When buses leave the station, their batteries discharge energy as they
traverse their routes. Let δ(i, j) be the amount of charge lost by bus i at time j and let h(i, j)
be the state of charge of bus i at time j. The state of charge for each bus can be defined as

h(i, j) = h(i, j − 1) + bp(i, j − 1) · ∆T − δ(i, j) ∀i, j > 1

h(i, 1) = ηi ∀i
(3)

where ηi is the initial state of charge for bus i and ∆T is the difference in time between ti,j
and ti,j+1. Now that each value for the state of charge is defined, each value for h must be
constrained so that it is greater than a minimum acceptable value hmin but does not exceed
the maximum battery capacity hmax. This yields

hmin ≤ h(i, j) ≤ hmax ∀i, j (4)

The final battery-related constraint has to do with how we are planning for the bus.
The expenses that come from power are computed monthly, but we desire to simulate the
movements of the bus for only a day and use this to extrapolate what the monthly cost may
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be. Therefore, the state of charge for a bus at the end of the day must reflect its starting
value. This yields the following constraint:

h(i, end) = h(i, 1) ∀i. (5)

Cumulative Load Management

While this formulation does not directly account for the number of available chargers,
we do account for the cumulative load capacities of all chargers. Let the number of chargers
be denoted ncharger. We desire to maintain the average cumulative power for each time
step at a level that is serviceable given ncharger. We define a slack variable pc(j), which
represents the total average power consumed by all buses at time j. The variable pc(j) is
computed as the sum of average bus powers so that

pc(j) = ∑
i

bp(i,j). (6)

Objective

Now that the relevant constraints have been addressed, we turn attention to the
objective function. We start by computing the total average power for the complete system.
This total power is composed of power used by the buses and power used by external
sources such as lights, ice melt, electric trains, etc., which we refer to as “uncontrolled
loads”, where the average power for the uncontrolled loads at time step j is denoted u(j).
We compute the total power as the sum of power used by the buses pc(j) and the power
consumed by uncontrolled loads u(j) so that the total power, denoted pt(j), is computed as

pt(j) = pc(j) + u(j). (7)

The next step is to compute the fifteen minute average power use for each time step,
denoted p15. We accomplish this by letting

p15(j) =
1
n ∑

l∈{j15}
pt(l) (8)

where {j15} is the set of all indices 15 min prior to time tj and n is the cardinality of
{j15}. Next, note that the rate schedule requires both the maximum overall average power,
denoted pfacilities, and the maximum average power during on-peak hours, or pdemand. Let
Son be the set of time indices belonging to on-peak hours, and recall that the max over
all average power values is greater than or equal to p15(j) for all j. We can express this
constraint as

pfacilities ≥ p15(j) ∀j. (9)

Because pfacilities makes up part of the objective function, the optimization algorithm
will reduce the value for pfacilities until it is equal to the largest value in p15. Following
similar logic, we also define a set of constraints for the maximum average on-peak power
pdemand so that

p15(i) ≤ pdemand ∀i ∈ Son. (10)

The next step in computing the objective function is to compute the total energy consumed
during on- and off-peak hours, respectively. Let eon be the total energy consumed during
on-peak hours and eoff be the energy consumed during off-peak hours. We can compute
energy as the product of average power and time. In our case, we compute this as

eon = ∆T · ∑
i∈Son

pt(i)

eoff = ∆T · ∑
i/∈Son

pt(i).
(11)
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We can now compute the total monthly cost in dollars as

Jcost =


eon
eoff

pfacilities
pdemand


T

µe-on
µe-off
µp-all
µp-on

 (12)

The final optimization problem that computes a charge schedule without constraints
on the number of chargers is described below.

Summary for P1

Min
y

(12) subject to (1)–(11).

We have observed that charge commands in solutions to P1 tend to switch frequently
between 0 and pmax, which is difficult to implement in practice and imparts stress on charg-
ing hardware. Before additional steps can be taken, a smoother set of charge commands is
computed, and this is the subject of the next section.

2.1.2. Unconstrained Smooth Schedule (P2)

This section implements smoothing criteria so that the frequent “on-off” switching
patterns from P1 are reduced. This is completed by modifying P1 in two ways. The first
is that the demand, facilities, on-peak energy, and off-peak energy are removed from the
objective and constrained to equal their values obtained in the solution to P1 so that

eon = ẽon

eoff = ẽoff

pfacilities = p̃facilities

pdemand = p̃demand,

(13)

where values on the right-hand side are constants extracted from the solution to P1. Next,
we define an alternative objective that incentivizes continuity of charging between time
steps. This objective is defined as

Jswitch =
1
n ∑

i,j,∈K
∥b(i, j)− b(i, j − 1)∥2

2, (14)

where K is the set of all i, j where bus i may charge during time j and j − 1. The final
optimization problem that produces smooth charging schedules is provided below.

Summary for P2

Min
y

(14) Subject to (1)–(11), (13)

The solution to P2 smooths charge schedules without increasing costs, but it presents
the undesirable feature that the charge sessions tend to be fragmented into many short
sessions. Additionally, the schedule does not account for the number of chargers or bus
contention for charger use. Unfortunately, addressing these problems requires the use
of binary variables, and optimization with binary variables becomes intractable for large
numbers of buses and chargers. Before the fragmentation and charger assignment problems
can be addressed, we first segment the buses into groups. Successive processing can be
completed separately in groups, which helps to manage the computational complexity for
later problems that incorporate binary variables.
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2.1.3. Group Assignment (P3)

This section addresses the matter of problem size. The complexity of the problem
is strongly influenced by contention, which arises as multiple buses must share limited
charging resources. The number of binary variables in the optimization problem increases
as n2, where n is the number of charge sessions. Before we can formulate a solution to the
bus problem that scales linearly with n, we propose a method to separate buses into groups
to reduce the coupling between charge sessions.

The group assignment problem separates buses into ngroup groups, where group m is
allocated nm

charger chargers and nm
bus buses. Each group must have sufficient chargers to fill

its needs and prefer buses with dissimilar schedules to better avoid contention. We know
that the number of cross-terms in future problems will be reduced when each group has
the same number of buses. Therefore, let nm

bus be described as

nm
bus ≥

⌊
nbus

ngroup

⌋
nm

bus ≤
⌈

nbus
ngroup

⌉
,

(15)

where the values nbus and ngroup are user parameters.
The number of chargers assigned to each group must be exactly equal to the number

of available chargers so that
ncharger = ∑

m
nm

charger. (16)

The next set of constraints ensures that each bus is part of a group exactly once. Let
β(i, m) be a binary variable that is one when bus i is in group m. Each bus is constrained to
be a member of exactly one group by letting

∑
m

β(i, m) = 1 ∀i. (17)

We must also ensure that buses are assigned to groups where the power delivered to
each bus can be achieved with the number of chargers assigned to that group. Define a
slack variable that provides the total power used in group m at time step j as p(m, j). Recall
that we also know the expected power use for each bus as this is a result of P1 as bp(i,j),
which allows us to describe the total power for any one group as

p(m, j) = ∑
i

β(i, m)bp(i,j). (18)

Next, we know that the total load of each group must be less than or equal to the
collective capability of that group’s chargers, which can be expressed as

nm
charger · pmax ≥ p(m, j) ∀m, j (19)

so that the number of chargers is sufficient to charge the collective load of the group.
We also desire to group together buses whose routes have the least overlap. If two

buses contain no overlap, they will be easiest to schedule on the same charger. The
overlap is measured using the inner product of their schedules from P1. If completely
non-overlapping, the inner product will be equal to zero. Let

ϕ(i, i′) = b(i, :)Tb(j, :),
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where b(i, :) is the charge schedule for bus i as computed in P1. We desire to minimize the
total cross-terms ϕ(i, i′) for all buses in the same group. Define a slack variable v(i, i′, m),
which is equal to ϕ(i, i′) if buses i and i′ are both in group m and zero otherwise so that{

v(i, i′, m) = ϕ(i, i′) β(i, m) = 1, β(i′, m) = 1
v(i, i′, m) = 0 otherwise

which can also be expressed by letting

v(i, i′, m) ≤ ϕ(i, i′)

v(i, i′, m) ≥ ϕ(i, i′)− M
(
2 − β(i, m)− β(i′, m)

)
v(i, i′, m) ≤ 0 + Mβ(i, m)

v(i, i′, m) ≤ 0 + Mβ(i′, m)

v(i, i′, m) ≥ 0.

(20)

The final objective can then be expressed as

Jselect = ∑
i,i′ ,m

v(i, i′, m). (21)

and the final optimization problem may be expressed as shown below.

Summary for P3

Min
y

(12) subject to (15)–(20)

Problems P1 through P3 have produced preliminary estimates for charge schedules as
well as groups into which the buses can be subdivided but have not addressed the problem
of fragmentation, where each bus’s schedule contains many short charge sessions, whereas
fewer charge sessions is desirable. Before we can address where buses should charge, we
must first finalize each bus’s charge schedule by decreasing the number of charge events.

2.2. Session Length and Bus to Charger

The problems in the session time and charger assignment section, which are com-
puted on a per-group basis to reduce the number of computations, address two questions:
(1) when should charge sessions start and stop, and (2) which charger should be used for
each session. These questions are answered through three subproblems: defragmentation,
charger assignment, and session refinement as shown in Figure 6.

Session Time and Charger Placement

P4
De-Fragment

P5
Assign

Chargers

P6
Refine

Sessions

Energy Allocation and
Group Assignment

Final
Optimization

Figure 6. Processing chain for each group.

The defragmentation problem (denoted P4), which is described in Section 2.2.1, at-
tempts to consolidate charge sessions with small amounts of energy to reduce the number
of charge sessions and serves to both decrease the computational complexity of the charger
assignment problem by reducing the number of charge sessions and simplify the charge
schedule to make it more operationally feasible.

After consolidation, each charge session is defined by a minimum/maximum start/stop
time as provided by the bus’s arrival and departure times and an energy requirement in
kW. The charger assignment problem (denoted P5) is described in Section 2.2.2 and uses
the availability and energy constraints to assign chargers to charge sessions.
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Once charge sessions are assigned to chargers, the final step is to ensure each session
makes the most of each charger’s availability. Many times, the charge schedules do not use
all available time on a charger. The charger refinement problem (denoted P6) expands each
charge session to fill unused time and prioritizes sessions with higher energy demands for
adjacent sessions.

2.2.1. Defragmentation (P4)

A minimum charge session length is another operational constraint that must be
considered. We also consider constraints on minimum energy delivered per session. The
intent of these constraints is to avoid charging for short durations or for small amounts of
energy so that charge sessions are consolidated for convenience.

To solve these problems, assume there exists a “smoothed” solution from P2, which
has been appropriately placed in a group from P3. Next, let the preliminary solution be
subdivided into charge sessions, each with a specific amount of energy, a minimum start
time, and a maximum stop time. If the energy for any charge session is less than allowed,
then this session is marked as “fragmented”. The remaining sessions are either marked
as “used” or “unused”, where a used session delivers more power than specified by a
“fragmentation-threshold”, and an unused session delivers zero power.

We now propose a new optimization problem in which charge schedule will be
defragmented so that each session exceeds a minimum charge threshold. The sessions in
question are the “fragmented” sessions. Let θ(i, r) be a binary variable that indicates if
session r from bus i will be active. Because the only sessions in question are fragmented,
we only need to define θ(i, r) for fragmented sessions. Limiting the binary variables in this
fashion significantly reduces the computational complexity of this step. The charge problem
will be resolved using the same constraints and objective as in P1 but with the following
change. The first change constrains the minimum power delivery for each “active” charge
session to be at least as large as the original power delivery from P1. Let ρ(i, r) be a vector
that is ∆T, in hours, during the times bus i charges during session r and zero otherwise
so that

b(i, :)ρ(i, r) ≥ ψ(i, j) (22)

where ψ(i, j) is the minimum energy for session i, r and session i, r is considered “active”.
For inactive sessions, the energy is constrained so that it is equal to zero. Finally, for
fragmented sessions, the session energy must be greater than the minimum threshold ω
when active and zero otherwise, which can be expressed as

b(i, :)ρ(i, r) ≥ ω − ω(1 − θ(i, r))

b(i, :)ρ(i, r) ≤ 0 + θ(i, r)emax
(23)

where emax is the maximum energy delivered in a session. The final optimization problem
is provided below.

Summary for P4

Min
y

(12) subject to (1)–(11), (22), (23).

The solution to the defragmentation problem P4 provides a charge plan that optimizes
the cost of power while requiring that each charge session meet minimum energy criteria.
Up to this point, however, we still have not addressed constraints related to the number of
chargers, which is the focus of the next section.

2.2.2. Charger Assignment (P5)

The results from P4 provide a general estimate of how much and when buses should
charge; however, we must still address two important issues. The first is defining concrete
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start and stop times for each charge session. The second is limiting the charge sessions to a
finite number of chargers.

Consider a solution to a three-bus two-charger scenario provided in Figure 7. Note
that there appear to be three buses charging at the same time from t5 to t6 even though
there are only two chargers. We can reformulate this solution in terms of continuous start
and stop variables and a variable charge rate so that the duration of each charge session
may be relaxed. The objective is to transfer the required energy to the corresponding bus
within the optimized charge interval.

Bus 1

Bus 2

Bus 3

t1 t2 t3 t4 t5 t6 t7 t8 t9 tend. . .

0 35 105 105 140 0 0 0 0

175 175 175 175 70 0 0 0 0

0 0 0 350 350 350 350 0 0

Figure 7. An example solution to a 3-bus 2-charger scenario from P4. The x-axis represents time from
left to right, and the y-axis discretely represents each bus in the charge plan.

Note how few of the charge sessions utilize the chargers to full capacity. This implies
that there exists a smaller charge window in which equivalent power can be delivered.
This allows us to use the charge durations from the solution from Figure 7 as bounds on
allowable charge windows instead of enforcing equality.

An example of how Figure 7 may be reformulated is provided in Figure 8. Note how
the actual charge sessions do not necessarily need to take up all the time they were initially
allocated in the first solution and that these times can fluctuate if the average charge rate is
less than the maximum charger capacity. In this example, we assume a maximum charge
capacity of 350 kW.

Bus 1 Session 1

Bus 2 Session 2

Bus 3 Session 3

t1 t2 t3 t4 t5 t6 t7 t8 t9 tend. . .

Figure 8. Demonstrates how results from P4 can be re-expressed in terms of continuous variables. The
yellow areas represent scheduled time on a charger, and the orange sections represent the time a bus
occupied a charger. The x-axis represents time from left to right, and the y-axis discretely represents
each bus in the charge plan.

Note how the third charge session does have to be exactly where it was scheduled
because the average is equal to the maximum charge rate. If we examine just the schedule
for Bus 1, we note that there are four essential variables for the corresponding charge
session: a(i, r), b(i, r), f (i, r), and d(i, r), which represent the minimum start time, actual
start time, actual end time, and maximum end time, respectively.

The problem we must now solve is one of arranging these intervals such that each
one is larger than its minimum width (or charge time). We must also account for the
number of chargers. It can be helpful to view the problem as a bin packing problem, where
each session must fit within the “swim lane” of a charger. For example, taking the charge
sessions provided in Figure 8 and arranging them so that there is no overlap between
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sessions will yield a valid solution as shown in Figure 9. From Figure 10, we know that
a(i, r), b(i, r), f (i, r), and d(i, r) must be such that

a(i, r) ≤ b(i, r) ≤ f (i, r) ≤ d(i, r), (24)

where a(i, r) and d(i, r) are known from P4, and b(i, r) and f (i, r) are optimization variables.

Charger 1

Charger 2 Session 2

Session 1

Session 3

t1 t2 t3 t4 t5 t6 t7 t8 t9 tend. . .

Figure 9. Demonstrates the solution to P5. The orange shaded regions represent times when a charger
was in use for charge sessions. The x-axis represents time from left to right, and the y-axis discretely
represents each charger in the charge plan.

Bus 1 Session 1

a1,1 d1,1b1,1 f1,1

Figure 10. Provides variables of optimization for P5. THe avaiability sections, in yellow, are defined
by the arrival and departure constraints a1,1 and d1,1 and contain the charge session intervals, defined
by the optimization variables b1,1 and f1,1. The x-axis represents time from left to right so that
variables a1,1, b1,1, f1,1, and d1,1 represent bus availability, session start, session end, and departure
time, respectively.

To differentiate between different chargers, define σ(i, r, k) as a binary selector variable
that is one if charger k services bus i for session r and zero otherwise. Because only one
charger can charge each bus at a time and each charge session must be serviced, we have

∑
k

σ(i, r, k) = 1 ∀i, r. (25)

Next, we also know that during each session a certain amount of energy must be
transferred from the charger to the battery. The amount of energy that must be transferred
to bus i during session r is provided in the solution to P4 and denoted e(i, r). We can
compute a minimum time window from these values by letting

w(i, r)min =
e(i, r)
pmax

. (26)

If we include constraints for a minimum time per session, then the previous expression
becomes

w(i, r)min = max
(

wmin,
e(i, r)
pmax

)
.

Because w(i, r)min is the minimum time window, we must ensure that the difference
between the start and stop times is at least this large so that

f (i, r)− b(i, r) ≥ w(i, r) ∀i, r. (27)

The final set of constraints deals with contention so that no charger can be scheduled
for two sessions that overlap. Let L = {(i, r)× (i′, r′)}, where charge sessions i, r and i′, r′

have the potential to overlap. Before we can prevent overlap, we must define a binary
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variable l(i, r, i′, r′) that is equal to one when session i, r is scheduled before session i′, r′

and zero otherwise so that{
f (i, r) ≤ b(i′, r′) l(i, r, i′, r′) = 1
f (i′, r′) ≤ b(i′, r′) l(i, r, i′, r′) = 0

(28)

To simplify these constraints, let M have a large value such as the number of seconds
in a day. We know what the top constraint must be trivially satisfied when l(i, r, i′, r′) = 0
and the bottom must also when l(i, r, i′, r′) = 1. This leads to a reformulation so that

f (i, r)− b(i′, r′) ≤ M(1 − l(i, r, i′, r′)

f (i′, r′)− b(i, r) ≤ l(i, r, i′, r′)M

However, this constraint only needs to hold when sessions i, r and i′, r′ are scheduled
to charge on the same charger or σ(i, r, k) = σ(i′, r′, k) = 1. We can reformulate the above
constraint to satisfy this condition by letting

f (i, r)− b(i′, r′) ≤ M(3 − σ(i, r, k)− σ(i′, r′, k)− l(i, r, i′, r′))

f (i′, r′)− b(i, r) ≤ M(2 − σ(i, r, k)− σ(i′, r′, k) + l(i, r, i′, r′))
(29)

Finally, we desire the schedule to closely match the charge plan from P4, which occurs
when each charge session matches the durations provided in P4, so we formulated an
objective function that minimizes the differences in the given plan and the results from P4
by letting the objective be

min
f ,b

∑
i,r
∥b(i, r)− a(i, r)∥2

2 + ∥ f (i, r)− d(i, r)∥2
2 (30)

which has the effect of driving each variable to the desired value and more heavily pe-
nalizing values that are further from their optimal. The final optimization problem is
provided below.

Summary for P5

Min
y

(30) subject to (24)–(29).

Ideally, when P5 is solved to optimality, the chargers are fully utilized. However, opti-
mality for P5 is computationally demanding and scalable solutions may require relaxations
in the optimality gap of the solver. However, increasing the gap leads to a solution in
which chargers are not fully utilized. The next section uses the session ordering from P5
but recomputes session start/stop times to better utilize the charger availability even when
sub-optimal gaps are provided for P5.

2.2.3. Optimizing Charge Schedules (P6)

Often, it is not feasible to compute the optimal set of charge schedules provided in the
previous sections. As the amount of buses and charge sessions becomes large, computing a
small-gap solution becomes computationally intractable. Allowing solutions with larger
optimality gaps decreases the number of computations but results in sub-optimal charge-
time windows. In this section, a more optimal set of charge windows is computed using
the results from P5 to infer charger assignment and ordering for each charge session. We
also know that the optimal solution will expand the charge windows to use any available
time where a charger is unused, implying that the “stop” time for each session will either
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be equal to its bus’s departure time or the start time of the next window, which can be
expressed as 

c(s, i, r + 1) = c( f , i, r) c(d, i, r) > c(a, i, r + 1)

c(s, i, r + 1) = c(a, i, r + 1)

c( f , i, r) = c(d, i, r)
c(d, i, r) <= c(a, i, r + 1)

(31)

where c(s, i, r) is the start time for charger i’s rth charge session, c( f , i, r) is the stop time
for charger i’s rth charge session, c(d, i, r) is the departure time for the bus scheduled for
charger i’s rth charge session, and c(a, i, r) is the arrival time for the bus scheduled for
charger i’s rth charge session. The minimum charge length must also be used so that energy
can be properly delivered, so that

c( f , i, r)− c(s, i, r) ≥ w(i, r) (32)

where w(i, r) is the minimum charge time for the corresponding session.
The final step to optimizing the charge windows is to assign preference to windows

with larger power deliveries. Let the objective for the optimization program be

Jwindow =
1
n ∑

i,r

∥∥∥∥ c( f , i, r)− c(s, i, r)
e(i, r)

∥∥∥∥2

2
. (33)

When the function J contains windows with equal amounts of energy, the minimum
will be found where each charge interval is the same width. As the amount of energy
increases, the objective penalizes less for larger window sizes and thus assigns preference
to high-energy sessions. The final optimization problem is provided below.

Summary for P6

Min
y

(33) subject to (31), (32)

After solving P6, each charge session is assigned to a charger so that contention for
limited chargers has been managed for each group. Furthermore, each session also specifies
target energy requirements that manage the risks of depleting batteries but do not provide
instructions on how the energy is to be delivered. The energy delivery problem is addressed
in the next section and the results are combined for all groups so that the charge schedule
begins to approach a globally optimal solution.

2.3. Final Optimization

Solutions to the previous problems provide a set of charge sessions, energy require-
ments, and time schedules for specific chargers. The final question to be answered is how
should the energy for each session be delivered. The two subproblems in the final optimiza-
tion section mirror problems P1 and P2 from the energy allocation and group assignment
sections. The first problem (denoted P7) uses the energy and time constraints from previous
solutions to compute an optimal charge schedule in Section 2.3.1 and is analogous to the
unconstrained charge problem P1. The second problem (denoted P8) computes a smoothed
charge schedule with the same cost as the constrained schedule solution in Section 2.3.2
and is analogous to the smooth charge schedule problem P2 in Section 2.1.2. Together, p7
and p8 form the third set of optimization problems as shown in Figure 11.
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Session Time and Charger Placement

P7
Constrained

Schedule

P8
Constrained

Smooth

Session Time and
Charger Placement

Figure 11. Processing chain for the final optimization set.

2.3.1. Constrained Schedule (P7)

Up to this point, we have computed charge schedules that assume that any bus can
charge regardless of the number of chargers. We then separate buses into groups to reduce
the scale of the problem and treat each subproblem separately while we defragment sessions
and assign each charge session to specific chargers before determining the final start and
stop times for each bus’s charge session.

The final step in this process is to determine how the energy will be delivered so
that cost is minimized. We begin with constraints for bus power, energy, and cost from
Section 2.1.1 that are expressed as Equations (1), (5), and (7)–(11). Next, include constraints
for energy so that the energy for each charge session is properly delivered using a modified
version of (22) so that

b(i, :)ρ(i, r) = ψ(i, r), (34)

where ψ(i, r) is the required energy for bus i during rest period r as computed from the
solution of the defragmentation problem. The resulting optimization problem is provided
below.

Summary for P7

Min
y

(12) subject to (1), (5), (7)–(11), (34)

2.3.2. Constrained Smooth Schedule (P8)

The charge schedule from P7 will contain the same on–off switching defects as the
solution to P1, which can be managed as before by executing P7 once again with the same
modifications that lead to P2: (1) constrain the cost terms in the objective to equal their
values from P7, and (2) reduce the difference in sequential charge rates with the smoothing
objective from (14). The resulting optimization problem is provided below.

Summary for P8

Min
y

(14) subject to (1), (5), (7)–(11), (13), (34)

3. Results

The results provided in this section aim to demonstrate how the proposed method
can be used to find a scalable solution to the bus charge problem. Because the proposed
solution contains various subproblems, optimization parameters for each subproblem may
be tuned to best meet the demands of a given scenario, allowing for a degree of flexibility
that is not present in prior works that formulate solutions to the bus charge problem as a
single optimization problem.

3.1. Overall Performance

In this section, we compare the proposed method with a baseline algorithm and a
method developed by [27]. The baseline method models how bus drivers charge their
electric vehicles at the Utah Transit Authority (UTA) in Salt Lake City, Utah. At the UTA,
when bus drivers arrive at the station, they recharge their batteries whenever a charger is
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available so that the number of charge sessions is maximized. The method from [27] works
somewhat differently by minimizing the cost of energy with respect to time of use tariffs
µe-on and µe-off .

The comparison we observe is provided for a 10-bus 10-charger scenario and a single
group. Each method was used to compute a charge schedule, and the costs from demand,
facilities, and energy charges are provided in Figure 12. Note how the baseline algorithm
suffers significantly from the demand charges associated with on-peak power, and [27]
incurs additional costs from facilities charges, indicating that the emphasis on energy
charges and habitual charging patterns can be improved.

We observe where the differences in cost originate in Figure 13. Observe how the
baseline charge profile achieved the largest 15 min average power between 19:12 and 21:36,
which is during on-peak hours, and consequently yielded the large on-peak power charges
provided in Figure 12. Additionally, note how the proposed method maintains a relatively
flat power profile so that the load is balanced throughout the day, which we investigate in
Figure 14.

Energy On-Peak
Power

Facilities
Power
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)

Baseline
He et al.

Proposed

Figure 12. Cost comparison with prior work including [27]. Each group in the x-axis represents one
component of the monthly energy cost and contains values from one of three planning methods for
comparison.
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Figure 13. This plot illustrates the differences in power profiles between the proposed method and
another from the literature [27] and shows how these differences contribute to the cost savings in
Figure 12. The x-axis represents time in the usual manner and the y-axis is the 15 min average power.
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Figure 14. This plot shows the difference in power use between the proposed method and the baseline
method described at the beginning of Section 3. The x-axis represents time and the y-axis represents
the 15 min average power for each profile.

In Figure 14, note how the proposed method produces a bus load that mirrors the
uncontrolled load, yielding the flat load profile from Figure 13, which is especially prevalent
from 7:12 to 14:24. The results show that the proposed method works well, outperforming
both the historical patterns at UTA as well as improving upon prior methods.

3.2. Optimality Gap and Contention Trade-Off

In the previous section, we compared the performance of three methods where each
method was produced using a small gap in the numerical solver. In general, the most
computationally demanding solution addressed bus-to-charger placement and can require
a very small gap to yield good solutions.

This work also seeks to address how to compute a solution in a scalable manner,
so this section reviews the relationship between computation time and number of buses
by considering a seven-charger scenario with runtime comparisons for eight, nine, and
ten buses.

Figure 15 plots the computation time as a function of optimality for a seven-charger
eight-bus scenario in blue, a seven-charger nine-bus scenario in red, and a seven-charger ten-
bus scenario in green. In each scenario, note how there exists a gap after which computation
time dramatically increases for small improvements in the optimality gap. Solving P5 to an
optimality gap after this point becomes computationally expensive and should be avoided
as the number of buses grows.
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Figure 15. This plot compares the runtimes of 8-, 9-, and 10-bus scenarios with 7 chargers and
illustrates how the compute time quickly increases as a function of the optimality gap. When the gap
becomes too small, the compute time becomes unmanageable. The point at which compute times
become too large becomes smaller as the number of buses decreases.

Additionally, note how the high solve-time region (near zero gap) for the eight-bus
scenario begins at a smaller gap than that of the nine- or ten-bus scenarios. This demon-
strates a relationship between contention and computation time as contention increases
with the number of buses if the number of chargers is fixed. We can conclude, therefore,
that saving computation time as the number of buses increases can be accomplished by
slackening (increasing) the optimality gap provided to the numerical solver.

3.3. Contention: Sub-Optimal Schedules

In the previous section, we observed that the proposed method cannot scale with
contention if the optimality gap is too small. This section considers an experiment to
motivate the division into groups from P3. The focus of this experiment is to compare
the duration and charge rates of small-gap and large-gap scenarios. Solutions to P5 are
preferred if session lengths are longer and require smaller charge rates because long charge
sessions are more practical in the real world and small charge rates are easier to implement
on charging hardware.

Figure 16 displays the charge session durations as a function of charge rate for two
solutions to an eighteen-bus six-charger scenario. The first solution, shown in blue, was
computed with a small optimality gap and the second, shown in red, was computed for a
large optimality gap. Note how the charge sessions from the small-gap solution tend to
have larger session durations and lower charge rates than the solution for the large-gap
sessions, indicating the value of smaller gaps.
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Figure 16. Comparison of charge session duration vs average charge rate.

We further illustrate the difference in optimality gap by directly comparing the charge
schedules for each scenario in Figures 17 and 18. In each figure, the color at the i, j location
represents the charge rate for bus i at time j. Observe how the first sessions for buses
1–4 and 6–13 are assigned to a single charger in Figure 17 so that each charge session is
compressed to accommodate the large number of buses. The remaining chargers appear to
have at most one session, which implies that the charge sessions were poorly managed in
the large-gap scenario. In comparison, the small-gap solution in Figure 18 yields a more
evenly distributed session load for each charger so that each session is lengthened and
contains smaller charge rates.

3:00 6:00 9:00 12:00 15:00 18:00 21:00 0:00

5

10

15

0

100

200

300

Figure 17. Routes with a large gap in the route placement problem.
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Figure 18. Routes with a small gap in the route placement problem.

It is also interesting to note that the monthly costs of each solution may or may not be
equivalent even though a small-gap solution is clearly superior. Therefore, a small gap is
required to consistently achieve optimal session placement. We also know from Figure 15
that small optimality gaps may increase the number of computations so that the charger
assignment problem becomes intractable for large numbers of buses, making it necessary
to reduce the problem scope by dividing buses into groups.

3.4. The Importance of Groups

One contribution this work provides is a way to compute cost-oriented charge sched-
ules that scale well as the number of buses increases. We know from the previous section
that the charger assignment problem will not scale for small optimality gaps. This section
describes how the computational complexity of the charger assignment problem can be
managed by separating the buses into groups so that the charger assignment problem can
be solved for each group independently.

In this section, we consider an 18-bus 12-charger scenario with a 0.13% gap in the
charger assignment problem. Figure 19 shows the respective runtimes for one- and two-
group scenarios in P5. Note how the runtime for the two-group scenario is several orders
of magnitude less than the runtime for the single-group case, which demonstrates how a
small number of groups can manage the runtime for optimal charger assignment solutions.
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Figure 19. Runtimes for an 18 bus 12 charger scenario at a 0.13% gap with one group (red), and two
groups (blue).
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3.5. Effects of Defragmentation

This paper also addresses the operational preference to consolidate charge sessions
when possible, an operation we have called defragmentation. This section demonstrates the
effectiveness of the defragmentation method provided in P4 and how consolidation affects
the monthly cost. In Section 2.2.1, the threshold for defragmentation is provided by the
minimum allowable energy per charge session. In this section, we compare two forty-bus
seven-charger scenarios where the first contains results without defragmentation and the
second consolidates charge sessions so that each session delivers at least 30 kWh. The
results for each session are presented in Figures 20 and 21, where the color of the i, j element
of a figure represents the charge rate for bus i during time j. Note how Figure 20 contains
many short inconsequential charge sessions and requires each bus to charge each time it
enters the station. In comparison, Figure 21 contains only a handful of charge sessions so
that each bus only needs to charge four to five times throughout the day.
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Figure 20. Routes without defragmentation.
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Figure 21. Routes with defragmentation.

Furthermore, Figure 22, which plots monthly cost as a function of the minimum
charging threshold, demonstrates that, despite the additional constraints associated with
consolidation, the monthly cost remains consistent over a large window of thresholds. As
the minimum allowable energy per session increases, the number of binary variables in the
defragmentation problem increases, resulting in significant runtimes for the defragmenta-
tion problem as shown in Figure 23, which plots runtime as a function of the minimum
charge threshold. However, because buses are divided into groups prior to defragmenta-
tion, the smaller groups decrease the computational complexity for defragmentation so
that larger consolidation thresholds can be applied in a scalable manner.
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Figure 22. Cost comparison of different defragmentation thresholds in a pro-time optimization
scheme.
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Figure 23. Comparison of runtimes for various defragmentation scenarios in a pro-session environment.

3.6. Scalability

In this section, we consolidate what we have learned in the previous sections to
demonstrate how the proposed framework can be used to compute a cost-effective solution
for large numbers of buses. This section focuses on a scenario with a minimum energy per
session of 20 kWh, a large gap for the charger assignment solution, and a single group.

The results are provided in Figure 24, which plots the runtime as a function of the
number of buses and shows how that runtime generally increases by one second per bus
from 10 to 110 buses. One would expect the runtime to increase at least in the order of
O(n2) for a globally optimal solution because of the coupling between bus variables. The
fact that the proposed method is practical in the given range indicates a solution that scales
well as the number of buses increases and can easily handle over 100 buses.
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Figure 24. Runtime comparison for different numbers of buses.

Generally, one would also expect such savings to come with significant increases to
monthly cost. However, the results in Figure 25 demonstrate that the proposed solution
yields a quasi-linear increase of approximately USD 404.10 per bus per month.
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Figure 25. Cost comparison for different numbers of buses.

4. Conclusions

In summary, this paper set out to compute a cost-oriented charge plan for large bus
fleets. Historical methods have focused on either scalability or optimality. Work with an
optimality-centered focus has not scaled to large bus fleets because the number of variables
in such formulations becomes very large as the number of buses increases. Others have
worked with compute time in mind but have been unable to consider details that lead to
optimal schedules.

We have shown how the proposed method can do both, considering the details in a
BEB’s day-to-day use that allow for optimal schedules and providing the user with hyper-
parameters that allow them to decide how optimal their solution must be. The bus charge
problem has been divided into a series of programs that use information from the previous
program to further refine the charge schedule. The hyper-parameters in this formulation
are the optimality gap criteria for each subprogram.



World Electr. Veh. J. 2024, 15, 161 24 of 28

The primary constraints this paper considers are time of use and demand charge,
bus and charger availability, the state of charge and maximum capacity of a BEB’s battery,
fragmented charge sessions, bus grouping, and second-by-second optimization.

We consider the results for each subproblem in Section 3 and demonstrate that the
proposed method can scalably plan for large bus fleets, achieving a cost of approximately
USD 400.00 per month per bus, and a runtime of one second per bus (up to 110 buses). The
proposed method’s ability to consider many operational details and manage compute time
makes the proposed method ideal for managing the cost of energy in large electric bus fleets.
Furthermore, using a variety of programs to solve the bus charge problem guarantees that
all the solutions will not only be cost-effective but feasible as well.
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Appendix A

Table A1. Variables and definitions.

Variable Description Range Variable Description Range

Indices

i Bus index N j Time Index N

k Charger index N r Route Index

m group index N

Optimal Solution|Formulation

nbus
The number of buses in the
optimization framework. Z ntime

The number of time indices
in a day. Z+

bp(i,j)

The average power
consumed by bus i during
time period j.

R tj

The time at time index j.
This paper also refers to the
period of time from tj to tj+1
as “period tj”.

R

b A vector containing each
value for bp(i,j).

Rnbus·ntime Ã The complement of A. i × j

A
The set of all i × j elements
where bus i can charge at
time index j

i × j pmax

The maximum power a bus
charger can deliver to a bus
in kW. This paper assumes a
value of 350 for most
examples and results.

R+
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Table A1. Cont.

Variable Description Range Variable Description Range

Optimal Solution|Battery

hmin
The minimum allowable
state of charge (0, hmax) hmax

The maximum state of
charge R+

ηi
The beginning state of
charge for bus i (hmin, hmax) h(ij) The state of charge for bus i

at time tj.
(hmin, hmax)

∆T The change in time from tj
to tj+1

R+ h A vector containing all state
of charge values. Rnbus·ntime

+

δ(ij) The battery discharge for
bus i during time period j. R+ h(i, end) Bus i’s final state of charge. (hmin, hmax)

Optimal Solution|Cumulative Load Management

ncharger
The time index for the start
of bus i’s jth stop Z+ pc(j)

The average power
consumed by all buses
during time period j.

R

pc
A vector containing all
values of pc(j). Rntime

+ Jthrash

A secondary objective
function that penalizes
multiple plug-in instances
per charge session.

R+

g(i, j)
A slack variable used to
compute the absolute value
of |bp(i,j) − bp(i,j−1)|

R+

Optimal Solution|Objective

µe-on On-Peak Energy Rate R+ µe-off Off-Peak Energy Rate R+

µp-on
On-Peak Demand Power
Rate R+ µp-all Facilities Power Rate R+

Son
The set of on-peak time
indices {1, . . . , ntime} pdemand

Maximum average power
during on-peak periods R

pfacilities
Maximum average power
over all time instances. R+ pt(j)

The total average power
consumed by both the bus
chargers and the
uncontrolled loads.

Rntime
+

u(j)
The average power over
time j consumed by the
uncontrolled loads

Rntime
+ pt

a vector containing pt(i) for
all i. Rntime

+

eon

The total amount of energy
consumed by the bus
chargers and uncontrolled
loads during off-peak hours.

R+ eoff

The total energy consumed
by the bus chargers and
uncontrolled loads during
on-peak hours.

R+

Jcost

The section of the objective
function pertaining to the
fiscal expense of charging
buses.

R Jall
The expression for the
complete objective function. R
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Table A1. Cont.

Variable Description Range Variable Description Range

Scalability

ngroup

The number of groups in
which to divide the buses
and available chargers in
preparation for the P4, P5,
and P6.

Z+ nm
charger

The number of chargers
assigned to group m. Z+

nm
bus

The number of buses in
group m. Z+ p(j, m)

The total power used during
time index j by all buses in
group m.

R+

β(i, m)
A binary selector variable
that is one when bus i is in
group m and zero otherwise.

{0, 1} nm
charger

The number of chargers
assigned to group m Z+

ϕ(i, i′)

The inner product of the
optimal charge schedules
for buses i and i′,
respectively.

R+ v(i, i′, g)
A variable that is w(i, i′)
when buses i and i′ are in
group g and zero otherwise.

Z+

Ms
The maximum value for
ϕ(i, i′). R+ Jselect

The objective function for
the group selection problem R+

Defragmentation

θ(i, r)

A binary variable that is one
when charge session r from
bus i will be used in a
defragmented solution.

{0, 1} ρ(i, r)

A vector whose elements
are equal to ∆T during time
indices when bus i is
charging during charge
session r and zero
otherwise.

Rntime

ψ(i, j)

The minimum allowable
energy delivered to bus i
during charge session r
where the session in
question is considered
“active”.

R ω
The minimum allowable
energy for any charge
session.

R

emax

The maximum allowable
energy delivered in any
session.

R

Charge Schedules

a(i, r)
The beginning of the
allowable charge interval for
bus i’s rth charge session.

R+ b(i, r) The commanded start time
for bus i’s rth charge session N

f (i, r)
The commanded end time
for bus i’s rth charge
session.

R+ d(i, r)
The end time of the
allowable charge interval for
bus i’s rth charge session.

R+

σ(i, r, k)
A selector variable that is
one when bus i charges at
charger k for session r.

{0, 1} M The number of seconds in a
day Z+

l(i, r, i′, r′)

A selector variable that is
one when bus i charges
before bus i′ during the r
and r′ sessions respectively.

{0, 1}
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Table A1. Cont.

Variable Description Range Variable Description Range

Optimizing Charge Schedules

c(s, i, r) The start time for bus i’s rth
charge session. R c( f , i, r) The stop time for bus i’s rth

charge session. R

c(a, i, r) The arrival time of bus i for
charge session r. R c(d, i, r)

The departure time for bus i
after having completed the
rth charge session

R

Jwindow

The loss function that drives
charge windows to the
desired length.

R

Multi-Rate Charging

x(i, j)

The final charge schedule
for bus i at time j, yielding
the power at which bus i
will charge.

R+ z(j) The total power used by all
buses at time j. R+

γ(i, d)

A binary vector that is one
at all time steps where bus i
charges during charge
session d.

{0, 1}ntime e(i, r)
The amount of energy to be
delivered to bus i during
charge session r.

R+

Jmulti-rate

The objective function over
which we minimize to solve
the multi-rate section of the
bus charge problem.

R+
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