
Citation: Punnen, A.P.; Dhahan, J. The

Knapsack Problem with Conflict Pair

Constraints on Bipartite Graphs and

Extensions. Algorithms 2024, 17, 219.

https://doi.org/10.3390/a17050219

Academic Editor: Frank Werner

Received: 24 February 2024

Revised: 7 May 2024

Accepted: 9 May 2024

Published: 18 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

The Knapsack Problem with Conflict Pair Constraints on
Bipartite Graphs and Extensions
Abraham P. Punnen and Jasdeep Dhahan *

Department of Mathematics, Simon Fraser University, Surrey, BC V5A 1S6, Canada; apunnen@sfu.ca
* Correspondence: jasdeep_dhahan@sfu.ca

Abstract: In this paper, we study the knapsack problem with conflict pair constraints. After a thorough
literature survey on the topic, our study focuses on the special case of bipartite conflict graphs. For
complete bipartite (multipartite) conflict graphs, the problem is shown to be NP-hard but solvable
in pseudo-polynomial time, and it admits an FPTAS. Extensions of these results to more general
classes of graphs are also presented. Further, a class of integer programming models for the general
knapsack problem with conflict pair constraints is presented, which generalizes and unifies the existing
formulations. The strength of the LP relaxations of these formulations is analyzed, and we discuss
different ways to tighten them. Experimental comparisons of these models are also presented to assess
their relative strengths. This analysis disclosed various strong and weak points of different formulations
of the problem and their relationships to different types of problem data. This information can be used
in designing special purpose algorithms for KPCC involving a learning component.

Keywords: knapsack problem; stable sets; conflict pair constraints; combinatorial optimization; algorithms

1. Introduction

Let G = (V, E) be an undirected graph, and for each i ∈ V = {1, 2, . . . , n} an ordered
pair (ci, ai) is prescribed such that ai, ci ≥ 0 for all i. This non-negativity assumption can be
relaxed in some of the results discussed in this paper. We refer to ci as the cost of i and ai as
the weight of i. Let b ∈ R= ∪ {0} be a given budget. For any S ⊆ V, let c(S) = ∑i∈S ci be its
cost and a(S) = ∑i∈S ai be its weight. Then, the knapsack problem with conflict pair constraints
(KPCC) is to find a stable set S in G satisfying a(S) ≤ b such that c(S) is as large as possible.
The KPCC can be formulated as a 0-1 programming problem as follows:

Maximize cx

Subject to: ax ≤ b

xi + xj ≤ 1 for all (i, j) ∈ E

x ∈ {0, 1}n

where c = (c1, c2, . . . , cn), a = (a1, a2, . . . , an) and xT = (x1, x2, . . . , xn).

The KPCC has been investigated by many researchers, and it is known under different
names. Some authors call it the maximum independent set problem with a budget constraint [1–3],
while some others call it the disjunctively constrained knapsack problem [4–10]. We use the name
knapsack problem with conflict pair constraints since it belongs to the broader class of combina-
torial optimization problems with conflict pair constraints [11–20].

Bandyapadhyay [1] notes that the maximum weight stable set problem (MWSS) has
many applications in various fields, including scheduling, wireless networks, computer
graphics, map labeling, and molecular biology. The budget restriction has a relevant
interpretation in most of these applications, and it provides motivation to study KPCC.
Moreover, specific applications of KPCC include job scheduling in computers and selecting

Algorithms 2024, 17, 219. https://doi.org/10.3390/a17050219 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17050219
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a17050219
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17050219?type=check_update&version=2

Algorithms 2024, 17, 219 2 of 16

a non-interfering set of transmitters [1]. Other applications of KPCC also have been
discussed in the literature. Further, KPCC is used in the Dantzig–Wolfe decomposition
formulation of the two-dimensional bin packing problem [21].

2. Literature Review

Combinatorial optimization problems with conflict pair constraints have recently
received considerable attention from the research community. These include conflict pair
versions of the minimum spanning tree problem [11–14,19,20], shortest path problem [14],
minimum cost matching problem [14,17], minimum cost bin packing [22,23], and maximum
flow problem [18]. KPCC is yet another member in this class of optimization problems.
Conflict pair constraints can easily be absorbed into a quadratic objective function. Thus,
these types of problems can be formulated as quadratic combinatorial optimization prob-
lems. However, the special structure of the conflict pair constraints makes the problem
interesting to study independently.

The multiple choice knapsack problem studied by Chandra et al. [24] and Nauss [25] in
1975 is essentially a KPCC, where the underlying graph is a collection of disjoint cliques. The
continuous version of this problem was investigated by Ibaraki et al. [26]. Another special
case of KPCC, where cj = 1 for all j, was mentioned by Bar-Noy et al. [27] in the context of
resource allocation. The general problem KPCC was introduced by Yamada, Kataoka, and
Watanab [10], and they proposed exact and heuristic algorithms to solve the problem. Hifi
and Michrafy [6] presented different exact algorithms based on MIP formulations. Bettinelli,
Cacchiani, and Malaguti [28] proposed yet another class of the branch and bound algorithm,
along with extensive experimental analysis. Moreover, they presented comparisons of MIP
formulations using general purpose solvers. Salem et al. [29] investigated the convex hull
of feasible solutions of KPCC, i.e., the KPCC polytope. The authors obtained necessary and
sufficient conditions for odd cycle inequalities associated with the stable set problem to
be facet-defining for the KPCC polytope. Similar conditions were developed for the cover
inequalities of the knapsack polytope in connection with the KPCC polytope. They also
analyzed different lifting procedures to obtain additional valid inequalities. Exploiting
these inequalities, the authors proposed an effective branch and bound algorithm to solve
KPCC and reported the results of extensive computational experiments.

Heuristic algorithms for KPCC have been investigated by many researchers, and the
results of extensive experimental analysis with these algorithms are available. Hifi and
Michrafy [5] developed a reactive-local-search-based algorithm and also generated a class
of test instances based on the ideas from [10]. Akeb et al. [4] proposed local-branching-
based heuristics and provided an experimental analysis based on instances generated
by [5]. Hifi and Otmani [7] proposed a scatter-search-based metaheuristic algorithm along
with results of an experimental analysis using test instances from [5]. Recently, Hifi [9]
proposed an iterative-rounding-search-based algorithm. Their experimental results using
test instances from [5] were promising and were able to obtain the best known solutions
for many benchmark instances. Salem et al. [30] developed a probabilistic tabu search
algorithm to solve KPCC and reported extensive computational results.

Pferschy and Schauer [31] investigated KPCC for several special cases of the graph G.
They showed that KPCC can be solved in pseudo-polynomial time when G is a tree and
more generally when G is a graph with bounded treewidth or chordal. Fully polynomial-
time approximation schemes (FPTASs) are also derived for these classes of graphs. Further,
they proved that KPCC remains strongly NP-hard on perfect graphs. It may be noted that
the stable set problem is polynomial-time-solvable on perfect graphs. Bandyapadhyay [1]
also considered KPCC on trees, but the algorithm discussed in [31] is faster for this case.
Moreover, [1] presents pseudopolynomial algorithms for cycles, forests, k-outerplanar
graphs, and interval graphs. In another paper, Pferschy and Schauer [32] investigated
approximation algorithms for KPCC under various restrictions on G. They showed that
KPCC admits FPTASs on weakly chordal graphs and is solvable by PTAS (not FPTASs) on
planar graphs.

Algorithms 2024, 17, 219 3 of 16

Kalra et al. [2] studied another special case of KPCC, where aj = 1 for all j = 1, 2, . . . , n
and G is a multipartite graph. They proposed a 1

k -approximation algorithm, where k is
the number of partite sets, and proved that the performance bound established is tight. If
aj = 1 and cj equal to the degree of j, for j = 1, 2, . . . , n, KPCC reduces to the maximum
independent vertex coverage problem (MIVC). The authors proved approximation hardness
results for MIVC and showed that MIVC is NP-hard on bipartite graphs. Further, they
established bounds on the integrality for the LP relaxation of a clique-based formulation of
MVIP. Bandyapadhyay [1] investigated another special case of KPCC, where cj = 1 for all
j. This problem is called the maximum budget independent set problem (MBIS), and the
author presented a factor d polynomial time approximation algorithm for the problem on
(d + 1)-claw free graphs.

In KPCC, if we restrict the budget constraint to be satisfied as an equality, we obtain
an instance of the exact knapsack problem with conflict pair constraints (KPCC-exact). The
feasibility version of this problem was investigated by Milanic and Monnot [3,33], where it
was shown that the problem is strongly NP-complete on bipartite graphs with maximum
vertex degree of three. The authors also presented a pseudo-polynomial algorithm for the
problem in cographs, chordal graphs, and interval graphs.

A generalization of KPCC involving more than one knapsack constraint was studied
by Gabriel [34], where a Dantzig–Wolfe decomposition scheme was proposed. Atamtürk
et al. [35] used conflict graphs in developing algorithms for 0-1integer programs.

The quadratic knapsack problem (QKP) [36] can be stated as

Maximize xtQx + cx

Subject to: ax ≤ b

x ∈ {0, 1}n

where Q = (qij) is an n × n matrix.
Although the QKP appears to be more general than KPCC, we now observe that QKP

and KPCC are essentially equivalent, in the sense that one is a special case of the other.

Theorem 1. QKP and KPCC are equivalent.

Proof. Define the matrix Q = (qij) such that qij = −M, where M is a large positive number
if (i, j) ∈ E and qij = 0 otherwise. With this choice of Q, the problem KPCC reduces to QKP.
Thus, KPCC is a special case of QKP.

Let us now prove the converse. That is, QKP is a special case of KPCC. This is, how-
ever, achieved by appropriate modifications in the well-known reduction of a quadratic
unconstrained binary optimization problem (QUBO) to the maximum weight stable set
problem [37,38] to handle the budget constraint. Thus, KPCC can be viewed as a general-
ization of QKP.

For further details on QUBO, refer to [39]. The major contributions of the paper can be
summarized as follows.

• We present new complexity results on KPCC along with a thorough state-of-the-art
review of the literature. Also, we show that KPCC and QKP are equivalent.

• When the conflict graph is a complete bipartite graph, it is shown that KPCC decom-
poses into two knapsack problems. As a consequence, we have new polynomially
solvable (and pseudo-polynomially solvable) special cases of KPCC and have special
cases of KPCC that admit FPTASs. These results are extended to more general classes
of graphs that accept a blakbox oracle with special properties. On a star (which is a
special bipartite graph), the problem is shown to be NP-hard.

• A new integer programming formulation that unifies and generalizes existing formu-
lations of KPCC on general graphs is given. The strengths of the LP relaxation of this
formulation and of special cases are analyzed theoretically.

Algorithms 2024, 17, 219 4 of 16

• Different methods are proposed to tighten our general integer programming formula-
tion, and these methods are compared using the general purpose solver Gurobi.

3. KPCC on Bipartite Graphs

Let G = (V1 ∪ V2, E) be a bipartite graph with the generic bipartition of its vertex set
as V1 ∪ V2, where V1 = {1, 2, . . . , m} and V2 = {m + 1, m + 2, . . . , m + n}. Note that KPCC
is trivial to solve when G is a complete graph and is the same as the knapsack problem
when G is a collection of isolated nodes. When G is a tree, Pferschy and Schauer [31]
showed that KPCC is NP-hard but solvable in O(nb2) time and O(nb) space. Further, they
showed that the algorithm can be modified to obtain a fully polynomial approximation
scheme (FPTASs) for KPCC. Trees, in some sense, can be viewed as an extreme case of
sparse connected bipartite graphs. Let us now look at KPCC on the complete bipartite
graph Km,n = (V1 ∪ V2, E). Although KPCC is trivial on a complete graph, this simplicity
does not extend to Km,n.

Theorem 2. KPCC is NP-hard even if the conflict graph is a star (i.e., K1,n). Further, on a complete
bipartite graph, KPCC can be solved in pseudopolynomial time and it admits FPTASs.

Proof. It is not difficult to reduce the knapsack problem to a KPCC on K1,n and this
establishes the first part of the theorem. To prove the second part, note that for any solution
x of a KPCC on Km,n, if xi = 1 for any i ∈ V1 then by the conflict pair constraints, xi = 0 for
all i ∈ V2 and vice versa. Thus, KPCC on Km,n reduces to two knapsack problems

KP1: Maximize ∑
j∈V1

cjxj

Subject to: ∑
j∈V1

ajxj ≤ b

xj ∈ {0, 1} for all j ∈ V1

and

KP2: Maximize ∑
j∈V2

cjxj

Subject to: ∑
j∈V2

ajxj ≤ b

xj ∈ {0, 1} for all j ∈ V2

The best solution amongst the solutions of KP1 and KP2 solves KPCC on Km,n. Since
the knapsack problem can be solved in pseudopolynomial time and it admits FPTASs, the
second part of the theorem follows.

From the above theorem, if KP1 and KP2 are solvable in polynomial time, then the
corresponding KPCC on Km,n is also solvable in polynomial time. If aj = 1 for all j ∈ V1 ∪V2,
then obviously KP1 and KP2 are solvable in polynomial time; hence, the corresponding
KPCC on Km,n is also solvable in polynomial time. This is interesting since KPCC on a
general bipartite graph is NP-hard even if aj = 1 for all j [31]. Deineko and Woeginger [40]
showed that the cross-ratio-ordered bounded knapsack problem on n variables can be
solved in O(n) time. This, together with Theorem 2, leads to the following theorem.

Theorem 3. If the costs ci and weight ai for i ∈ V1 ∪ V2 satisfy ai+1
ai

≤
⌊

ci+1
ci

⌋
for i = 1, 2, . . .

m − 1 and ai+1
ai

≤
⌊

ci+1
ci

⌋
for i = m + 1, m + 2, . . . m + n − 1, then KPCC on Km,n can be solved

in polynomial time.

Algorithms 2024, 17, 219 5 of 16

We can also mix conditions for different solvable cases for KP1 and KP2 to obtain
solvable instances of KPCC on Km,n. For example, if ai = α for all i ∈ V1 and ai+1

ai
≤
⌊

ci+1
ci

⌋
for i = m + 1, m + 2, . . . m + n − 1, then KPCC on Km,n can also be solved in polynomial
time. Later, we present additional conditions for polynomially solvable special cases of the
knapsack problem that can be used in different combinations for KP1 and KP2 to produce
polynomially solvable cases of KPCC on Km,n.

Let G = (V1 ∪ V2, E) be an undirected graph such that the subgraphs induced by
V1 and V2 belong to a family F of graphs with specific properties. We call such graphs
F -bipartite (see Figure 1 for an example). If an F -bipartite graph contain all edges (i, j) for
i ∈ V1, j ∈ V2, then it is called a complete F -bipartite graph. Bonamy et al. [41] studied
F -bipartite graphs, where the induced subgraph of V1 is a collection of isolated nodes
and the induced subgraph of V2 is a k-degenerate graph. Depending on the properties
imposed on the family F , the F -bipartite structure can have algorithmic advantages in
solving some optimization problems. For example, F could contain all classes of graphs on
which the KPCC can be solved in pseudo-polynomial time. In this case, F includes graphs
that are isolated vertices, trees, complete bipartite graphs, complete graphs, chordal graphs,
interval graphs, cographs, and circular arc graphs.

v1

v2

v3

v4

u1

u2

u3

Figure 1. A complete F -bipartite graph with V1 = {v1, v2, v3, v4} and V2 = {u1, u2, u3}. The subgraph
induced by V1 is a cycle and a pendant vertex, and the subgraph induced by V2 is tree (path).

Assume that for a F -bipartite graph, the bipartition V1 and V2 along with the structure
of the subgraphs induced by V1 and V2 are given. Then, the results obtained in the previous
sections on the solvability of KPCC can be extended to F -bipartite graphs.

Algorithms 2024, 17, 219 6 of 16

Theorem 4. KPCC can be solved in pseudo-polynomial time on a complete F -bipartite graph
G = (V1 ∪ V2, E) if KPCC can be solved in pseudo-polynomial time on graphs in F . Further,
KPCC admits FPTASs on G whenever KPCC admits FPTASs on graphs in F .

Proof. The proof of the above theorem is similar to that of Theorem 2, except that instead
of KP1 and KP2 we will have problems of the type KPCC but with reduced sizes. However,
we present the complete proof of the theorem here to facilitate further related discussions.
Let G1 = (V1, E1) be the subgraph of G induced by V1 and G2 = (V2, E2) be the subgraph
of G induced by V2. Since every vertex in V1 is connected to every vertex in V2, for any
solution x of the KPCC, if xi = 1 for any i ∈ V1 then xi = 0 for all i ∈ V2 and vice versa.
Thus, KPCC reduces to the following reduced KPCCs.

KPCC1: Maximize ∑
j∈V1

cjxj

Subject to: ∑
j∈V1

ajxj ≤ b

xi + xj ≤ 1 for (i, j) ∈ E1

xj ∈ {0, 1} for all j ∈ V1

and

KPCC2: Maximize ∑
j∈V2

cjxj

Subject to: ∑
j∈V2

ajxj ≤ b

xi + xj ≤ 1 for (i, j) ∈ E2

xj ∈ {0, 1} for all j ∈ V2

The best solution amongst the solutions of KPCC1 and KPCC2 provides an optimal
solution to KPCC. By assuming the properties of F , KPCC1 and KPCC2 can be solved in
pseudo-polynomial time. The proof of the second part of the theorem also follows in an
analogous way.

Theorem 4 is a proper generalization of Theorem 2.
The results discussed above extend in a natural way to complete multi-partite graphs.

However, to take any computational advantage we need to know the partite sets a priori
or need to compute them. Bipartite graphs can be recognized in polynomial time but
recognizing p-partite graphs for p > 2 is NP-complete [42]. If there are p partite sets, then
we will be solving p knapsack problems.

General Bipartite Graphs

We now consider KPCC on a general bipartite graph G = (V1 ∪ V2, E), where
V1 = {1, 2, . . . , m} and V2 = {m + 1, m + 2, . . . , m + n}. Note that we are consider-
ing a maximization problem. Consider the maximization version of a combinatorial
optimization problem such that the objective function value of its feasible solutions are
positive. Let x∗ be any feasible solution to such a problem and x0 be a corresponding

optimal solution. Then, x∗ is said to be ϵ-optimal if OBJ(x0)
OBJ(x∗) ≤ ϵ, where OBJ(x) is the

objective function value of the solution x. When ϵ = 1, then x∗ is an optimal solution.
Consider KP1 and KP2, as indicated in Theorem 2. Let x̄1 and x̄2 be ϵ-optimal solutions
to KP1 and KP2, respectively. Define the solutions x̂1 and x̂2, where

x̂1
j =

{
x̄1

j if æ ∈ V1

0 otherwise
and x̂2

j =

{
x̄2

j if æ ∈ V2

0 otherwise

Algorithms 2024, 17, 219 7 of 16

Theorem 5. The best solution amongst x̂1 and x̂2 is a 2ϵ-optimal solution to KPCC on G = (V1 ∪V2, E).

Proof. Let x0 be an optimal solution to KPCC on G = (V1 ∪ V2, E). Define the solutions x∗

and x∗∗ such that

x∗j =

{
x0

j if æ ∈ V1

0 otherwise
and x∗∗j =

{
x0

j if æ ∈ V2

0 otherwise

Let x1∗ be the restriction of x∗ to V1 and x2∗∗ be the restriction of x∗∗ to V2. Then, x1∗

and x2∗∗ are feasible solutions of KP1 and KP2, respectively. Then, by the ϵ-optimality of x̂1
and x̂2 to KP1 and KP2, we have

∑
j∈V1

cj x̂1
j ≤ ϵ

(
∑

j∈V1

cjx1∗
j

)
= ϵcx∗ (1)

and

∑
j∈V2

cj x̂2
j ≤ ϵ

(
∑

j∈V2

cjx2∗∗
j

)
= ϵcx∗∗ (2)

Without a loss of generality, assume cx̂1 ≥ cx̂2. Then,

cx0 = cx∗ + cx∗∗ ≤ ϵcx̂1 + ϵcx̂2 ≤ 2ϵcx̂1.

An approximation algorithm A for a combinatorial optimization problem (in maxi-
mization form) is said to be a δ-fully polynomial time approximation scheme (δ-FPTASs) if it
guarantees a solution x∗ such that OBJ(X0) ≤ δ(1 + ϵ)OBJ(x∗), where x0 is an optimal
solution and A runs in polynomial time in the input size and 1

ϵ for any ϵ > 0. Thus, a
1 − FPTASs is precisely an FPTASs. Since KP1 and KP2 admits FPTASs, from Theorem 5,
KPCC admits 2 − FPTASs. This result is interesting because the problem is strongly NP-
complete on bipartite graphs with maximum vertex degree of three [3,33]. Further, when
KP1 and KP2 are solvable in polynomial time, KPCC on a general bipartite graph can be
solved by a polynomial time 2-approximation algorithm. When aj = 1 for all j, Theorem 5
reduces to a corresponding result obtained by Kalra et al. [2], and for the special case,
they showed that the performance bound is asymptotically tight. We summarize these
observations in the following corollary.

Corollary 1. KPCC on a bipartite graph admits 2-FPTASs. Further, when KP1 and KP2 are
solvable in polynomial time, then a 2-optimal solution to KPCC on a bipartite graph can be obtained
in polynomial time, and in this case the bound 2 is asymptotically tight.

The concept of F-bipartite graphs can be extended to the more general case of F-multipartite
graphs. Let G =

(
∪p

k=1Vk, E
)

be an undirected graph such that the subgraphs induced by Vk for
any k = 1,2, . . . , p belong to the family F. We call G a F-multipartite graph. If (i, j) ∈ E for any
i ∈ Vr, j ∈ Vs for r ≠ s, r, s = 1,2, . . . p, then G is called a complete F-multipartite graph. Theorem 4
and the discussions that follow extend in a natural way to complete F-multipartite graphs.

4. Integer Programming Formulations

Let us now discuss some integer programming formulations of the KPCC. For each vertex
i ∈ V, let A(i) = {j ∈ V : (i, j) ∈ E} and the sets Ni(1), Ni(2), . . . , Ni(pi) be a given partition

Algorithms 2024, 17, 219 8 of 16

of A(i), where Ni(k) ̸= ∅ for any k = 1, 2, . . . pi, Ni(r) ∩ Ni(s) = ∅ whenever r ̸= s, and
A(i) = ∪pi

k=1Ni(k). Then, KPCC can be formulated as the 0-1 programming problem

StarIP: Maximize ∑
j∈V

cjxj

Subject to: ∑
j∈V

ajxj ≤ b

∑
j∈Ni(k)

xj ≤ |Ni(k)|(1 − xi) for k = 1, 2, . . . pi, i = 1, 2, . . . n (3)

xj ∈ {0, 1} for all j ∈ V

The above formulation reduces to the standard integer programming formulation of
the KPCC when each Ni(k) is singleton, i.e., pi = |A(i)| for all i. When pi = 1 for all i then
Ni(1) = A(i), and the above integer program reduces to

MaxStarIP: Maximize ∑
j∈V

cjxj

Subject to: ∑
j∈V

ajxj ≤ b

∑
j∈A(i)

xj ≤ |A(i)|(1 − xi) for i = 1, 2, . . . n (4)

xj ∈ {0, 1} for all j ∈ V

Thus, our general integer programming framework StarIP provides a class of integer
programming formulations of KPCC that subsumes two well-studied formulations.

Theorem 6. Among all of the choices of the partition Ni(1), Ni(2), . . . , Ni(pi) for StarIP, the
standard formulation is the strongest and MaxStarIP is the weakest in terms of their LP relaxation
values.

Proof. Let x∗ = (x∗1 , x∗2 , . . . , x∗n) be any feasible solution to the LP relaxation of the standard
formulation. Then,

x∗i + x∗j ≤ 1 for all (i, j) ∈ E (5)

We successfully show that x∗ is a feasible solution to the LP relaxation of StarIP for
any partition Ni(1), Ni(2), . . . , Ni(pi). Choose a set Ni(k) for the vertex i. Now, by adding
the edge inequalities from (5) for all (i, j) ∈ E such that j ∈ Ni(k), we obtain

∑
j∈Ni(k)

(x∗i + x∗j ≤ 1) = ∑
j∈Ni(k)

x∗j ≤ |Ni(k)|(1 − x∗i).

Thus, any feasible solution to the standard integer programming formulation of the
KPCC is also a solution to the StarIP. Thus, the LP relaxation of the standard formulation is
the strongest among the LP relaxation of any formulation within the class of StarIP. The
second part of the theorem can be proved in an analogous way.

Note that, for the LP relaxation of StarIP (for any choice of the partition of A(i)),
xi =

1
2 for all i as a feasible solution, provided that 1

2 ∑j∈V aj ≤ b. One way to strengthen
or tighten StarIP is by computing upper bounds on the stability number of the subgraph
G(i, k) induced by Ni(k). For example, if this subgraph is perfect, we can calculate the
stability number exactly. If α is the largest cardinality of a matching in this graph, then
|Ni(k)| can be replaced by |Ni(k)| − α. Another way to tighten the formulation StarIP is
as follows: let γ(i, k) be the objective function value of the LP relaxation of the standard
formulation of KPCC restricted to G(i, k), where ci = 1 for all i. Then, |Ni(k)| can be
replaced by ⌊γ(i, k)⌋. This number can be viewed as a fractional budgeted stability number.
We can use other similar upper bounds to strengthen StarIP. For a review of different upper

Algorithms 2024, 17, 219 9 of 16

bounds that can be easily calculated, we refer to [43]. By tightening StarIP this way, we can
obtain a better formulation for KPCC.

Let A′(i) = {j ∈ V : (i, j) ∈ E, j < i} and N′
i (1), N′

i (2), . . . , N′
i (pi) be a given partition

of A′(i). We can replace Ni(k) by N′
i (k) in StarIP to obtain a valid formulation, say StarIP′,

of KPCC. Likewise, we can replace A(i) by A′(i) in MaxStarIP to obtain a valid formulation,
say MaxStarIP′, for KPCC. The formulation MaxStarIP′ has been studied by Hifi et al. [6].
The coefficient matrices of these modified formulations are sparser. However, tightening
the resulting formulations by using upper bounds as discussed above are likely to yield
weaker LP relaxations, in general, compared to tightening the corresponding formulation
of StarIP and MaxStarIP. Moreover, any possible computational advantage achieved by
sparsity over the suspected weaker LP relaxation needs to be analyzed experimentally.

Based on the ideas used in Theorem 2, we now present a single integer programming
formulation of KPCC on Km,n.

KPCCm,n: Maximize ∑
j∈V1∪V2

cjxj

Subject to: ∑
j∈V1

ajxj ≤ b

∑
j∈V2

ajxj ≤ b

∑
j∈V1

xj ≤ m(1 − xi) for i ∈ V2 (6)

∑
j∈V2

xj ≤ n(1 − xi) for i ∈ V1 (7)

xj ∈ {0, 1} for all j ∈ V1 ∪ V2

Note that constraint (6) guarantees that if any xi = 1 for i ∈ V2 then xi = 0 for all i ∈ V1.
Likewise, constraint (7) guarantees that if any xi = 1 for i ∈ V1 then xi = 0 for all i ∈ V2.

4.1. Experimental Analysis

The formulation MaxStarIP′ has been studied and used in algorithms to solve KPCC [6].
There are also effective branch-and-bound algorithms to solve KPCC for general graphs [6,28,44].
However, to the best of our knowledge, there is no computational study available that compares
the different formulations of KPCC. Note that the complexity of KPCC can vary significantly
depending on the structure of the underlying graph and the level of tightness of the budget
constraint. Also, tight efficiently computable upper bound estimates on the stability number
of a graph can affect the efficacy of our formulations StarIP and MaxStarIP. The following
Table 1 provides some easily computable upper bounds on the stability number of the graph
G = (V, E).

In the table above, ∆ denotes the maximum degree and δ denotes the minimum degree
of vertices in the graph G = (V, E).

Recall that the integer programming formulation MaxStarIP belongs to the class StarIP.
Therefore, it can be strengthened by replacing |A(i)| with an upper bound on the stability
number of the subgraph G(i) of G induced by A(i). When MaxStarIP is strengthened
using the bound UBk obtained from G(i) to replace |A(i)|, k = 1, 2, 3, 4, 5, 6, we denote
the resulting MaxStarIP formulation by MaxStarIPk. Thus, in addition to MaxStarIP, we
have the strengthened formulations MaxStarIP1, MaxStarIP2, MaxStarIP3, MaxStarIP4,
MaxStarIP5, and MaxStarIP6. The major goals of the experimental analysis were to:

1. Compare the relative performance of the standard KPCC formulation given in the
introduction, MaxStarIP, and its variations MaxStarIPk, k = 1, 2, 3, 4, 5, 6 using the
general purpose solver GUROBI.

2. Study the impact of the tightness of the budget constraints on the formulations that
we compare.

3. Study the impact of sparsity of G on the formulations that we compare.

Algorithms 2024, 17, 219 10 of 16

4. Explore the heuristic value of the formulations.

It may be noted that UB1 will be at least as tight as UB2 and that UB4 applies to a
connected graph. For these reasons, we will not use UB2 and UB4 in our experiments.

Table 1. Easily computable stability number bounds.

Bound Name

UB1 ⌊γ(G)⌋ fractional budgeted stability number
UB2 ⌊α f (G)⌋ fractional stability number [43]
UB3 ⌊ 1

2 +
√

1
4 + |V|2 − |V| − 2|E|⌋ Hansen [45]

UB4 ⌊ (∆−1)n+1
∆ ⌋ Borg [46]

UB5 ⌊|V| − |E|
∆ ⌋ Kwok [47]

UB6 |V| − δ Minimum degree [43]

All of the computational experiments were carried out on a PC with the Windows
10 Enterprise 64-bit operating system, Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz, and
16.0 GB of memory. The calling program was written in Python (Python 3.6.1) and called
GUROBI 9.0 using the interface gurobipy. The time limit for GUROBI was set to 3600 s.
Most of the test problems were solved to optimality within this time limit, except some
large or structured instances.

4.2. Benchmark Instances

Our experiments used benchmark instances selected from Bettinelli et al. [28] and
instances generated using the DIMACS clique graph library [48]. The instances of Bettinelli
et al. [28] have three data sets: R1, R2, and R10. Each data set consists of eight classes, and
each class has many instances. For the data set R1, in the first four classes, the items have a
uniformly distributed weight from the range [20, 100], and the knapsack capacity is set to
b = 150. The number n of items is 120, 250, 500, and 1000, respectively. The last four classes
have uniformly distributed weights from [250, 500], and the knapsack capacity is set to
b = 1000. The conflict graphs were generated randomly. For the data set R1, classes 1 to 4
have a total of 360 instances and classes 5 to 8 have a total of 360 instances. Thus, the data
set R1 has a total of 720 instances. The data set R3 is similar to R1 except that the budget b
is set to 3 × 150 = 450. Likewise, the data set R10 is almost identical to R1 except that the
budget b is set to 10 × 150 = 1500. For details on these instances, we refer to the paper [28].

For our computational experiments, we selected instances from the first four classes of
each of the data sets R1, R3, and R10. We categorized these instances further into small,
medium, and large. The small instances consist of conflict graphs with 120 to 250 vertices,
the medium instances consist of conflict graphs with 500 vertices, and the large instances
consist of conflict graphs with 1000 vertices. From each category, we selected 120 instances
using a prescribed selection rule. We refer to the aforementioned class of instances as
random data instances.

The DIMACS clique graph library consists of unweighted graphs. We generated two
sets of KPCC benchmarks out of these instances, called positively correlated problems and
negatively correlated problems. For positively correlated problems, the costs and weights
have the same ordering, whereas for the negatively correlated problems, the costs and
weights have opposite ordering. We used graphs that consist of 171 to 1024 vertices. These
instances are further classified into small, medium, and large sizes. The small instances
consist of graphs with 171 to 378 vertices, the medium instances consist of graphs with 400
to 500 vertices, and the large instances consist of 700 to 1024 vertices. There are 23 small
instances, 24 medium instances, and 13 large instances. The DIMACS graphs were originally
generated as clique benchmarks. To obtain stable set instances, we took the complement of
these graphs. Let G = (V, E) be such a complement graph. For each i ∈ V, we generated
the cost ci and the weight ai as uniformly distributed random integers in the range [1, |V|].
To obtain positively correlated data, we first sort the vectors c and a in non-decreasing order

Algorithms 2024, 17, 219 11 of 16

and then apply the same random index permutation to both vectors. Negatively correlated
instances are constructed in a similar manner but with opposite ordering. The budgets
for the correlated instances are set as follows. First, we generate a random subset S of the
vertices of G such that the cardinality of S is the known size of the maximum cardinality
stable set on G and set b = ∑i∈S ai. Then, instances are generated by setting the budget
equal to the value b scaled by the factors 0.25, 0.50, and 0.75. The instances we used in our
experiments are available at https://github.com/jasdeepdhahan/kpcc_instances.git.

4.3. Experimental Results

Let us now discuss the experimental outcomes of our analysis. First, we compared
the standard KPCC formulation given in the introduction to MaxStarIP and its variations
MaxStarIP1, MaxStarIP3, MaxStarIP5, and MaxStarIP6 using all of the test instances. Table 2
provides some insight into the relative strength of our formulations based on average
running times (in seconds). The numbers marked in bold letters correspond to the lowest
computational time taken. The experimental results disclose that there is no consistently
superior formulation of KPCC among the ones we tested.

Table 2. Average running times (in seconds).

Data Set Standard MaxStarIP MaxStarIP1 MaxStarIP3 MaxStarIP5 MaxStarIP6

Random Small 3.9525 4.1754 4.3713 9.2690 8.9970 9.2855
Random Medium 547.0358 546.1085 532.7913 542.4379 562.4661 540.5295
Random Large 1165.9380 1232.1670 1116.0310 1267.2090 1235.8030 1284.1800
Positive Small 0.4756 0.4833 0.4683 0.4874 0.4883 0.4606
Positive Medium 117.7284 108.5378 112.0652 105.2428 105.8007 109.7333
Positive Large 499.7824 506.0453 417.1473 418.3175 446.0069 407.9784
Negative Smal 1.3642 1.9495 1.7018 1.9759 1.7312 1.6509
Negative Medium 427.9115 499.4719 443.6538 431.8717 432.7311 422.1719
Negative Large 1866.9380 1937.1970 1780.2640 1723.5700 1698.0620 1742.0950

The efficacy of various formulations could also be dependent on how tight the budget
constraint is and what special structure the underlying graph has. Table 3 presents the
experimental results after classifying the budget constraint in the test instances as tight, very
tight, and moderately tight. Table 4 presents the experimental results after classifying the
random test instances based on tightness of the budget constraints as well as the density of
the underlying graph. We sometimes refer to a KPCC instance as sparse or dense. A sparse
(dense) KPCC instance has a sparse (dense) underlying graph. The results on the correlated
test instances are classified only with respect to budget tightness since the density of the
underlying graphs was uniform and generally sparse. These results are presented in Table 5.

After this categorized analysis, the standard formulation appears as the preferred
formulation overall, if one is constrained to recommend only one formulation. However, it
may be noted that MaxStarIP appears to be more suited for sparse small instances with the
tightest and loosest budgets. In addition, MaxStarIP outperforms the standard formulation
on sparse medium and large instances with the tightest budgets. For our medium and large
instances, as the underlying graph density increased the standard formulation became
more robust than MaxStarIP. It is also important to point out that 8 out of 120 medium-
sized instances were not solved to optimality within the time limit provided, either by
the standard formulation or by the MaxStarIP type formulations. In addition, 30 of the
120 large instances with the loosest budget were not solved to optimality within the time
limit specified by either of the aforementioned formulations.

Now, let us compare the standard formulation and MaxStarIP type formulations over
the correlated data. We found that the positively correlated instances were easier to solve
than the negatively correlated instances. Increasing the budget within limits generally
increased the running time of our formulations. Large negatively correlated instances often
hit the time limit set for the experiments. The standard formulation generally outperformed

https://github.com/jasdeepdhahan/kpcc_instances.git

Algorithms 2024, 17, 219 12 of 16

MaxStarIP over our negatively correlated data set. We further observed that MaxStarIP is
slightly better than the standard formulation for negatively correlated large instances with
the loosest budget. For positively correlated data, MaxStarIP is best suited for medium
instances and the standard formulation is the strongest for our small and large instances.

It may also be noted that the standard formulation is the most robust in terms of
running times, followed by MaxStarIP1, and there is no clear formulation that wins third
place. MaxStarIP1 outperformed our other KPCC formulations over denser and larger
random instances, while the standard formulation showed superiority on sparser large
random instances. Each of the formulations MaxStartIP, MaxStarIP3, MaxStarIP5, and
MaxStarIP6 were found to be the preferred formulation for at least one of the random data
set classifications in Table 4. Based on this, we conclude that there is no one formulation
that is best suited for our positively correlated data set. The standard formulation is best
suited for our medium and small negatively correlated data. In addition, MaxStarIP3
outperformed the other formulations over our larger negatively correlated instances with
the tightest budgets, and MaxStarIP5 outperformed the other formulations in Table 5 for
the remaining large negatively correlated KPCC instances.

Table 3. Average running times (in seconds) by budget.

Data Set Budget Standard MaxStarIP MaxStarIP1 MaxStarIP3 MaxStarIP5 MaxStarIP6

Random Small very tight 0.17025 0.2180 0.1535 14.48525 14.46275 14.4683
Random Small tight 0.8165 1.4390 0.98075 0.93225 0.95875 1.0078
Random Small moderate tight 10.871 10.86925 11.97975 12.3895 11.56975 12.3805

Random Medium very tight 1.2145 1.78725 1.602 1.89275 1.769 1.87975
Random Medium tight 24.9155 47.09275 21.021 51.623 63.196 37.62275
Random Medium moderate tight 1614.97725 1589.4455 1575.751 1573.798 1622.43325 1582.0860

Random Large very tight 5.5705 10.0915 12.59575 10.38025 10.95975 11.4418
Random Large tight 491.50875 593.444 484.346 806.51925 796.03675 837.51325
Random Large moderate tight 3000.7355 3092.9655 2851.1515 2984.729 2900.411 3003.5857

Positive Small very tight 0.2232 0.1991 0.2173 0.2155 0.2045 0.2245
Positive Small tight 0.4123 0.3786 0.4532 0.4936 0.4955 0.4745
Positive Small moderate tight 0.7914 0.8723 0.7345 0.7532 0.7650 0.6827

Positive Medium very tight 5.4561 4.7843 3.5357 3.6765 3.6857 3.7887
Positive Medium tight 47.9278 33.6848 35.3148 32.3804 29.4691 32.3991
Postive Medium moderate tight 299.8013 287.1443 297.34522 279.6713 284.2474 293.0122

Positive Large very tight 29.4941 35.5012 41.20824 45.17471 47.0088 41.72882
Positive Large moderate tight 1093.12647 1082.2853 918.3300 919.5976 959.8629 908.9182
Positive Large tight 376.7265 400.34941 291.9035 290.1800 331.1488 273.2882

Negative Small very tight 0.3973 0.4814 0.52410 0.5064 0.4745 0.4614
Negative Small tight 0.9173 1.2236 1.17409 1.2859 1.13911 1.3295
Negative Small moderate tight 2.7782 4.1436 3.4073 4.1354 3.5800 3.1618

Negative Medium very tight 6.5067 10.5179 7.8883 9.2575 9.2071 8.8704
Negative Medium tight 266.1083 292.6083 276.6429 274.4096 299.2258 270.0600
Negative Medium moderate tight 1011.11958 1195.2896 1046.4300 1011.9479 989.7604 987.5854

Negative Large very tight 721.0029 857.0400 667.3035 649.35523 666.8012 658.71412
Negative Large tight 2095.2776 2210.1188 2010.5912 1965.06882 1879.2935 1955.7835
Negative Large moderate tight 2784.5333 2744.4318 2662.8976 2556.2859 2548.0912 2611.7882

Algorithms 2024, 17, 219 13 of 16

Table 4. Average running times (in seconds) by budget and density.

Data Set Budget Density Standard MaxStarIP MaxStarIP1 MaxStarIP3 MaxStarIP5 MaxStarIP6

Random Small very tight 0.10–0.30 0.0657 0.04500 0.0421 40.7564 40.75 40.7564
Random Small tight 0.10–0.30 0.1957 0.2893 0.2364 0.2621 0.2986 0.2707
Random Small moderate tight 0.10–0.30 12.5571 12.3421 20.2229 17.135 17.52 18.2271

Random Small very tight 0.40–0.60 0.1557 0.1700 0.1486 0.1614 0.155 0.1586
Random Small tight 0.40–0.60 0.7914 1.6179 0.8986 1.0443 0.9907 1.0564
Random Small moderate tight 0.40–0.60 15.6157 15.7507 11.5864 12.2021 11.8821 12.4986

Random Small very tight 0.70–0.90 0.3092 0.4758 0.2892 0.5467 0.4867 0.4933
Random Small tight 0.70–0.90 1.5700 2.5717 1.945 1.5833 1.6917 1.8108
Random Small moderate tight 0.70–0.90 3.0409 3.1609 2.5527 5.5382 2.9364 5.3027

Random Medium very tight 0.10–0.30 0.3307 0.2493 0.2779 0.2471 0.2386 0.2421
Random Medium tight 0.10–0.30 1.2657 1.8571 1.6014 2.3179 1.7207 1.7429
Random Medium moderate tight 0.10–0.30 1807.6836 1792.2193 1933.2079 1802.3836 1830.6364 1778.0714

Random Medium very tight 0.40–0.60 0.91 0.8462 0.8869 0.8215 0.8654 0.8023
Random Medium tight 0.40–0.60 16.8238 29.1508 18.8531 21.9731 23.0215 21.1769
Random Medium moderate tight 0.40–0.60 2456.7877 2391.1946 2309.3023 2380.9877 2421.0185 2427.7085

Random Medium very tight 0.70–0.90 2.4708 4.3846 3.7431 4.7362 4.3208 4.7208
Random Medium tight 0.70–0.90 58.4762 113.75 44.1023 134.3708 169.5746 92.7085
Random Medium moderate tight 0.70–0.90 565.6369 569.3246 457.2462 520.4392 599.6292 525.4023

Random Large very tight 0.10–0.30 1.3021 1.2186 1.2957 1.1879 1.1857 1.1764
Random Large tight 0.10–0.30 7.3279 12.9400 8.505 13.2321 8.8986 9.1857
Random Large moderate tight 0.10–0.30 2475.0386 2547.7179 2487.0064 2504.4529 2519.53 2556.8364

Random Large very tight 0.40–0.60 4.3062 4.6062 5.6438 4.4131 4.5692 4.4046
Random Large tight 0.40–0.60 211.7485 328.7346 303.8569 476.9715 466.3538 451.49
Random Large moderate tight 0.40–0.60 3600.2546 3601.3262 3600.0577 3600.0585 3600.0546 3600.0592

Random Large very tight 0.70–0.90 11.4315 25.1323 31.7169 26.2469 27.8762 29.5338
Random Large tight 0.70–0.90 1292.6946 1483.3115 1177.2792 1990.3762 1973.4069 2115.5815
Random Large moderate tight 0.70–0.90 2967.3515 3171.7946 2494.4015 2886.62 2610.9469 2888.2269

Table 5. Average running times (in seconds) by budget and density.

Data Set Budget Density Standard MaxStarIP MaxStarIP1 MaxStarIP3 MaxStarIP5 MaxStarIP6

Positive Small very tight Sparse 0.2232 0.1991 0.2173 0.2155 0.2045 0.2245
Positive Small tight Sparse 0.4123 0.3786 0.4532 0.4936 0.4955 0.4745
Positive Small moderate tight Sparse 0.7914 0.8723 0.7345 0.7532 0.7650 0.6827

Positive Medium very tight Sparse 5.4561 4.7843 3.5357 3.6765 3.6857 3.7887
Positive Medium tight Sparse 47.9278 33.6848 35.3148 32.3804 29.4691 32.3991
Positive Medium moderate tight Sparse 299.8013 287.1443 297.34522 279.6713 284.2474 293.0122

Positive Large very tight Sparse 29.4941 35.5012 41.20824 45.17471 47.0088 41.72882
Positive Large moderate tight Sparse 1093.12647 1082.2853 918.3300 919.5976 959.8629 908.9182
Positive Large tight Sparse 376.7265 400.34941 291.9035 290.1800 331.1488 273.2882

Negative Small very tight Sparse 0.3973 0.4814 0.52410 0.5064 0.4745 0.4614
Negative Small tight Sparse 0.9173 1.2236 1.17409 1.2859 1.13911 1.3295
Negative Small moderate tight Sparse 2.7782 4.1436 3.4073 4.1354 3.5800 3.1618

Negative Medium very tight Sparse 6.5067 10.5179 7.8883 9.2575 9.2071 8.8704
Negative Medium tight Sparse 266.1083 292.6083 276.6429 274.4096 299.2258 270.0600
Negative Medium moderate tight Sparse 1011.11958 1195.2896 1046.4300 1011.9479 989.7604 987.5854

Negative Large very tight Sparse 721.0029 857.0400 667.3035 649.35523 666.8012 658.71412
Negative Large tight Sparse 2095.2776 2210.1188 2010.5912 1965.06882 1879.2935 1955.7835
Negative Large moderate tight Sparse 2784.5333 2744.4318 2662.8976 2556.2859 2548.0912 2611.7882

The frequency distribution of the fastest running times can provide further insight
into the complexity of KPCC that averaging out the running times could not provide. For
this analysis, we consider only the test instances that were solved to optimality within the
time limit specified. In the event of a tie, any formulations in a tie for the fastest running
time were considered to be equally good. From Table 6, we observe that the standard
formulation is the preferred formulation followed by MaxStarIP1, and there is no clear
winner for third place, based on frequency analysis.

Algorithms 2024, 17, 219 14 of 16

Table 6. Frequency distribution of fastest running times.

Data Set Standard MaxStarIP MaxStarIP1 MaxStarIP3 MaxStarIP5 MaxStarIP6

Random Small 62 12 38 17 25 14
Random Medium 41 14 29 9 17 17
Random Large 41 6 21 6 15 11
Positive Small 22 2 9 2 3 4
Positive Medium 16 15 9 8 12 12
Positive Large 20 5 5 6 2 11
Negative Small 35 5 10 3 8 9
Negative Medium 23 4 16 6 9 10
Negative Large 15 1 3 4 8 3

5. Conclusions

In this paper, we studied the KPCC from various points of views. After a thorough
literature survey on the topic, we focussed our attention on bipartite conflict graphs. For a
complete bipartite (multipartite) graphs, the problem is shown to be NP-hard but solvable
in pseudo-polynomial time and admits FPTASs. Extensions of these results to more general
classes of graphs are also presented. We then introduced an integer programming model
for KPCC with general conflict graphs, which generalizes and unifies existing formulations.
The strength of the LP relaxations of these formulations are analyzed and also discussed in
different ways to tighten them. An experimental comparison of our models is also presented
to assess their relative strengths. This analysis disclosed various strong and weak points of
our formulations and their linkages to the structure of the problem data. The analysis shows
some preference towards the standard formulation; none of the formulations uniformly
dominated others in all categories of the test data. In any case, the insights generated could
be used effectively in the design of special purpose algorithms for KPCC involving some
learning components. Such approaches proved useful in the case of other combinatorial
optimization problems (e.g., [49]). This study can be followed on with future work.

Author Contributions: Conceptualization, A.P.P.; methodology, A.P.P. and J.D.; software, J.D.; valida-
tion, J.D.; formal analysis, A.P.P. and J.D.; investigation, A.P.P. and J.D.; resources, A.P.P.; data curation,
J.D.; writing – original draft preparation, J.D.; writing—review and editing, A.P.P.; visualization, J.D.;
supervision, A.P.P.; project administration, A.P.P.; funding acquisition, A.P.P. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by an NSERC discovery grant awarded to Abraham P. Punnen.

Data Availability Statement: Our data is available to the public from “ https://github.com/jasdeep
dhahan/kpcc_instances.git”.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bandyapadhyay, S. A variant of the maximum weight independent set problem. arXiv 2014, arXiv:1409.0173.
2. Kalra, T.; Mathew, R.; Pal, S.P.; Pandey, V. Maximum weighted independent with a budget. In Proceedings of the Algorithms and

Discrete Applied Mathematics: Third International Conference, CALDAM 2017, Sancoale, Goa, India, 16–18 February 2017; Gaur,
D., Narayanaswamy, N., Eds.; Proceedings 3; Springer: Cham, Switzerland, 2017; Volume 10156, pp. 254–266.

3. Milanic, M.; Monnot, J. The exact weighted independent set problem in perfect graphs and related classes. Electron. Notes Discret.
Math. 2009, 35, 317–322. [CrossRef]

4. Akeb, H.; Hifi, M.; Mounir, M. Local branching-based algorithms for the disjunctively constrained knapsack problem. Comput.
Ind. Eng. 2011, 60, 811–820. [CrossRef]

5. Hifi, M.; Michrafy, M. A reactive local search algorithm for the disjunctively constrained knapsack problem. J. Oper. Res. Soc.
2006, 57, 718–726. [CrossRef]

6. Hifi, M.; Michrafy, M. Reduction strategies and exact algorithms for the disjunctively constrained knapsack problem. Comput.
Oper. Res. 2007, 34, 2657–2673. [CrossRef]

7. Hifi, M.; Otmani, N. An algorithm for the disjunctively constrained knapsack problem. Int. J. Oper. Res. 2012, 13, 22–43. [CrossRef]
8. Hifi, M.; Saleh, S.; Wu, L.; Chen, J. A hybrid guided neighborhood search for the disjunctively constrained knapsack problem.

Cogent Eng. 2015, 2, 1068969. [CrossRef]

https://github.com/jasdeepdhahan/kpcc_instances.git
https://github.com/jasdeepdhahan/kpcc_instances.git
http://doi.org/10.1016/j.endm.2009.11.052
http://dx.doi.org/10.1016/j.cie.2011.01.019
http://dx.doi.org/10.1057/palgrave.jors.2602046
http://dx.doi.org/10.1016/j.cor.2005.10.004
http://dx.doi.org/10.1504/IJOR.2012.044026
http://dx.doi.org/10.1080/23311916.2015.1068969

Algorithms 2024, 17, 219 15 of 16

9. Hifi, M. An iterative rounding search-based algorithm for the disjunctively constrained knapsack problem. Eng. Optim. 2014, 46,
1109–1122. [CrossRef]

10. Yamada, T.; Kataoka, S.; Watanabe, K. Heuristic and exact algorithms for the disjunctively constrained knapsack problem. Inf.
Process Soc. Jpn. J. 2002, 43, 2864–2870.

11. Carrabs, F.; Cerrone, C.; Pentangelo, R. A multiethnic genetic approach for the minimum conflict weighted spanning tree problem.
Networks 2019, 74, 134–147. [CrossRef]

12. Carrabs, F.; Cerulli, R.; Pentangelo, R.; Raiconi, A. Minimum spanning tree with conflicting edge pairs: A branch-and-cut
approach. Ann. Oper. Res. 2021, 298, 65–78. [CrossRef]

13. Darmann, A.; Pferschy, U.; Schauer, J. Determining a minimum spanning tree with disjunctive constraints. In Lecture Notes
in Computer Science; including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 414–423.

14. Darmann, A.; Pferschy, U.; Schauer, J.; Woeginger, G.J. Paths, trees and matchings under disjunctive constraints. Discret. Appl.
Math. 2011, 159, 1726–1735. [CrossRef]

15. Elhedhli, S.; Li, L.; Gzara, M.; Naoum-Sawaya, J. A branch-and-price algorithm for the bin packing problem with conflicts.
INFORMS J. Comput. 2011, 23, 404–415. [CrossRef]

16. Gendreau, M.; Laport, G.; Semet, F. Heuristics and lower bounds for the bin packing problem with conflicts. Comput. Oper. Res.
2004, 31, 347–358. [CrossRef]

17. Oncan, T.; Zhang, R.; Punnen, A.P. The minimum cost perfect matching problem with conflict pair constraints. Comput. Oper. Res.
2013, 40, 920–930 [CrossRef]

18. Pferschy, U.; Schauer, J. The maximum flow problem with disjunctive constraints. J. Comb. Optim. 2013, 26, 109–119. [CrossRef]
19. Zhang, R.; Kabadi, S.N.; Punnen, A.P. The minimum spanning tree problem with conflict constraints and its variations. Discret.

Optim. 2011, 8, 191–206. [CrossRef]
20. Samer, P.; Urrutia, S. A branch and cut algorithm for minimum spanning trees under conflict constraints. Optim. Lett. 2014, 9,

41–55. [CrossRef]
21. Pisinger, D.; Sigurd, M. Using decomposition techniques and constraint programming for solving the two-dimensional bin-

packing problem. INFORMS J. Comput. 2007, 19, 36–51. [CrossRef]
22. Sadykov, R.; Vanderbeck, F. Bin packing with conflicts: A generic branch-and-price algorithm. INFORMS J. Comput. 2013, 25,

244–255. [CrossRef]
23. Fernandes-Muritiba, A.E.; Iori, M.; Malaguti, E.; Toth, P. Algorithms for the bin packing problem with conflicts. INFORMS J.

Comput. 2010, 22, 401–415. [CrossRef]
24. Chandra, A.K.; Hirschberg, D.S.; Wong, C.K. Approximate algorithms for the knapsack problem and its generalizations. In IBM

Research Report; RC56l6; IBM T. J. Watson Research Center: New York, NY, USA, 1975.
25. Nauss, R.M. The 0-1 Knapsack Problem with Multiple Choice Constraints; University of Missouri-St. Louis: St. Louis, MO, USA, 1975;

(Revised in 1976).
26. Ibaraki, T.; Hasegawa, T.; Teranaka, K.; Iwase, J. The multiple choice knapsack problem. J. Oper. Res. Soc. Jpn. 1978, 21, 59–93.
27. Bar-Noy, A.; Bar-Yehuda, R.; Freund, A.; Naor, J.; Schieber, B. A unified approach to approximating resource allocation and

scheduling. J. ACM 2001, 48, 1069–1090. [CrossRef]
28. Bettinelli, A.; Cacchiani, V.; Malaguti, E. A branch-and-bound algorithm for the knapsack problem with conflict graph. INFORMS

J. Comput. 2017, 29, 457–473. [CrossRef]
29. Salem, M.B.; Taktak, R.; Mahjoub, A.R.; Ben-Abdallah, H. Optimization algorithms for the disjunctively constrained knapsack

problem. Soft Comput. 2018, 22, 2025–2043. [CrossRef]
30. Salem, M.B.; Hanafi, S.; Taktak, R.; Ben-Abdallah, H. Probabilistic Tabu search with multiple neighborhoods for the Disjunctively

Constrained Knapsack Problem. RAIRO-Oper. Res. 2017, 51, 627–637. [CrossRef]
31. Pferschy, U.; Schauer, J. The knapsack problem with conflict graphs. J. Graph Algorithms Appl. 2009, 13, 233–249. [CrossRef]
32. Pferschy, U.; Schauer, J. Approximation of knapsack problems with conflict and forcing graphs. J. Comb. Optim. 2017, 33,

1300–1323. [CrossRef]
33. Milanic, M.; Monnot, J. The complexity of the exact weighted independent set problem. In Combinatorial Optimization-Theoretical

Computer Science: Interfaces and Perspectives; Wiley-ISTE: NewYork, NY, USA, 2008; pp. 393–432.
34. Gabrel, V. Dantzig-Wolfe Decomposition for Linearly Constrained Stable Set Problem; hal-00116732; France 2006. Available

online: https://hal.science/hal-00116732/ (accessed on 23 February 2024)
35. Atamtürk, A.; Nemhauser, G.L.; Savelsbergh, M.W.P. Conflict graphs in solving integer programming problems. Eur. J. Oper. Res.

2000, 121, 40–55. [CrossRef]
36. Gallo, G.; Hammer, P.; Simeone, B. Quadratic knapsack problems. In Combinatorial Optimization; Mathematical Programming

Studies; Padberg, M., Ed.; Springer: Berlin, Germany, 1980; Volume 12, pp. 132–149.
37. Hammer, P.L.; Hansen, P.; Simone, B. Roof duality, complementations, and persistency in quadratic 0–1 optimization. Math.

Program. 1984, 28, 121–155. [CrossRef]
38. Punnen, A.P. (Ed.) Introduction to QUBO. In The Quadratic Unconstrained Binary Optimization Problem: Theory, Algorithms, and

Applications; Springer: Cham, Switzerland, 2022.

http://dx.doi.org/10.1080/0305215X.2013.819096
http://dx.doi.org/10.1002/net.21883
http://dx.doi.org/10.1007/s10479-018-2895-y
http://dx.doi.org/10.1016/j.dam.2010.12.016
http://dx.doi.org/10.1287/ijoc.1100.0406
http://dx.doi.org/10.1016/S0305-0548(02)00195-8
http://dx.doi.org/10.1016/j.cor.2012.10.022
http://dx.doi.org/10.1007/s10878-011-9438-7
http://dx.doi.org/10.1016/j.disopt.2010.08.001
http://dx.doi.org/10.1007/s11590-014-0750-x
http://dx.doi.org/10.1287/ijoc.1060.0181
http://dx.doi.org/10.1287/ijoc.1120.0499
http://dx.doi.org/10.1287/ijoc.1090.0355
http://dx.doi.org/10.1145/502102.502107
http://dx.doi.org/10.1287/ijoc.2016.0742
http://dx.doi.org/10.1007/s00500-016-2465-7
http://dx.doi.org/10.1051/ro/2016049
http://dx.doi.org/10.7155/jgaa.00186
http://dx.doi.org/10.1007/s10878-016-0035-7
https://hal.science/hal-00116732/
http://dx.doi.org/10.1016/S0377-2217(99)00015-6
http://dx.doi.org/10.1007/BF02612354

Algorithms 2024, 17, 219 16 of 16

39. Punnen, A.P. (Ed.) The Quadratic Unconstrained Binary Optimization Problem: Theory, Algorithms, and Applications; Springer: Cham,
Switzerland, 2022.

40. Deineko, V.G.; Woeginger, G.J. A well-solvable special case of the bounded knapsack problem. Oper. Res. Lett. 2011, 39, 118–120.
[CrossRef]

41. Bonamy, M.; Dabrowski, K.K.; Feghali, C.; Johnson, M.; Paulusma, D. Recognizing Graphs Close to Bipartite Graphs. In 42nd
International Symposium on Mathematical Foundations of Computer Science (MFCS 2017); Leibniz International Proceedings in
Informatics; Larsen, K.G., Bodlaender, H.L., Raskin, J.-F., Eds.; Schloss Dagstuhl-Leibniz-Zentrum für Informatik GmbH: Wadern,
Germany, 2017; pp. 70:1–70:14.

42. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W.H. Freeman Co.: New York,
NY, USA, 1979.

43. Willis, W. Bounds for the Independence Number of a Graph. Master’s Thesis, College of Humanities and Sciences, Virginia
Commonwealth University, Richmond, VA, USA, 2011.

44. Li, J.; Lan, Y.; Chen, F.; Han, X.; Blazewicz, J. A Fast Algorithm for Knapsack Problem with Conflict Graph. Asia-Pac. J. Oper. Res.
2021, 38, 2150010. [CrossRef]

45. Hansen, P. Degrés et nombre de stabilité d’un graphe. Cah. Centre Études Rech. Opér. 1975, 17, 213–220.
46. Borg, P. A sharp upper bound for the independence number. arXiv 2010, arXiv:1007.5426.
47. West, D. Introduction to Graph Theory, 2nd ed.; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 2001.
48. Rossi, R.; Ahmed, N. The Network Data Repository with Interactive Graph Analytics and Visualization. Proc. AAAI 2015, 29,

4292–4293. [CrossRef]
49. Karapetyan, D.; Punnen, A.P.; Parkes, A.J. Markov chain methods for the bipartite Boolean quadratic programming problem. Eur.

J. Oper. Res. 2017, 260, 494–506. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.orl.2011.01.006
http://dx.doi.org/10.1142/S021759592150010X
http://dx.doi.org/10.1609/aaai.v29i1.9277
http://dx.doi.org/10.1016/j.ejor.2017.01.001

	Introduction
	Literature Review
	KPCC on Bipartite Graphs
	Integer Programming Formulations
	Experimental Analysis
	Benchmark Instances
	Experimental Results

	Conclusions
	References

