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Abstract: Spongy moth (Lymantria dispar dispar) has caused considerable damage to oak trees across
eastern deciduous forests. Forest management, post-outbreak, is resource intensive and typically
focused on ecosystem restoration or resource loss mitigation. Some local forest managers and
government partners are exploring developing technologies such as Unpiloted Aerial Systems (UASs,
UAVs, or drones) to enhance their ability to gather reliable fine-scale information. However, with
limited resources and the complexity of investing in hardware, software, and technical expertise, the
decision to adopt UAS technologies has raised questions on their effectiveness. The objective of this
study was to evaluate the abilities of two UAS surveying approaches for classifying the health of
individual oak trees following a spongy moth outbreak. Combinations of two UAS multispectral
sensors and two Structure from Motion (SfM)-based software are compared. The results indicate that
the overall classification accuracy differed by as much as 3.8% between the hardware and software
configurations. Additionally, the class-specific accuracy for ’Declining Oaks‘ differed by 5–10%
(producer’s and user’s accuracies). The processing experience between open-source and commercial
SfM software was also documented and demonstrated a 25-to-75-fold increase in processing duration.
These results point out major considerations of time and software accessibility when selecting
between hardware and software options for fine-scale forest mapping. Based on these findings, future
stakeholders can decide between cost, practicality, technical complexity, and effectiveness.

Keywords: Lymantria dispar dispar; UAS; UAV; forest management; SfM; open-source; forest health;
operational costs; temperate forests

1. Introduction

Spongy moth (Lymantria dispar dispar), native to Eurasia, is an invasive pest in North
America, which was accidentally introduced in the 1860s in Massachusetts. In the more
than 150 years spongy moth has been present in North America, tens of millions of hectares
of forest have been defoliated during cyclical outbreak events with damage frequently
manifesting as tree decline and mortality [1–7]. While the outbreaks of forest insects and
diseases are not novel, their extent and impact have increased to devastating proportions
in recent decades. The caterpillars of this species can feed on a wide variety of plants
but prefer oaks (Quercus spp.) [8,9]. Tree decline and mortality related to spongy moth
outbreaks can be exacerbated by compounding factors such as drought or unseasonably
low temperatures [8]. These factors occurred in concert between 2021 and 2023 in the
northeastern United States [10,11]. In New Hampshire, large spongy moth outbreaks were
observed for the first time in nearly 30 years beginning in 2021 and continuing through
2023 [12]. In 2021 and 2022, over 20,000 hectares (ha) of spongy moth defoliation was
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mapped in New Hampshire (NH) by the NH Forest Health Bureau’s annual aerial forest
survey flights [12–14].

When the extent of the damage to NH oak forests became apparent in spring of 2023,
foresters responsible for managing several thousand acres of oak-dominated forests in the
heart of the spongy moth-defoliated area contacted the NH Forest Health Bureau. The
foresters were seeking advice regarding the future prospect of declining trees and how this
information might inform future management decisions. Specifically, the foresters were
planning for an upcoming timber harvest to salvage dead and declining oaks. Foresters
look to use silvicultural methods both as a treatment as well as a way to salvage standing
dead and declining trees before their economic value is lost due to decay [15–19]. Tree
decomposition on the stump not only results in lost potential value of wood products,
but it also transitions the forest from a carbon sink to a carbon source. Forest pests and
diseases have been shown to reduce carbon sequestration [20]. Overall, forest degradation
is known to cause reduced timber production, limit biodiversity, and impair ecosystem
function [21–23]. Extensive tree mortality can also increase fire risk, negatively impact
recreation, and affect local economies [23]. The forests in New Hampshire and neighboring
Vermont provide several billions of dollars in revenue annually, with much of the forested
land being privately owned [10,21]. Forest management actions, such as thinning in affected
oak stands, are expected to reduce subsequent mortality due to spongy moth caterpillar
outbreaks [7].

The aerial surveys conducted to map the statewide extent of oak decline are a widely
adopted practice for attaining landscape level data on forest insect and disease
impacts [6,24,25] but are not designed for management-level evaluation of decline. Com-
prehensive, local-scale knowledge is needed by foresters and land managers to implement
adaptive strategies. This can either be performed via traditional field surveys on foot, or,
if the resources are available, using the following newer survey tool: Unpiloted Aerial
Systems. Unpiloted Aerial Systems (UASs, UAVs, or drones) are frequently used in local-
ized research-related surveys and employed as a tool for tree level mapping [17,26–29].
However, commercial use of UASs in the natural resources industry are not yet widely
adopted. Multispectral UAS sensor capabilities expand the depth of detail captured during
surveys, especially in relation to vegetation health applications [30–35]. Different multispec-
tral sensors are available for purchase, ranging in price, number of bands available, and
frequencies collected. For smaller outfits with limited budgets, such as local governments
or smaller businesses, tough decisions need to be made regarding resource allocation.
Between training of staff, purchasing the UAS and sensor(s), establishing a ground control
station, and purchasing the associated software needed for pre-processing and analysis,
compromises need to be made for organizations to stay operational. UASs can range in
price from a few hundred dollars to tens of thousands of dollars [36–39]. The selection
of a comprehensive yet affordable image processing or photogrammetry software is also
no easy task [33,40]. There are many open-source and commercial software applications
available that are capable of performing some processing and analysis functions, but each
requires a unique level of technical expertise [41,42].

In recent years, due to the rapid expansion of UAS applications, practitioners have
begun to make comparisons between hardware and software choices as well as highlight
the need for standardization and accessibility [17,32,42,43]. For example, in Changsalak
and Tiansawat [40], the authors tested WebODM against Pix4Dmapper (Pix4D S.A. Prilly,
Switzerland) and determined that the results were similar but not equivalent. WebODM
produced slightly higher levels of omission error for tree detections. The primary objective
of this research is to evaluate the effectiveness of two UAS surveying approaches for
classifying the health of individual oak trees following a spongy moth outbreak. To
accomplish this, we quantified the differences in classification accuracy based on two
tests. The first used different UAS sensors and the second used two different software
capabilities: commercial software and open-source software (Table 1). The forests surveyed
were dominated by northern red oak (Quercus rubra) and eastern white pine (Pinus strobus).
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Oaks were divided into three health classes: healthy, declining, and dead. We also discuss
important characteristics of our image processing experience using these hardware and
software options. Based on these findings, stakeholders can make practical decisions related
to resource allocation, accuracy, and technical complexity.

Table 1. Hardware and software combinations quantitatively compared during this study.

Commercial Grade Enterprise Grade

UAS M3M M300

Sensor DJI Integrated Multispectral Sensor (4 bands) MicaSense Multispectral Sensor
System (10 bands)

Software Open-Source (WebODM) Proprietary (Agisoft Metashape)

2. Materials and Methods
2.1. Study Area

The Pine Hill Community Forest (Pine Hill) is a 240 ha oak–pine forest located in
Conway, New Hampshire (Figure 1) [44]. The Upper Saco River Valley region, which
includes Conway and several surrounding towns, experienced extensive spongy moth-
induced defoliation in 2021 and 2022, with roughly 14,000 ha of impacted forest [13,14]. By
2023, the outbreak subsided [12]. Dry weather may have contributed to the magnitude of the
spongy moth caterpillar outbreaks. The transmission of two pathogens that play a crucial
role in regulating spongy moth caterpillar populations, the fungus Entomophaga maimaiga
and the L. dispar nucleopolyhedrosis virus, was facilitated by wet weather conditions [45].
Coinciding with these defoliation events, the study region experienced abnormally dry
weather throughout prolonged periods during the growing seasons in both 2021 and 2022.
Lack of frequent rainfall during the time of the outbreak would have limited the ability of
pathogens to spread, allowing large caterpillar buildup. In addition to the compounded
stressors of defoliation and drought, the northeastern United States (US) was hit by a
late-season hard freeze during mid-May of 2023. The tender emergent oak leaves were
destroyed by the frost, rapidly turning brown and shriveling up. Cold air mainly settled in
valleys; therefore, lower-elevation trees were more seriously damaged.
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Figure 1. From left to right, (A) Pine Hill Community Forest study site, located in northern New
Hampshire (USA); (B) outline of the 50-hectare (ha) area mapped using both Unpiloted Aerial Systems
(UASs); and (C) small portion of the orthoimagery created using the Mavic 3 Multispectral (M3M)
sensor, demonstrating the oak–pine forest composition.

This study focused specifically on approximately 50 ha of forest located in the north-
west corner of Pine Hill. The site covers an oak-dominated stand, which was heavily
defoliated by the recent outbreaks. Additionally, our study is being used to inform a
parallel project on a similar property about a mile (1.6 km) north of the study area where a
salvage operation is in process. The results of that UAS survey will be used to supplement
harvest planning.
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The methodology used in this comparison study can be divided into four parts. First,
the reference data used to train and assess the results were collected. Second, the UAS
imagery was acquired using the two multispectral sensors compared in this study. Once
collected, the imagery was processed using the two UAS Structure from Motion (UAS-
SfM) processing software packages. Finally, a tree classification was performed for each
sensor/software combination, and the results were evaluated using a quantitative accuracy
assessment (i.e., error matrix). A flowchart summarizing this methodology is presented in
Figure 2.
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2.2. Reference Data

Reference samples for four tree classes were generated from a combination of site
visits and high-resolution image interpretation. The site visits, conducted by members of
the NH Division of Forests and Lands, were used to gather a perspective on the extent
and distribution of each tree class within this study site. Afterwards, these same experts
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conducted visual assessments of the high-resolution UAS imagery (Figure 3) to generate
each reference sample. These four classes included the following: Healthy Oak, Declining
Oak, Dead Oak, and Healthy Conifer (Figure 3). The definitions for each class are given
below and are based on assessments of canopy discoloration and transparency (i.e., crown
vigor), as defined in [16,18].

• Healthy Oak: Any oak tree (Quercus spp.) green in color, containing only trace amounts
of crown transparency, discolored leaves, or fine twig dieback.

• Declining Oak: Any oak tree (Quercus spp.) that exhibits greater than 25% crown
transparency, discoloration, or an apparent reduction in foliar density. Such trees
feature a measurable amount of yellow coloration or transparency.

• Dead Oak: Any oak tree (Quercus spp.) that features greater than 50% (simple majority)
of the crown being dead. This includes dead foliage, which are brown in color, and
branches absent of leaves.

• Healthy Conifer: Any coniferous tree featuring less than 50% crown discoloration,
crown transparency, or fine twig dieback. Such species include eastern white pine
(Pinus strobus) and eastern hemlock (Tsuga canadensis).
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Figure 3. False color composite and natural color orthoimagery for individual samples of each of the
four classes: (A) Healthy Oak, (B) Declining Oak, (C) Dead Oak, and (D) Healthy Conifer.

Previous studies of spongy moth defoliation established that three classes of crown
conditions (vigor) can be useful for subsequent management [18]. The Healthy Conifer
class was included due to the heavy cone abundance of trees in this region during 2023,
which may cause confusion with dead oaks (i.e., those featuring brown leaves).

A total of 312 reference trees were identified by qualified members of the New
Hampshire Division of Forests and Lands, based on knowledge of oak tree decline by
Gottschalk et al. [18]. This included 71 Healthy Oak trees, 84 Declining Oak trees, 71 Dead
Oak trees, and 84 Healthy Conifer trees.

2.3. UAS Data

To address our first research question, remotely sensed imagery was collected on the
same day, 26 September 2023, by two independent UASs. First, the DJI Matrice 300 RTK
(M300) (Shenzhen, China) was equipped with a MicaSense RedEdge-MX Dual Camera
Imaging System (10-band sensor) (Seattle, WA, USA). This enterprise grade system was
purchased for roughly USD 32,200 in 2022. Second was the DJI Mavic 3 Multispectral (M3M)
(Shenzhen, China), which comes equipped with a natural color camera and a four-band
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multispectral sensor. The total price of this second system was roughly USD 4500. The full
sets of spectral wavelengths (bands) for both sensors are shown in Table 2.

Table 2. Bands available for both sensors with approximate wavelengths being collected. The
MicaSense Dual-MX sensor (MicaSense) includes two paired sensors with 5 bands each. The ‘Blue-
MX’ sensor’s bands are given in blue. The M3M sensor bands are also given.

Bands MicaSense (nm) M3M (nm) ± 16 nm

Coastal Blue 444 NA
Blue 475 NA

Green 531, 560 560
Red 650, 668 650

Red-Edge 705, 717, 740 730
NIR 842 860

The flight paths for both UASs were pre-programmed using DJI Pilot software
(v 6.1.2). The pre-programmed flight paths consisted of a singular mission for each UAS,
consisting of parallel flight lines flown at approx. 7 m/s. The missions were generated
based on the study area .kml. The terrain follow setting was enabled to maintain a flying
height of 106.5 m (approx. 350 feet) above the ground. A 2022 statewide digital elevation
model (DEM) with a spatial resolution of 0.76 m was imported to provide an accurate
terrain model [46,47]. The front- and side-overlaps were 85% and 80%, respectively [48].
Both flights were conducted back-to-back during the mid-afternoon with light to moderate
winds and minimal cloud coverage.

2.4. Processing

To address our second question, comparing open-source UAS Structure from Motion
(UAS-SfM) processing software with commercial UAS-SfM software, the imagery from
both UASs was processed using two UAS-SfM workflows, as detailed below. Generating a
high-spatial-resolution, radiometrically corrected orthomosaic was the primary objective
for the subsequent analysis [17]. A separate orthomosaic was created within each software
using imagery from each respective UAS sensor. Only the multispectral imagery from
the M3M was included in the classification and analysis. The natural color sensor on
the M3M did not match the characteristics of the multispectral sensor (e.g., focal length
or pixel size) and so could not be integrated during the SfM workflow. The imagery
for both UASs was radiometrically corrected within the respective software when possi-
ble. The M300 multispectral data were pre-processed using their associated calibration
panel. Images of this panel were taken directly before the flight. The M3M multispectral
data were pre-processed using internal (DJI-specific) calibration coefficients written to the
image metadata.

We used WebODM (v 2.2.0) as our open-source processing solution. Only a small
fee was charged by the developer to facilitate a simplified installation process. WebODM
is a toolkit comprising a graphical user interface (GUI) for coordinating several python
processing workflows for image analysis and SfM [49,50]. The imagery for both UASs was
processed using the ‘High-Resolution’ template. This quality setting influenced the point
cloud density. Due to software limitations in WebODM, the MicaSense Dual-MX imagery
was processed in two batches (5 bands each, reflecting independent processing for the
two paired sensors).

Agisoft Metashape (Agisoft) (v 2.0.0, Agisoft LLC, St. Petersburg, Russia) was used
as the commercial UAS-SfM solution. This software has been favored for fine-scale pho-
togrammetry and analysis in natural resources [48,51,52]. This software was quoted at USD
3500 for a perpetual license (approx. USD 549 for education use) as of March 2024. The
processing settings in Agisoft were selected to be as consistent as possible with WebODM.
‘High’ accuracy image alignment and point cloud quality setting were selected.
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Challenges experienced while carrying out these four UAS-SfM processing workflows
as well as the total time required to create the end products for each workflow were
recorded to fully document the user experience.

2.5. Analysis

The 312 reference trees were manually reviewed and digitized within each of the four
sensor and software combination orthomosaics by a pair of remote-sensing technicians
using ArcGIS Pro (v 3.1, Redlands, CA, USA). The tree crowns were manually digitized
to provide precise representations of each sample for each UAS-SfM model. A set of
50 object-based features (attributes) was then calculated for each tree crown using Trimble
eCognition (v 10.2, Trimble, Munich, Germany) (Table 3). These individual tree crown
features were chosen based on their importance in recent studies of forest health using
similar sensors [53,54]. Shape features such as ‘length/width’ or ‘size in pixels’ were not
included to avoid subjectivity resulting from the tree crowns being manually digitized.
Based on the absence of a Blue and Coastal Blue band, 18 features could not be created
using the M3M sensor models. An explanation of each derivative band (i.e., spectral index)
can be found in Appendix A.

Table 3. Object-based features calculated for each tree crown polygon in Trimble eCognition. Features
listed in blue require the Blue or Coastal Blue bands and so could not be created using the M3M sensor.
Definitions for each of the derivative bands are given in Appendix A. GLCM texture features are
based on the Gray-Level Co-Occurrence Matrix. GLDV texture features are based on the Gray-Level
Difference Vector.

Spectral Derivative Bands Texture

Mean Coastal Blue NDVI GLCM Contrast
Mean Blue GRVI GLCM Correlation

Mean Green 1 GLI GLCM Dissimilarity
Mean Green 2 GNDVI GLCM Entropy
Mean Red 1 RENDVI GLCM Homogeneity
Mean Red 2 LCI GLCM Mean

Mean Red-Edge 1 RVI GLDV Entropy
Mean Red-Edge 2 EVI GLDV Mean
Mean Red-Edge 3 DVI GLDV Contrast

Mean Near-Infrared RDVI
Std. Dev. Coastal Blue TVI

Std. Dev. Blue ARI 1
Std. Dev. Green 1 PSRI
Std. Dev. Green 2 CHLRE
Std. Dev. Red 1 BNDVI
Std. Dev. Red 2 cBNDVI

Std. Dev. Red-Edge 1 RGI
Std. Dev. Red-Edge 2 PBI
Std. Dev. Red-Edge 3 LIC

Std. Dev. Near-Infrared

The tree crowns were then classified using the random forest supervised classification
algorithm [26,55,56]. The python package scikit-learn (scikit-learn v 1.2.2) [57] was used to
perform the classification and accuracy assessment. For each of the four sets of reference
samples, the classification was performed a minimum of 10 times. The training and testing
data were split into two equal groups (50%/50%, stratified based on class) [54]. An average
overall accuracy was calculated based on the initial 10 iterations using a thematic map
accuracy assessment error matrix [58–60]. Additionally, we used a feature importance
test to weight the relative contribution of input features based on the Gini Index [55,61].
Based on the results of this test, a selection of the least important features was removed
from each classification, and the algorithm was run 10 times to establish a new average
overall accuracy [53,62]. An error matrix was created based on the top performing (highest
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overall accuracy) feature set for each of the four UAS sensor models: (1) M300 and Agisoft,
(2) M3M and Agisoft, (3) M300 and WebODM, and (4) M3M and WebODM. Using these
error matrices, the overall accuracy (i.e., total agreement between the reference data and
the classification output), producer’s accuracy (i.e., omission error), and user’s accuracy
(i.e., commission error) could be reviewed and compared among the tests [58,60].

3. Results
3.1. Processing

Remotely sensed imagery captured using the M300 and M3M UASs was each pro-
cessed using both open-source WebODM SfM software and commercial Agisoft Metashape
software. The spatial resolution for the four-band M3M multispectral imagery orthomosaics
ranged from 5.4 cm to 5.7 cm. The spatial resolution for the 10-band M300 multispectral
imagery orthomosaics ranged from 8.4 cm to 8.8 cm. The M3M imagery was processed us-
ing Agisoft in just over 4 h. Similarly, the M300 imagery processed using the same settings
in just over 3 h. While using WebODM, the M3M imagery finished processing in approxi-
mately 17 h. Performing the same task using the M300 (10-band) imagery required over
99 h. Two key limitations were experienced during this processing task. First, WebODM
software does not currently have an option for integrating the radiometric calibration plate
imagery, taken at the start of each flight. This imagery is essential for pre-processing the
M300 imagery. Secondly, WebODM software does not recognize multispectral imagery
composites comprised of more than five bands. Due to this limitation, the imagery had to be
reprocessed in two batches and composited independently in ArcGIS Pro. This reprocessing
of just the orthoimagery using the ‘fast orthophoto’ option took 3.5 h to complete.

3.2. Analysis of Oak Health

The results of the tree level classification using each of the UAS hardware and software
combinations are given below in Table 4. The combination of M300 and Agisoft achieved
the highest overall classification accuracy for the four tree classes (89.5% ± 2.3%). The
combination of M3M hardware and Agisoft software resulted in the lowest average overall
classification accuracy (85.0% ± 2.9%), although this was essentially the same as the
combination of M3M hardware and WebODM software (85.3% ± 2.3%). When comparing
equivalent hardware, the use of open-source software instead of commercial software
provided a slightly higher overall accuracy (0.3%) for M3M and a lower overall accuracy
for M300 (−3.8%). When comparing equivalent software, M300 outperformed M3M only
slightly using WebODM (0.4% higher overall classification accuracy) and moderately using
Agisoft (4.5% higher overall classification accuracy). The class-specific changes in user’s
and producer’s accuracies (i.e., commission and omission errors) based on these differences
in overall performance were further examined while reviewing specific error matrices
generated during this testing. Table 5 provides a single reference error matrix produced
using the lowest performing hardware and software combination, M3M and Agisoft. In
comparison to the top performing combination, M300 and Agisoft shown in Table 6, the
user’s and producer’s accuracies for the class of interest (‘Declining Oak’) are 11.5% and
4.8% lower, respectively.

Table 4. Overall average classification accuracy for each of the combinations of UAS hardware and
software based on the four tree classes. Additionally, the producer’s and user’s accuracies for the
land cover class of interest (Declining Oak) to the foresters are provided.

M300 + Agisoft M3M + Agisoft M300 + WebODM M3M + WebODM

Declining Oak

Overall Accuracy 89.5% 85.0% 85.7% 85.3%
Producer’s Accuracy 81.0% 76.2% 76.2% 81.0%

User’s Accuracy 89.5% 78.0% 84.2% 79.1%
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Table 5. Example error matrix from a single iteration of the random forest classification performed
using imagery from M3M sensor and Agisoft Metashape processing.

Reference Data

Healthy Oak Declining Oak Dead Oak Healthy
Conifer Row Total User’s

Accuracy

Map

Healthy Oak 36 4 0 2 42 85.7%
Declining Oak 1 32 3 5 41 78.0%

Dead Oak 0 3 31 0 34 91.2%
Healthy Conifer 0 3 1 35 39 89.7%

Column Total 37 42 35 42 156
Producer’s Accuracy 97.3% 76.2% 88.6% 83.3%

Overall Accuracy 85.9%

Table 6. Example error matrix from a single iteration of the random forest classification performed
using imagery from M300 sensor and Agisoft Metashape processing.

Reference Data

Healthy Oak Declining Oak Dead Oak Healthy
Conifer Row Total User’s

Accuracy

Map

Healthy Oak 37 3 0 1 41 90.2%
Declining Oak 0 34 1 3 38 89.5%

Dead Oak 0 4 33 1 38 86.8%
Healthy Conifer 0 1 1 37 39 94.9%

Column Total 37 42 35 42 156
Producer’s Accuracy 100.0% 81.0% 94.3% 88.1%

Overall Accuracy 90.4%

Each of the overall and class-specific classification accuracies reported above are based
on the best combination of input features, following review of the calculated Gini Index for
each iteration. While using M3M, the highest classification accuracy was achieved while
using all 32 of the input features. While using M300 and MicaSense 10-band sensor, the
highest overall classification accuracy was achieved following the removal of up to five
of the least important features. Based on the results of the Gini Index calculations, the
most important features for each of the hardware and software combinations are presented
below in Table 7. For all tests, the Normalized Difference Vegetation Index (NDVI) and
Ratio Vegetation Index (RVI) are among the most important bands. These derivative bands
both require the Near-Infrared (NIR) and Red bands. For the classifications performed
using M300 imagery, the Coastal Blue band was indicated as highly important using the
Agisoft model, and the Blue band was present in at least a few of the derivative bands. In
fact, both indices that were ranked as most important using the M300 sensor (Lichtenhaler
Index (LIC) and Green Leaf Index (GLI)) cannot be used with the M3M sensor [63,64]. For
the classifications performed using M3M imagery, the Green and Red bands were identified
as important and were present in several of the most important derivative bands.

Table 7. Object-based input features (attributes) quantified as the most important (in descending
order) for each of the UAS hardware and software combination classifications. Feature importance is
quantified based on the Gini Index, and results are the average of ten iterations.

M300 + Agisoft M3M + Agisoft M300 + WebODM M3M + WebODM

Top Features

LIC NDVI GLI GRVI
NDVI RVI Std. Dev. Red-Edge RGI
RVI Mean Green RDVI RVI

Coastal Blue NDVI RBI NDVI NDVI
Std. Dev. Green TVI RVI Std. Dev. Red
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4. Discussion

The impact of spongy moth outbreaks on oak populations is widespread and has
far-reaching consequences for forest resource health and management. Forest and land
managers, including state agencies, work to minimize these ecological and economic
impacts and build resiliency against future outbreaks [9,18,19,23], but often lack the tools
and resources to adopt cutting-edge technologies to guide their decisions. UASs, and
their associated image processing workflows, offer a way to bridge the gap between
field observations and airborne or satellite-based observations, leading to more effective
management efforts [62,65,66]. UAS assessments of oak crown vigor, especially at fine
scales, can also support silvicultural management efforts, given operational flexibility
for timely and frequent flights of UASs compared to more traditional imagery platforms
(i.e., planes and satellites), which deal with cloud cover, fuel costs, and other logistical
challenges [17,18]. However, willingness to participate in new technologies are dampened
without evidence that investments will be met with adequate returns. With multiple options
out there for purchase and a range of daunting price tags, this analysis of how different
UASs, and associated software, compare may assist smaller organizations in deciding what
is best for their team [17,18]. Our objective was to compare the effectiveness of two UAS
(different costs and different multispectral payloads) surveying approaches to quantify
the differences in accuracy achieved for classifying individual oak tree health following
a recent spongy moth outbreak. These surveying approaches utilized different pieces of
hardware and software so that combinations of each type of hardware and software could
be evaluated for cost and accuracy.

In comparing UAS hardware, M300 UAS paired with MicaSense Dual-MX 10-band
sensor achieved the highest overall performance with an 89.5% classification accuracy when
paired with commercial-grade Agisoft SfM software. M3M achieved its highest overall
classification accuracy of 85.3% using WebODM open-source SfM. When using Agisoft,
M3M achieved an average overall accuracy of 85.0%. This average overall accuracy increase
of approximately 3.8% between hardware options (M300 vs. M3M) comes at the cost of a
USD 27,700 price difference. The class of most interest to the foresters looking to conduct
management operations, the ’Declining Oak‘ identification, achieved larger differences in
user’s and producer’s accuracies between these two types of hardware. In our example
error matrices, we saw an increase in user’s accuracy of 11.5% and an increase in producer’s
accuracy of 4.8% when using the more expensive system. Secondly, in comparing UAS-SfM
software choices, commercial-grade Agisoft SfM software performed 3.8% better overall
when classifying the imagery captured using M300 and MicaSense sensor, but 0.3% lower
when using M3M sensor. The most likely cause for the difference in performance when
using both software and MicaSense sensor is the lack of radiometric calibration in WebODM.
It is well documented that radiometric correction (i.e., pre-processing of remotely sensed
imagery to more closely measure surface reflectance) is an essential process of digital image
analysis [17,33,67–69]. This slight increase (3.8%) in overall classification performance was
made based on a USD 3500 investment in software.

Just looking at the results and costs, one might assume that there is no major difference
between the kinds of software and hardware being compared, at least not thousands of
dollars worth of an upgrade. However, when you look beyond the accuracies and dollar
signs, there are few nuances worth mentioning. While processing the imagery from both
UAS sensors in both software applications, notable differences in user experience were
documented. From these notes, three major considerations stand out with respect to the
choice between commercial or open-source software use. First, UAS-SfM processing took
nearly 25 times as long using WebODM in comparison to Agisoft while both were set to a
‘High’ quality setting. On ‘Ultra-High’ (point cloud quality setting), WebODM took over
75 times longer than Agisoft and often failed before generating outputs. When switching to
the ‘Fast Orthophoto’ setting in WebODM, which omitted point cloud and DEM creation,
the processing times were much more similar. The lack of a 3D point cloud or DEM,
however, removed a primary source of data for individual tree segmentation. Vacca [50]



Forests 2024, 15, 706 11 of 16

also found that WebODM took longer to process than Agisoft, even on a small number
of photos (i.e., small area). This investment in processing time could limit operational
feasibility for teams attempting to complete surveys over large areas in a timely manner
or those who wish to automate their processing workflow. A second major consideration
is the lack of configuration for WebODM to process image composites with greater than
five bands. While not as common, sensors with increased spectral resolution (number
and width of bands) are currently available and may increase in availability in the coming
years. This heightened spectral resolution is known to aid in various environmental
applications, including forest health management [31,34,67,70,71]. When working with
these heightened spectral resolution sensors, WebODM may present some additional
barriers. Lastly, open-source WebODM software does not currently support the integration
of pre-flight radiometric processing or calibration panel recognition. This pre-processing
step is an essential component of many digital image analysis workflows [17,68] and may
have contributed to the lower overall classification accuracy when using MicaSense sensor
in conjunction with WebODM. Deng et al. [67] determined that the use of different UAS
sensors and radiometric calibration methods could influence the accuracy of observed
spectral reflectance values in a precision agriculture setting.

M3M is advertised to have an internal calibration panel and, therefore, was not
manually calibrated in either WebODM or Agisoft during the processing stages. This
could explain why the results produced by WebODM and Agisoft were so similar for
M3M but varied more for M300. It is also worth mentioning that our results are the
product of manually delineated tree crowns. The value of more expensive hardware and
software might become more apparent if we were to utilize automation for individual tree
segmentation, rather than manual, due to potentially improved point cloud generation and
processing [40,48,52]. From an applied perspective, crown delineation would need to be
automated for efficiency of workflow and, therefore, 3D data would be instrumental.

The results of this study demonstrate that both UAS hardware and software options
achieved an accuracy sufficient to inform fine-scale forest management operations. The
overall classification accuracy for delineating three classes of oak health as well as conifer
trees ranged from 85.0% (M3M and Agisoft) to 89.5% (M300 and Agisoft). The user’s and
producer’s accuracies for this highest performing combination were 89.5% and 81.0% for
Declining Oak. Among the most important features for all tests were NDVI, RVI, Green, and
Red band products. Similar studies by Kanaskie et al. [54] and Lopez et al. [53] achieved
forest health classification accuracies closer to 70%–80% using similar sensors and methods.
Abdollahnejad and Panagiotidis [72], achieved an 84.7% overall accuracy for assessing the
health status of trees infested by bark beetles. These studies, among others, have found
that spectral wavelengths and derivative bands created using Red and Green reflectance
are important indicators of physiological stress [26,35,54,73–75].

As spongy moth outbreaks and other forest disturbances continue to impact global
forests, it is imperative that novel remote-sensing applications offer ways to effectively and
efficiently acquire spatially explicit information to support management decisions [2,76].
The kinds of hardware and software compared during this research represent an investment
of hundreds to thousands of dollars as well as quantifiable differences in processing time,
resources, and technical complexity. As more users continue to adopt these technologies,
reliable evidence must be available to support their decisions on which kind of hardware
and software best suits their individual needs.

5. Conclusions

The health of oak (Quercus spp.) following severe spongy moth outbreaks is a ma-
jor concern for foresters in New Hampshire and the broader eastern United States. As
individuals and state agencies explore novel methods for surveying and managing these
forests, many are looking to UAS hardware and software as a key tool for expanding their
capabilities. This research compares the effectiveness of using two UAS hardware and two
UAS software options for classifying the health of individual oak trees within an oak–pine-
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dominated site. The results demonstrate that when properly processed, commercial-grade
M300 and MicaSense multispectral sensor achieve the highest classification accuracy at
89.5%. Alternatively, analyzing imagery collected from M3M multispectral sensor and pro-
cessed in open-source WebODM SfM software achieved an overall classification accuracy of
85.3%. This comparison of different types of hardware and software also demonstrated key
differences in processing time investments and pre-processing limitations. These findings
can be used to support decisions regarding resource allocation, accuracy requirements,
and technical complexity for anyone wishing to use these technologies to aid in managing
their forests.
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Appendix A

Table A1. Object-based derivative band definitions (i.e., spectral indices or band ratios) calculated
using Unpiloted Aerial System (UAS) imagery. Derivative bands created using either the Coastal Blue
or Blue bands are written in blue text. These bands could not be created using Mavic 3 Multispectral
(M3M) sensor.

Derivative Bands

Acronym Name Citation

NDVI Normalized Difference Vegetation Index [77,78]
GRVI Green Red Vegetation Index (or NGRDI) [62,77,79]
GLI Green Leaf Index [63,79]

GNDVI Green NDVI [80]
RENDVI Red-Edge NDVI [62,81]

LCI Leaf Chlorophyll Index [82]
RVI Ratio Vegetation Index [83]
EVI Enhanced Vegetation Index [84]
DVI Difference Vegetation Index [83]

RDVI Re-Normalized Difference Vegetation Index [85]
TVI Triangular Vegetation Index [86]

ARI 1 Anthocyanin Reflectance Index [87]
PSRI Plant Senescence Reflectance Index [88]

CHLRE Chlorophyll Red-Edge Index [89]
BNDVI Blue NDVI [90]
cBNDVI Coastal Blue NDVI [91]

RGI Red Green Ratio [92]
PBI Plant biochemical Index [75,93]
LIC Lichtenhaler Index [64]
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35. Minařík, R.; Langhammer, J. Use of a Multispectral UAV Photogrammetry for Detection and Tracking of Forest Disturbance
Dynamics. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 711–718. [CrossRef]

36. Nex, F.; Remondino, F. UAV for 3D Mapping Applications: A Review. Appl. Geomat. 2014, 6, 1–15. [CrossRef]
37. Hassler, S.C.; Baysal-Gurel, F. Unmanned Aircraft System (UAS) Technology and Applications in Agriculture. Agronomy 2019,

9, 618. [CrossRef]
38. Marshall, D.M.; Barnhart, R.K.; Shappee, E.; Most, M. Introduction to Unmanned Aerial Systems, 2nd ed.; CRC Press: Boca, Raton,

FL, USA, 2016.
39. Kakaes, K.; Greenwood, F.; Lippincott, M.; Dosemagen, S.; Meier, P.; Wich, S. Drones and Aerial Observation: New Technologies for

Property Rights, Human Rights, and Global Development a Primer; New America: Washington, DC, USA, 2015.
40. Changsalak, P.; Tiansawat, P. Comparison of Seedling Detection and Height Measurement Using 3D Point Cloud Models from

Three Software Tools: Applications in Forest Restoration. Environ. Asia 2022, 15, 100–105. [CrossRef]
41. Mishra, P.K.; Rai, A. Role of Unmanned Aerial Systems for Natural Resource Management. J. Indian Soc. Remote Sens. 2021, 49,

671–679. [CrossRef]
42. Lausch, A.; Borg, E.; Bumberger, J.; Dietrich, P.; Heurich, M.; Huth, A.; Jung, A.; Klenke, R.; Knapp, S.; Mollenhauer, H.; et al.

Understanding Forest Health with Remote Sensing, Part III: Requirements for a Scalable Multi-Source Forest Health Monitoring
Network Based on Data Science Approaches. Remote Sens. 2018, 10, 1120. [CrossRef]

43. Cummings, A.R.; McKee, A.; Kulkarni, K.; Markandey, N. The Rise of UAVs. Photogramm. Eng. Remote Sens. 2017, 83, 317–325.
[CrossRef]

44. Upper Saco Valley Land Trust (USVLT) Pine Hill Community Forest. Available online: https://www.usvlt.org/conserved-lands/
pine_hill_community_forest/37 (accessed on 20 March 2024).

45. Smitley, D.R.; Bauer, L.S.; Hajek, A.E.; Sapio, F.J.; Humber, R.A. Introduction and Establishment of Entomophaga Maimaiga, a
Fungal Pathogen of Gypsy Moth (Lepidoptera: Lymantriidae) in Michigan. Environ. Entomol. 1995, 24, 1685–1695. [CrossRef]

46. GRANIT LiDAR. GRANIT LiDAR Distribution Site. Available online: https://lidar.unh.edu/map/ (accessed on 20 March 2024).
47. Earth System Research Center, University of New Hampshire. LiDAR-Derived Bare Earth DEM—NH, 2022. 2022. Available

online: https://www.nhgeodata.unh.edu/datasets/6b6e1b8af62d478396d6a8620ff45fcb/explore (accessed on 29 March 2024).
48. Fraser, B.T.; Congalton, R.G. Issues in Unmanned Aerial Systems (UAS) Data Collection of Complex Forest Environments. Remote

Sens. 2018, 10, 908. [CrossRef]
49. Vacca, G. Overview of Open Source Software for Close Range Photogrammetry. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.

2019, 42, 239–245. [CrossRef]
50. Vacca, G. WEB Open Drone Map (WebODM) a Software Open Source to Photogrammetry Process. In Proceedings of the FIG

Working Week, Smart Surveyors for Land and Water Management, Amsterdam, The Netherlands, 10–14 May 2020.
51. Fraser, B.T.; Bunyon, C.L.; Reny, S.; Lopez, I.S.; Congalton, R.G. Analysis of Unmanned Aerial System (UAS) Sensor Data for

Natural Resource Applications: A Review. Geographies 2022, 2, 303–340. [CrossRef]
52. Maturbong, B.; Wing, M.G.; Strimbu, B.; Burnett, J. Forest Inventory Sensivity to {UAS}-Based Image Processing Algorithms. Ann.

For. Res. 2019, 52, 87–108. [CrossRef]
53. Lopez, I.; Fraser, B.T.; Congalton, R.G. Evaluating the Use of Unpiloted Aerial Systems to Detect and Evaluating the Use of

Unpiloted Aerial Systems to Detect and Monitor Beech Bark Disease in New England. Geogr. Bull. 2023, 64, 4.
54. Kanaskie, C.R.; Routhier, M.R.; Fraser, B.T.; Congalton, R.G.; Ayres, M.P.; Garnas, J.R. Early Detection of Southern Pine Beetle

Attack by UAV-Collected 2 Multispectral Imagery. Remote Sens. 2024, 16. under review.
55. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

https://doi.org/10.1016/j.compag.2020.105815
https://doi.org/10.3390/f8080300
https://doi.org/10.3390/rs11070758
https://doi.org/10.3390/rs8121029
https://doi.org/10.3390/rs9020129
https://doi.org/10.3390/rs8060471
https://doi.org/10.5194/isprs-archives-XLI-B8-711-2016
https://doi.org/10.1007/s12518-013-0120-x
https://doi.org/10.3390/agronomy9100618
https://doi.org/10.14456/ea.2022.26
https://doi.org/10.1007/s12524-020-01230-4
https://doi.org/10.3390/rs10071120
https://doi.org/10.14358/PERS.83.4.317
https://www.usvlt.org/conserved-lands/pine_hill_community_forest/37
https://www.usvlt.org/conserved-lands/pine_hill_community_forest/37
https://doi.org/10.1093/ee/24.6.1685
https://lidar.unh.edu/map/
https://www.nhgeodata.unh.edu/datasets/6b6e1b8af62d478396d6a8620ff45fcb/explore
https://doi.org/10.3390/rs10060908
https://doi.org/10.5194/isprs-archives-XLII-4-W14-239-2019
https://doi.org/10.3390/geographies2020021
https://doi.org/10.15287/afr.2018.1282
https://doi.org/10.1023/A:1010933404324


Forests 2024, 15, 706 15 of 16

56. Belgiu, M.; Drăgu, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm.
Remote Sens. 2016, 114, 24–31. [CrossRef]

57. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.;
Dubourg, V.; et al. Scikit-Learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

58. Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37,
35–46. [CrossRef]

59. Congalton, R.; Mead, R. A Quantitative Method to Test for Consistency and Correctness in Photointerpretation. Photogramm. Eng.
Remote Sens. 1983, 49, 69–74.

60. Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principals and Practices, 3rd ed.; CRC Press: Boca Raton,
FL, USA, 2019.

61. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. ClassIfIcation and Regression Trees, 1st ed.; Chapman and Hall/CRC: New
York, NY, USA, 1984; ISBN 9781315139470.

62. Fraser, B.T.; Congalton, R.G. Monitoring Fine-scale Forest Health Using Unmanned Aerial Systems (UAS) Multispectral Models.
Remote Sens. 2021, 13, 4873. [CrossRef]

63. Bárta, V.; Hanuš, J.; Dobrovolný, L.; Homolová, L. Comparison of Field Survey and Remote Sensing Techniques for Detection of
Bark Beetle-Infested Trees. For. Ecol. Manag. 2022, 506, 119984. [CrossRef]

64. Lichtenthaler, H.K.; Lang, M.; Sowinska, M.; Heisel, F.; Miehe, J.A.; Chtenthaler, H.K.L.; Lang, M.; Miehif, J.A. Detection of
Vegetation Stress Via a New High Resolution Fluorescence Imaging System. J. Plant Physiol. 1996, 148, 599–612. [CrossRef]

65. Revill, A.; Florence, A.; Macarthur, A.; Hoad, S.; Rees, R.; Williams, M. Quantifying Uncertainty and Bridging the Scaling Gap in
the Retrieval of Leaf Area Index by Coupling Sentinel-2 and UAV Observations. Remote Sens. 2020, 12, 1843. [CrossRef]

66. Choi, W.I.; Park, Y.S. Management of Forest Pests and Diseases. Forests 2022, 13, 1765. [CrossRef]
67. Deng, L.; Mao, Z.; Li, X.; Hu, Z.; Duan, F.; Yan, Y. UAV-Based Multispectral Remote Sensing for Precision Agriculture: A

Comparison between Different Cameras. ISPRS J. Photogramm. Remote Sens. 2018, 146, 124–136. [CrossRef]
68. Olsson, P.O.; Vivekar, A.; Adler, K.; Garcia Millan, V.E.; Koc, A.; Alamrani, M.; Eklundh, L. Radiometric Correction of Multispectral

Uas Images: Evaluating the Accuracy of the Parrot Sequoia Camera and Sunshine Sensor. Remote Sens. 2021, 13, 577. [CrossRef]
69. Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation, 7th ed.; John Wiley and Sons Ltd.: Hoboken, NJ,

USA, 2015; ISBN 978-1-118-34328-9.
70. Gini, R.; Sona, G.; Ronchetti, G.; Passoni, D.; Pinto, L. Improving Tree Species Classification Using UAS Multispectral Images and

Texture Measures. Int. J. Geo-Inf. 2018, 7, 315. [CrossRef]
71. Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for

Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [CrossRef]
72. Abdollahnejad, A.; Panagiotidis, D. Tree Species Classification and Health Status Assessment for a Mixed Broadleaf-Conifer

Forest with Uas Multispectral Imaging. Remote Sens. 2020, 12, 3722. [CrossRef]
73. Dash, J.P.; Watt, M.S.; Pearse, G.D.; Heaphy, M.; Dungey, H.S. Assessing Very High Resolution UAV Imagery for Monitoring

Forest Health during a Simulated Disease Outbreak. ISPRS J. Photogramm. Remote Sens. 2017, 131, 1–14. [CrossRef]
74. Czapski, P.; Kacprzak, M.; Kotlarz, J.; Mrowiec, K.; Kubiak, K.; Tkaczyk, M. Preliminary Analysis of the Forest Health State Based

on Multispectral Images Acquired by Unmanned Aerial Vehicle. Folia For. Pol. Ser. A 2015, 57, 138–144. [CrossRef]
75. Huo, L.; Lindberg, E.; Bohlin, J.; Persson, H.J. Assessing the Detectability of European Spruce Bark Beetle Green Attack in

Multispectral Drone Images with High Spatial- and Temporal Resolutions. Remote Sens. Environ. 2023, 287, 113484. [CrossRef]
76. Aukema, J.E.; McCullough, D.G.; Von Holle, B.; Liebhold, A.M.; Britton, K.; Frankel, S.J. Historical Accumulation of Nonindige-

nous Forest Pests in the Continental United States. Bioscience 2010, 60, 886–897. [CrossRef]
77. Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8,

127–150. [CrossRef]
78. Rouse, R.W.H.; Haas, J.A.W.; Deering, D.W. Monitoring Vegetation Systems in The Great Plains with Erts. NASA Spec. Publ. 1974,

351, 309.
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