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Abstract: With the expansion of network scale, new network services are emerging. Segment Routing
over IPv6 (SRv6) can meet the diverse needs of more new services due to its excellent scalability and
programmability. In the intelligent 6-Generation (6G) scenario, frequent SRv6 Traffic Engineering (TE)
policy updates will result in the serious problem of unsynchronized updates across routers. Existing
solutions suffer from issues such as long update cycles or large data overhead. To optimize the
policy-update process, this paper proposes a scheme called Synchronous Update with the Division
and Combination of SRv6 Policy (SUDC). Based on the characteristics of the SRv6 TE policy, SUDC
divides the policies and introduces Bit Index Explicit Replication IPv6 Encapsulation (BIERv6) to
multicast the policy blocks derived from policy dividing. The contribution of this paper is to propose
the policy-dividing and combination mechanism and the policy-dividing algorithm. The simulation
results demonstrate that compared with the existing schemes, the update overhead and update cycle
of SUDC are reduced by 46.71% and 46.6%, respectively. The problem of unsynchronized updates
across routers has been further improved.

Keywords: SRv6; policy updating; synchronization; TE

1. Introduction

In the face of an increasingly heterogeneous and dynamic network, 6G introduces
the concept of intelligent network management and control [1–3]. The concept refers to
applying artificial intelligence technology to 6G network management. Intelligent network
management and control can deal with complex decision problems and obtain accurate
results in a dynamic network environment. It makes real-time network management deci-
sions by analyzing large amounts of network data and then updates network management
policies. Therefore, 6G intelligent network management and control leads to frequent
policy updates.

There are some examples of intelligent network management and control. For example,
the core networks of some operators have intelligent systems. The system relies on artificial
intelligence technology to dynamically sense the current network status, such as node
failures and other topology changes, therefore automatically calculating new paths for the
flows passing through the fault point [4,5]. In this way, network services can be performed
normally, and the user experience will not be affected.

In 6G networks, SRv6 [6] TE Policy is utilized as a technical tool to assist in realizing
the intelligent control of the network. SRv6 TE [7] Policy provides functionalities such as
path selection, path switching, and backup protection during the traffic-forwarding process.
These functionalities are realized by distributing SRv6 policies derived from one routing
calculation by the controller to SRv6 nodes. With the increasing number of connected
devices and applications in the network [8], traffic patterns and network topology may
change. And then the policies need to be adjusted and optimized according to real-time
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network conditions and traffic demands [9–12]. As a result, the SRv6 policies will be
updated more frequently in an intelligent 6G network.

An SRv6 policy update involves numerous new policy entries and affects several
routers in the network at the same time [13]. However, due to various factors, the activa-
tion time of each new policy entry on the corresponding target router may vary [14,15].
Therefore, from the initial policy push to the completion of policy updates across routers,
partially legacy policies and partially new policies take effect simultaneously. The coexis-
tence of legacy and new policies increases the risk of network congestion, thus introducing
instability to the network [16,17].

The reasons for this phenomenon include but are not limited to the following two points:

1. Numerous policy entries in one single update: SRv6 TE policy updates will be more
frequent in the intelligent 6G scenario. Consequently, each centralized computation
yields numerous strategies, resulting in a substantial number of new policy entries
waiting for distribution. There is a noticeable delay between distributing the first and
last policy. The more policy entries per update, the longer the delay. Accordingly, the
problem of unsynchronized policy updates across routers will be more serious.

2. The serial distribution of policies: Numerous new policy entries are obtained through
one centralized computation. These new policies are queued within the controller
and are waiting to be distributed to the corresponding target routers. All these new
policies are not distributed at the same time. Instead, they are distributed one after
another in a unicast manner to their corresponding target routers. Consequently,
the distribution time of each new policy varies. Due to the time lag between the
distribution of each new policy, the policy updates across routers are unsynchronized.

The key to improving the problem of unsynchronized policy updates across routers
is to improve the efficiency of policy distribution and shorten the time lag between the
activation of each new policy. An SRv6 policy entry is represented in the form of a Segment
Identifier (SID) list [18]. In other words, it is a sequence formed by multiple SIDs. Based on
this fact, this paper proposes a scheme called SUDC. It can reduce the time lag between the
activation time of each new policy and improve the problem of unsynchronized updates
among routers, thus mitigating the risk of network failure due to instability. In brief, the
primary contributions of our work are presented as follows:

1. We propose an SRv6 TE policy-dividing and combination mechanism to improve the
efficiency of policy distribution.

2. Furthermore, we design a policy-dividing algorithm that can rationally divide new
policy entries to be distributed.

3. We conduct simulation tests and compare our approach with ordered update and
two-phase update. The results show that our approach is more effective in improving
the problem of unsynchronized policy updates across routers.

The paper is organized as follows. In Section 2, we discuss the existing schemes for
synchronized policy updates. In Section 3, the policy-dividing and combination mechanism
is described in detail. Section 4 depicts the policy-dividing algorithm. The simulation
results are presented in Section 5. Section 6 is the conclusion.

2. Related Works

The schemes proposed in the existing literature in this area can be categorized into
three main types: ordered update, incremental update, and buffered update.

2.1. Ordered Update

Francois and Bonaventure [19] have proposed an ordered update scheme to protect the
network from transient loops by ordering routing table updates, which ensures packet-level
consistency in the network.
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Clad et al. [20] generated an optimized sequence for updating the weights of links.
The incremental modification of link weights protects the network from transient loops
when routers update their flow tables.

Jin et al. [16] utilized a system for consistent network updates called Dionysus. Diony-
sus first generates a global dependency graph describing the effective ordering, and then
schedules updates based on the dependency graph.

Wang et al. [17] improves on the work of Jin et al. [16]. They divided the global
dependencies into local dependencies between key nodes to speed up the update, but it
can lead to congestion in some cases.

Wu et al. [21] proposed a four-phase ordered update scheme, which includes dividing
traffic pairs, generating dependency graphs, generating non-deadlock rounds, and resolv-
ing deadlocks. This scheme ensures that black holes, loops, congestion, and deadlocks will
not occur during the four phases of the update process.

It can be seen from the above schemes that the ordered update schemes divide the
entire update process into multiple phases. At the start of each phase, we need to wait for
the completion of the previous phase. Therefore, the ordered update has a long update cycle.
In addition, the ordered update requires additional storage space to store the legacy rules.

2.2. Incremental Update

Reitblatt et al. [22] proposed a two-phase update approach, where phase 1 updates the
internal switches and phase 2 updates the ingress switches. The ingress switches append
version tags to incoming packets to determine whether the legacy rules or the new rules
subsequently process the packets. When all packets with old version tags are processed,
the legacy rules are deleted.

Canini et al. [23] proposed an elegant policy composition abstraction based on a
transactional interface with all-or-nothing semantics: all new policies are either installed all
or none. There, conflicts between concurrent policy updates are avoided, and consistency
on the data plane is maintained.

To reduce storage overhead, Maity et al. [24] proposed a consistent update approach
with rule redundancy reduction, named CURE. CURE prioritizes switches according to
their usage pattern and schedules updates based on priority. It maintains packet-level
consistency through a multi-level queue-based approach.

The above incremental update schemes update the network in multiple rounds. A
portion of the flow rules or a subset of the switches is updated in each round. The update
cycle for incremental updates has been shortened compared to ordered updates, but it is
still relatively long. Moreover, the incremental update requires the controller to be involved
throughout the process and extra flow-table space to accommodate the legacy rules.

2.3. Buffered Update

McGeer et al. [14] described a new protocol called OpenFlow Safe Update Protocol
for the update of OpenFlow networks. The protocol redirects routing affected packets to
the control plane by installing intermediate rule sets on all switches before switches are
updated. Until all switches have completed the update, these packets complete buffering
at the control plane and are processed according to the new rules. Hence, this solution is
called a buffered update.

The update cycle of buffered updates is greatly shortened. But buffered update
aggravates the controller load, resulting in its weak scalability. Furthermore, installing
intermediate rule sets on all switches occupies additional flow-table space.

In general, existing schemes are difficult to achieve in terms of both the update cycle
and data overhead. Data overhead includes storage overhead and transmission overhead.
Ordered and incremental updates have long update cycles and require extra space to store
legacy rules. Buffered update has short update cycles but impose a significant burden on
the control plane, which results in huge additional storage overhead. Buffered update
requires intermediate rule sets to be installed on all switches, which also results in storage
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overhead. Ordered, incremental, and buffered updates all have large transmission overhead
due to the serial distribution of policies. However, both aspects of short update cycles and
data overhead are highly valued by intelligent 6G networks. The scheme proposed in this
paper balances both the update cycle and data overhead and improves both two aspects.

3. Policy-Dividing and Combination Mechanism in SUDC

In this section, we describe the policy-dividing and combination mechanism, which
aims to improve the efficiency of policy distribution, therefore improving the problem of
unsynchronized policy updates across routers and maintaining network consistency. SR
technology is key to two points. The first point is to segment the forwarding path, and each
segment is identified by SID. The second point is to sort and combine SIDs at the start node
to form a SID list and determine the forwarding path of data packets. Data packets can
then be transmitted through the network along a forwarding path that has been planned in
advance. In SRv6, SID is a 128-bit value in the form of an IPv6 address. Considering that
an SRv6 policy entry is a sequence formed by multiple SIDs, we propose to divide each
SRv6 policy into several SID blocks and transmit these blocks in multicast form with the
aim of improving policy distribution efficiency.

Based on the above ideas, the mechanism contains three functional modules: SRv6
policy dividing, SRv6 policy pushing, and SRv6 policy combination. First, the policy-
dividing function module is responsible for dividing the policy entries into multiple policy
distribution SID blocks. Then, the policy-pushing function module is responsible for
distributing these SID blocks in a multicast manner to the corresponding target nodes of
the policy to which the SID blocks belong. Finally, the SRv6 policy combination function
module is responsible for combining the SID blocks to generate complete SRv6 policies.
Figure 1 shows the architecture of SUDC.

SRv6 Policies SRv6 Policy Dividing SID Block 2

SID Block 3

SID Block 1

SID Block 2

SID Block 3

SID Block 1

SRv6 Policy SRv6 Policy SRv6 Policy

SID Block 2

SID Block 1

SID Block 3

SID Block 2

SID Block 1

SID Block 3

SID Block 1

SID Block 3

SID Block 1

SID Block 3

SID Block 2

SID Block 1

SID Block 2

SID Block 1

SRv6 Policy Pushing

SRv6 Policy Combination

Figure 1. The architecture of SUDC.

We will describe the three functional modules in detail and use a specific example
throughout the entire process to make SUDC easier to understand. Figure 2 shows an
example of SUDC.
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Figure 2. An example of SUDC.

3.1. SRv6 Policy Dividing

In the SRv6 policy-dividing module, the SID lists of policy entries to be distributed are
divided into multiple parts, some of which are common to multiple policies and some of
which are unique to a single policy. Each part is wrapped into a policy distribution SID
block in order to facilitate policy pushing. This function is performed at the control plane.

The process of distributing all policy entries derived from one routing calculation
by the controller is called one policy distribution. During one policy distribution, this
function module first analyzes all SRv6 policy entries to be distributed. Each SRv6 policy
entry includes two parts: the policy target and the SID list. The policy target indicates the
target router to which the SRv6 policy needs to be published, and the SID list indicates
the path rule of the policy entry. For the sake of simplicity of representation and ease
of understanding, SIDs in this paper are denoted by the label of routers. For example,
each number in the SID List of Policy A below represents a SID. For different SRv6 policy
entries, SID blocks with consecutive SIDs of the same order are abstracted to form policy
distribution SID blocks. The remaining SID blocks are also wrapped into policy distribution
SID blocks, respectively. The policy distribution SID block is the target structure formed
after dividing the SID list of these SRv6 policy entries. It is also the minimum unit for
policy distribution in SUDC. The minimum unit needs some numbers to mark it in order to
facilitate policy pushing and policy combination. Therefore, we stipulate that each policy
distribution SID block must contain the distribution serial number, sequence number, and
SID list. The distribution serial number indicates the number assigned to the current policy
distribution. The sequence number identifies the order of the SID blocks. The SID list
indicates the SID sequence of the policy distribution block.

A practical example of SRv6 policy dividing is given:
Suppose there are three SRv6 policy entries to be distributed, and the distribution

serial number is 101.
Policy A: The policy target is router a, and the SID list is 1->2->3->6->7->9->5->4->8.
Policy B: The policy target is router b, and the SID list is 1->2->3->6->7.
Policy C: The policy target is router c, and the SID list is 9->5->4->8->3->2.
The SID block of Policy A and Policy B with consecutive SIDs in the same order is

1->2->3->6->7. Therefore, the first policy distribution SID block is shown in the first row of
Table 1.

After abstracting the policy distribution SID block 1->2->3->6->7, the entire SID list
of Policy B has been distributed. However, the remaining SID sequence of Policy A,
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9->5->4->8, has not yet been distributed. Therefore, we will continue to plan for the
remaining part of Policy A.

Policy C and the remaining part of Policy A have consecutive SID sequences in the
same order, which are 9->5->4->8. Therefore, the second policy distribution SID block is
shown in the second row of Table 1.

After abstracting the policy distribution SID block 9->5->4->8, the entire SID list of
Policy A has been distributed. However, the remaining SID sequence of Policy C, 3->2,
has not yet been distributed. Therefore, we will continue to plan for the remaining part of
Policy C.

For Policy C, the unique SID sequence is 3->2. Therefore, the third policy distribution
SID block is individually planned for Policy C, as shown in the third row of Table 1.

Table 1. The policy distribution SID blocks of the example.

Distribution Sequence SID Belonging
Serial Number Number List SRv6 Policy

101 1 1->2->3->6->7 A, B

101 2 9->5->4->8 A, C

101 3 3->2 C

After the SRv6 policy-dividing function is performed, the SRv6 policy entries de-
rived from one routing calculation by the controller are decomposed into multiple policy
distribution SID blocks.

3.2. SRv6 Policy Pushing

The SRv6 policy-pushing module distributes the SID blocks derived from the SRv6
policy-dividing module to the target routers. This function is carried out on the control
plane. SRv6 policy-pushing module consists of four steps: push initiation, BitString
mapping, BIERv6 multicast push, and push completion.

SRv6 policy pushing relies on BIERv6 [25], which enables the network to specify the
set of destination nodes at the multicast source endpoint. In BIERv6, BitString is set at
the source endpoint to specify the destination node set for multicast. Subsequent nodes
replicate and forward the multicast packet based solely on the BitString. Therefore, BIERv6
avoids the resource and time overhead required to build and maintain multicast trees in
the traditional multicast approach.

3.2.1. Push Initiation

Push initiation involves multicasting the policy push initiation signal to all target
nodes involved in this policy distribution through BIERv6 technology. The BitString of
the push initiation signal is encoded in such a way that all the bits corresponding to the
nodes that need to perform the policy update are set to 1. The specific type of signal is not
specified in this scheme, which can be a specific multicast Internet Protocol (IP) address or
a specific User Datagram Protocol (UDP) port.

3.2.2. BitString Mapping

BitString mapping involves determining the BitString encoding for each policy distri-
bution SID block in ascending order of sequence number. First, identify the SRv6 policies
to which the policy distribution SID block belongs and determine all target nodes to which
this policy distribution SID block needs to be multicast. Then, the BitString encoding of the
policy distribution SID block is set in such a way that the corresponding bits of all target
nodes are set to 1, and the remaining bits are set to 0. After BitString mapping is completed,
each policy distribution SID block has its own BitString encoding that indicates the target
node set.
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3.2.3. BIERv6 Multicast Push

BIERv6 multicast push aims to distribute all policy distribution SID blocks via multi-
cast in ascending order of sequence number. Multicast push adopts BIERv6 or a BIERv6-
derived technology, such as Multicast Source Routing over IPv6 Best Effort (MSR6 BE).
The BitString encoding required for BIERv6 multicast push is determined by the step
BitString mapping.

3.2.4. Push Completion

After completing the push of all policy distribution SID blocks, the control plane
pushes a push completion signal via multicast to all policy target nodes involved in this
policy distribution. The BitString of the push completion signal is encoded in such a way
that all the bits corresponding to the nodes that need to perform the policy update are set
to 1. The specific type of signal, which can be a specific multicast IP address or a specific
UDP port, is not specified in this scheme. As soon as the policy target nodes receive the
push completion signal, they execute the SRv6 policy combination function.

3.3. SRv6 Policy Combination

The SRv6 policy combination module aims to combine policy distribution SID blocks
to generate complete SRv6 policies. This function is executed at the data plane, and the
policy target SRv6 nodes execute this function. Each relevant SRv6 node combines the
received policy distribution SID blocks in ascending order of sequence number to generate
a complete SRv6 policy. The destination Internet Protocol version 6 (IPv6) address matched
by the combination-complete policy is the last address of the SID list. Then, the node writes
the combination-complete SRv6 policy to the SRv6 node pipeline.

We continue to illustrate the process of the SRv6 policy combination using the example
given in the SRv6 policy-dividing module.

After SRv6 policy pushing, node a receives two policy distribution SID blocks, which
are shown in the first and second lines of Table 2. Node a combines the received SID
blocks in ascending order of sequence number to generate the complete SRv6 policy,
1->2->3->6->7->9->5->4->8. The destination IPv6 address matched by the combination-
complete policy is the IPv6 address of node 9. Then, node a writes this policy to its SRv6
pipeline.

After SRv6 policy pushing, node b receives one policy distribution SID block, which
is shown in the first line of Table 2. Node b receives one policy distribution SID block, so
the complete SRv6 policy is 1->2->3->6->7. The destination IPv6 address matched by the
combination-complete policy is the IPv6 address of node 7. Then, node b writes this policy
to its SRv6 pipeline.

After SRv6 policy pushing, node c receives two policy distribution SID blocks, which
are shown in the second and third lines of Table 2. Node c combines the received SID
blocks in ascending order of sequence number to generate the complete SRv6 policy,
9->5->4->8->3->2. The destination IPv6 address matched by the combination-complete
policy is the IPv6 address of node 2. Then, node c writes this policy to its SRv6 pipeline.

Table 2. Policy distribution SID blocks received by node a.

Distribution Sequence SID Belonging Target
Serial Number Number List SRv6 Policy Router

101 1 1->2->3->6->7 A, B a, b

101 2 9->5->4->8 A, C a, c

101 3 3->2 C c

4. Policy-Dividing Algorithm in SUDC

In this section, we design a policy-dividing algorithm to implement the policy-dividing
module of the mechanism in Section 3. This algorithm enables numerous SRv6 policies
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to be divided into as many identical SID blocks as possible by prefix matching while
guaranteeing a low time complexity. This algorithm can reduce the number of times for
policy distribution.

4.1. Algorithm Overview

The core idea of this algorithm is to divide the SID lists by identifying the longest
common prefix of different SID lists. The longest common prefix refers to the longest
common SID block starting from the first SID. In the example given in Section 3, SID block
1->2->3->6->7 is the longest common prefix of policy A’s SID list and policy B’s SID list.
The policies perform prefix matching sequentially in descending order of SID list length.
When the complete SID list of a shorter policy is the prefix of the SID list of a longer policy,
it becomes possible to obtain two entirely identical SID sequences and the suffix sequence
of the longer SID list by partitioning the longer SID list. As shown in Figure 3, the identical
sequence is abstracted to be wrapped into a policy distribution SID block, which will be
distributed to target nodes set in a multicast manner. The suffix sequence of the longer SID
list can go for prefix matching with the SID list of other policies.

STATE1

Sending
Queue

Matched
SID List Set

Matching
Queue

A BA B

A CA C

Other 
SID 
Lists

Other 
SID 
Lists

AA

Other 
SID
Lists

Other 
SID
Lists

STATE2

Sending
Queue

Matched
SID List Set

Matching
Queue

BB

CC

Other
SID
Lists

Other
SID
Lists

Other 
SID
Lists

Other 
SID
Lists

AA

Figure 3. The core idea of policy-dividing algorithm.

In this algorithm, if a SID list is the prefix of k SID lists at the same time, then this SID
list is abstracted and wrapped into a policy distribution SID block. This policy distribution
SID block will be multicast to k+1 target nodes. And the remaining k suffix sequences
continue to wait to be matched. In the worst case, none of the k suffix sequences can be
matched. Then, all these suffix sequences will be distributed to corresponding target nodes
in unicast form. The total number of times for policy distribution is k + 1. This algorithm
ensures that the number of times for policy distribution in SUDC is always less than or
equal to that in the conventional unicast-based sequential distribution method.

4.2. Algorithm Procedure

The algorithm implements policy dividing based on prefix matching, and we leverage
two data structures, a priority queue, and a dictionary tree, to reduce the time complexity.

4.2.1. Priority Queue for Policy to Be Divided

The priority queues are utilized to control the order in which SRv6 policies undergo
prefix matching. After analysis, it has been determined that the order in which SRv6
policies perform prefix matching significantly impacts the matching success rate. Therefore,
the policies need to perform prefix matching sequentially in descending order of SID list
length so as to ensure optimal matching success rate. The priority queue is characterized
by elements being dequeued in descending order of priority. So, it serves as an essential
tool for efficient prefix matching. This algorithm states that the longer the SID list length of
the policy is, the higher the priority is.

4.2.2. Dictionary Tree

The dictionary tree is utilized to store SRv6 policies that are waiting to be abstracted
from the longest common prefixes to construct policy distribution SID blocks. The dictio-
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nary tree will merge the common prefixes of SID lists of different policies. For example, the
current dictionary tree has two SID lists of different policies, 1->2->3->6 and 1->2->3->7,
and their common prefix 1->2->3 are merged. The left part of Figure 4 shows how the
dictionary tree stores and merges SID lists with the same prefixes. The current policy with
SID list 1->2->3 successfully matches with two policies in the dictionary tree. The common
prefix will be deleted from the dictionary tree and abstracted into the policy distribution
SID block. The whole process is shown in the Figure 4.

Suppose a single prefix matching is performed on a policy set of size N and average
policy length M. When not using the dictionary tree, the current matching policy needs
to be compared with n policies one by one, with the time complexity of O(N*M). The
dictionary tree can merge the same prefixes of different SID lists, so the time complexity
of a single prefix matching is O(M) when using the dictionary tree. The dictionary tree
drastically reduces the time for each prefix matching. In addition, the dictionary tree can
also effectively save storage space.

1

2

3

6 7

START 
NODE
START 
NODE

The SID List  of 
current policy

1 2 31 2 3

Original Dictionary Tree

1 2 31 2 3

Modified Dictionary Tree

Match

START 
NODE
START 
NODE

6 76 7

START 
NODE

6 7

 To be abstracted into a 
policy distribution SID block

Figure 4. The role of the dictionary tree.

With the above two data structures, the time complexity of prefix matching is approxi-
mately O(width*height), where width represents the average number of child nodes for
each branching node, and height signifies the height of the tree. This time complexity will
be much lower than the time complexity of the naive prefix-matching algorithm.

We define a series of functions in the algorithm to operate on the dictionary tree.
STARTWITHPREFIX(Argus) function is to check whether the dictionary tree contains
branches prefixed with the SID list of the incoming policy and return TRUE or FALSE.
INSERT(Argus) function is to insert the incoming policy into the dictionary tree. The
DELETEWITHPREFIX(Argus) function deletes all the branches in the dictionary tree
prefixed with the SID list of the incoming policy and returns the suffix policies of these
branches. GETALLLIST() function is to obtain all the policies stored in the dictionary tree.

Algorithm 1 depicts the detailed procedure of SRv6 policy dividing. Collection S
holds all the SRv6 policies to be distributed. Policies are divided to form multiple policy
distribution SID blocks. These policy distribution SID blocks are stored in collection R.
Priority queue P is used to control the order in which SRv6 policies perform prefix matching.
The longer the SID list length of the policy, the higher the priority. The dictionary tree T is
utilized to store the set of SRv6 policies waiting to be matched.

All the policies in the policy set S are added to the priority queue P (line4 –line6).
Process each policy dequeued in descending order of priority in turn until all policies have
been processed (line7–line21). The current policy dequeued from P is p (line8). If no branch
prefixed with the SID list of p exists in the current dictionary tree T, then policy p is inserted
into T (line9–line10). Otherwise, it indicates that there exists one or more policies whose
SID lists are prefixed by the SID list of p. Then the SID lists of these matched policies can be
divided, and the longest common prefix that is also the SID list of p can be abstracted into
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a policy distribution SID block r (line12). The target nodes of r should contain the target
node of strategy p and the target nodes of all the matched policies (line13, line18). The SID
list of r is the SID list of Policy p (line14). All the matched policies are then removed from
the dictionary tree (line15). The suffix policies of these matched policies have not yet been
distributed to the corresponding policy target nodes. Therefore, these suffix policies should
be re-enqueued into the priority queue P and await further prefix matching (line16–line19).

After all the policies in P have completed prefix matching, there may exist some
policies in T that cannot match up with other policies (line22). These remaining policies
should each independently form policy distribution SID blocks (line23–line24). The target
node of each policy distribution SID block is the target node of the respective policy, and
the SID list of each policy distribution SID block is the SID list of the respective policy
(Algorithm 1).

Algorithm 1 Policy-Dividing Algorithm

Input: S ▷ Set of SRv6 policies
Output: R ▷ Set of policy distribution SID blocks

1: P← ∅; ▷ Empty priority queue
2: T ← ∅; ▷ Empty dictionary tree
3: R← ∅;
4: for s ∈ S do
5: P← P

⋃{s};
6: end for
7: while P ̸= ∅ do
8: p← P.POP(); ▷ Each policy exits from P in turn
9: if not T.STARTWITHPREFIX(p) then

10: T.INSERT(p);
11: else
12: r; ▷ A policy distribution SID block
13: r.target← r.target

⋃
p.target;

14: r.sidlist← p.sidlist;
15: F ← T.DELELTEWITHPREFIX(p); ▷ Set of suffix policies obtained by

deleting p from policies prefixed with p in T
16: for f ∈ F do
17: P.PUSH( f );
18: r.target← r.target

⋃
f .target;

19: end for
20: end if
21: end while
22: U ← T.GETALLLIST(); ▷ The set of remaining policies in T
23: for u ∈ U do
24: R← R

⋃{u};
25: end for
26: return R

4.3. Analysis of Time Complexity

We also analyze the time complexity of the policy-dividing algorithm. The number of
policies in set S is denoted as N, and the average length of policies is denoted as M. The
time complexities of the STARTWITHPREFIX(Argus) function, INSERT(Argus) function,
and DELELTEWITHPREFIX(Argus) function are all O(M). The time complexity of the
GETALLLIST() function is O(N*M). Since the maximum size of set F is close to N, the time
complexity of the step of re-entering the suffix policies into priority queue P (line16–19) is
O (N). According to the detailed process of the policy-dividing algorithm, it is clear that
the time complexity of the loop from line 7 to line 21 is O (N*M) or O(N*(M+N)). Therefore,
the time complexity of the whole algorithm is O(N*(M+N)).
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5. Performance Evaluation

In this section, we evaluate the performance of SUDC based on the following metrics.
And we also measure the timeliness cost that certain nodes have to pay.

1. Number of times for policy distribution: This metric is used to evaluate the data
overhead of SUDC during policy updates.

2. Coexisting time of new and legacy policies: This metric is used to evaluate the effective-
ness of SUDC in improving the problem of unsynchronized updates across routers.

3. Propagation time of policies in the network: This metric is used to evaluate the
policy-update cycle of SUDC.

5.1. Simulation Setup

In this section, we develop a simulator in Python language and implement our scheme
to evaluate the performance of SUDC. The version of Python Interpreter is Python 3.9. To
evaluate its performance, we generate a random topology containing 100 nodes, which is
stored as an adjacency matrix. On the basis of this topology, we hypothesize the transmis-
sion delay of each link and a comprehensive metric for resource overhead during packet
transmission within each link segment.

The comprehensive metric for various resource overheads on any link ranges from
5 to 50, including 5 and 50. The transmission delay of any link ranges from 5 ms to
15 ms, including 5 ms and 15 ms. We assume a time interval of 1 ms between consecu-
tive policy transmissions from the controller. Twenty nodes with the lowest degree in
the topology are selected as entry switches. There are eight distinct test sets, each con-
taining 5000/10,000/25,000/50,000/100,000/250,000/500,000/1,000,000 SRv6 TE policies,
respectively.

Subsequently, we employ the Shortest Path First (SPF) algorithm to compute the least
comprehensive resource overhead paths between any two nodes, simulating the SRv6 TE
policy set derived from the controller calculation. These simulated SRv6 policies are stored,
and eight test sets of different sizes are randomly drawn from all these simulated SRv6
policies. We utilize the SPF algorithm to calculate the minimum transmission delay paths
from the controller to the other nodes, therefore simulating the packet propagation trajectory
when policies are unicastably distributed by the controller to each node individually. We
utilize the Prime algorithm to build a transmission delay minimizing the spanning tree,
including all nodes, and, therefore, simulating the packet propagation trajectory when
the SID blocks are distributed by the controller to the nodes in a multicast manner. We
select some of the switches within the topology as ingress switches in order to evaluate the
performance of the two-phase update scheme.

Finally, simulations are conducted on the three metrics of ordered update, two-stage
update, and SUDC. To test the performance of SUDC, the policy splitting algorithm is
executed on each test set to obtain multiple policy distribution SID blocks before simulation.

5.2. Result and Analysis
5.2.1. Number of Times for Policy Distribution

The number of times for policy distribution is the number of times the controller
distributes the numerous policies derived from a single computation to the corresponding
target nodes. Table 3 and Figure 5 depicts the number of times for policy distribution of
ordered update, two-phase update, and SUDC.

From Figure 5 and Table 3, it can be seen that the number of times for policy distri-
bution of ordered update and two-phase update is equal to the number of policy entries
contained in the test set. This is due to the fact that policies are distributed to the target
nodes one by one in these two schemes. SUDC needs to distribute all the SID blocks
obtained by the policy-dividing algorithm, so the number of times for policy distribution
of SUDC is the number of policy distribution SID blocks.
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The distribution policy times in SUDC are 46.71% less than those in ordered update
and two-phase update. Furthermore, as the test set size increases, the reduction in the
number of times for policy distribution of SUDC becomes increasingly pronounced.

Table 3. Number of times for policy distribution.

Number of
Policies SUDC Ordered Update Two-Phase

Update Reduction Ratio

5000 3075 5000 5000 38.50%
10,000 5757 10,000 10,000 42.43%
25,000 13,438 25,000 25,000 46.25%
50,000 25,934 50,000 50,000 48.13%

100,000 50,965 100,000 100,000 49.04%
250,000 125,968 250,000 250,000 49.61%
500,000 250,963 500,000 500,000 49.81%

1,000,000 500,963 1,000,000 1,000,000 49.90%
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Figure 5. Number of times for policy distribution.

5.2.2. Coexisting Time of New and Legacy Policies

In the network, some packets execute the new SRv6 TE policy while others execute the
legacy SRv6 TE policy simultaneously. The time during which this state persists is referred
to as the new policy and legacy policy coexisting time.

For ordered updates, each SRv6 policy is distributed to the destination router along the
path with the smallest transmission delay. The coexisting time of new and legacy policies
for ordered updates is the time lag between the moment when the first policy is received
and the moment when the last policy is received.

For a two-phase update, each SRv6 policy whose target node is an internal switch is
distributed sequentially along the path with the smallest transmission delay, and then each
SRv6 policy whose target node is an ingress switch is distributed sequentially along the
path with the smallest transmission delay. Before updating ingress switches, all packets
are processed according to legacy policies. Starting from updating ingress switches, new
policies process packets with new version tags, and packets with old version tags are
processed by legacy rules. Therefore, the coexisting time of new and legacy policies for
two-phase updates is the time lag between the moment when the first policy, whose target
node is an ingress switch, is received and the moment when the last policy, whose target
node is an ingress switch, is received.
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For SUDC, each policy distribution SID block is multicast to the set of target routers
along the transmission delay minimizing spanning tree. In addition, this metric of SUDC
is the time lag between the moment when the first multicast SID block first arrives at one
router in its set of target routers and the moment when the last multicast SID block finally
arrives at one router in its set of target routers.

Table 4 and Figure 6 show the coexisting time of new and legacy policies for an ordered
update, two-phase update, and SUDC. The average coexisting time in SUDC is 99.38% and
96.80% less than that in ordered updates and two-phase updates, respectively.

As shown in Figure 6, the coexisting time of new and legacy policies for SUDC is not
affected by the size of the test set. The coexisting time of new and legacy policies for SUDC
is the time lag between the time when the push-stop signal finally reaches a node and the
time when it first reaches a node. As a result, this metric does not become larger as the size
of the test set increases.

The results indicate that the coexisting time in SUDC is independent of the quantity
size of policies. The data implies that SUDC can effectively improve the problem of
unsynchronized updates across routers and reduce the risk of network instability.

Table 4. Coexisting time of new and legacy policies.

Number of
Policies SUDC Ordered

Update
Reduction

Ratio
Two-Phase

Update
Reduction

Ratio

5000 0.131 s 5.018 s 97.39% 0.949 s 86.20%
10,000 0.131 s 9.99 s 98.69% 1.961 s 93.32%
25,000 0.131 s 24.982 s 99.48% 4.905 s 97.33%
50,000 0.131 s 50.01 s 99.74% 10.005 s 98.69%

100,000 0.131 s 99.989 s 99.87% 19.952 s 99.34%
250,000 0.131 s 249.999 s 99.95% 49.878 s 99.74%
500,000 0.131 s 500.022 s 99.97% 99.894 s 99.87%

1,000,000 0.131 s 1000.01 s 99.99% 200.113 s 99.93%
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Figure 6. Coexisting time of new and legacy policies.

5.2.3. Propagation Time of Policies in the Network

The period from when the controller initiates new policy distribution until all policies
are received by their corresponding target nodes is referred to as the propagation time
of policies.

For ordered updates, each SRv6 policy is distributed to the destination router along
the path with the smallest transmission delay. The propagation time for ordered updates
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is the time lag between the moment when the first policy is distributed and the moment
when the last policy is received.

For a two-phase update, each SRv6 policy whose target node is an internal switch is
distributed sequentially along the path with the smallest transmission delay, and then each
SRv6 policy whose target node is an ingress switch is distributed sequentially along the
path with the smallest transmission delay. The propagation time for a two-phase update is
the time lag between the moment when the first policy is distributed to one internal switch
in phase 1 and the moment when the last policy is received by one ingress switch.

For SUDC, each policy distribution SID block is multicast to the set of target routers
along the transmission delay minimizing spanning tree. In addition, this metric of SUDC is
the time lag between the moment when the first multicast SID block is multicast to its set
of target routers and the moment when the last multicast SID block finally arrives at one
router in its set of target routers.

Table 5 and Figure 7 demonstrate the propagation time for an ordered update, two-
phase update, and SUDC. In both ordered updates and two-phase updates, the controller
distributes policies to the target routers one by one. Therefore, this metric is nearly the
same for both schemes. Compared with ordered updates and two-phase updates, SUDC
can improve the policy transmission speed in the network and shorten the propagation
time by 46.6% on average.

As observed from Table 5 and Figure 7, it is evident that with the increase in the size
of the test set, SUDC exhibits an increasingly improved reduction in the propagation time
of policies in the network.

Table 5. Propagation time of policies in the network.

Number of
Policies SUDC Ordered

Update
Reduction

Ratio
Two-Phase

Update
Reduction

Ratio

5000 3.124 s 5.035 s 37.95% 5.035 s 37.95%
10,000 5.806 s 10.007 s 41.98% 10.049 s 42.22%
25,000 13.487 s 25.025 s 46.11% 25.045 s 46.15%
50,000 25.983 s 50.045 s 48.08% 50.037 s 48.07%

100,000 51.014 s 100.03 s 49.00% 100.035 s 49.00%
250,000 126.017 s 250.037 s 49.60% 250.035 s 49.60%
500,000 251.012 s 500.06 s 49.80% 500.06 s 49.80%

1,000,000 501.012 s 1000.031 s 49.91% 1000.045 s 49.91%
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Figure 7. Propagation time of policies in the network.
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5.2.4. Timeliness Cost of SUDC

We define the timeliness cost of SUDC as the time that the router receiving the first
policy distribution SID block must wait. In SUDC, some nodes need to wait for some time
before updating their flow tables, even though these nodes have received all the policy
distribution SID blocks that they should have received. That is the timeliness cost that
certain nodes need to pay under the SUDC scheme. Under the definition of timeliness cost,
the time that all routers need to wait is usually less than or equal to this metric. Table 6
and Figure 8 present the variation of timeliness cost for different test set sizes. It can be
observed that the growth of timeliness cost slows down as the test set size grows.

Table 6. Timeliness cost of SUDC.

Number of Policies Timeliness Cost of SUDC

5000 3.058 s
10,000 5.740 s
25,000 13.421 s
50,000 25.917 s
100,000 50.948 s
250,000 125.951 s
500,000 250.946 s

1,000,000 500.946 s
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Figure 8. Timeliness cost of SUDC.

6. Conclusions

For the problem of unsynchronized updates across routers resulting from frequent
SRv6 TE policy updates in the intelligent 6G scenario, this paper proposes a scheme called
SUDC. We propose the policy-dividing and combination mechanism and design the policy-
dividing algorithm based on this mechanism. Mathematical simulation results prove that
SUDC can significantly reduce update overhead and shorten the policy-update cycle. The
unsynchronization of policy updates across routers has also been greatly improved. In the
future, we will continue to optimize SUDC based on existing research results in order to
achieve better synchronization effects among routers during SRv6 TE policy updates.

7. Patents

The work in Section 3 has produced a patent, the patent application publication
number is CN115766580A, and the legal status of the patent is initiative for examination as
to substance.
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