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Abstract: We develop decision support and automation for the task of ultrasonic non-destructive
evaluation data analysis. First, we develop a probabilistic model for the task and then implement
the model as a series of neural networks based on Conditional Score-Based Diffusion and Denoising
Diffusion Probabilistic Model architectures. We use the neural networks to generate estimates for
peak amplitude response time of flight and perform a series of tests probing their behavior, capacity,
and characteristics in terms of the probabilistic model. We train the neural networks on a series of
datasets constructed from ultrasonic non-destructive evaluation data acquired during an inspection
at a nuclear power generation facility. We modulate the partition classifying nominal and anomalous
data in the dataset and observe that the probabilistic model predicts trends in neural network model
performance, thereby demonstrating a principled basis for explainability. We improve on previous
related work as our methods are self-supervised and require no data annotation or pre-processing,
and we train on a per-dataset basis, meaning we do not rely on out-of-distribution generalization.
The capacity of the probabilistic model to predict trends in neural network performance, as well
as the quality of the estimates sampled from the neural networks, support the development of a
technical justification for usage of the method in safety-critical contexts such as nuclear applications.
The method may provide a basis or template for extension into similar non-destructive evaluation
tasks in other industrial contexts.

Keywords: ultrasound; ultrasonic; safety critical; inspection; NDE; diffusion; generative; AI

1. Introduction

Ultrasonic (UT) non-destructive evaluation (NDE) is used in many applications to
establish a fitness-for-service argument for components under test [1]. Its usage is widely
established in safety-critical contexts such as aviation and nuclear energy [2]. Despite its
usefulness, the manual analysis of UT datasets is costly and time-consuming and there is
considerable interest in automating the process. This is true for nuclear energy in particular,
as ongoing concerns for the environment have sponsored a renewed interest in nuclear
energy production as the emissions-free energy it produces may help in stemming the tide
of global warming. In order to enhance the cost-effectiveness of nuclear energy relative to
emissions-producing alternatives, nuclear plant owner–operators are investigating the use
of statistical learning techniques to reduce the financial impact of necessary but costly UT
NDE data analysis.

While modern statistical learning methods [3] providing decision support in industrial
contexts show great promise, the risk and consequence of failure often prevents their usage
in highly regulated safety-critical contexts. It is the failure of such methods to provide
guarantees on out-of-distribution performance that most strongly prejudices against their
usage in the field where any number of factors may impact or skew the distribution of
acquired data away from the training data and perhaps negatively impact performance [4].
Our contribution is to demonstrate a principled usage of a state-of-the-art generative model
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that trains offline on each dataset independently, and so depends only on the distribution
of the data at hand, skirting any dependence on out-of-distribution generalization. We
work with generative models based on variational inference that allow us to describe,
understand, and proof test performance using probabilistic reasoning that captures the
method’s rationale in a way that regulators familiar with probabilistic risk assessment
might be comfortable with.

As shown in Figure 1, we summarize a UT data set of ascans as a time series consisting
of the peak amplitude response time of flight for each ascan. We express the UT data analysis
task, on the time series, in probabilistic terms that relate it to a Conditional Score-Based
Diffusion (CSDI) [5] loss function and train a CSDI model to perform the probabilistically
specified task. We use the threshold reconstruction error of a Variational Autoencoder
trained to encode and decode UT ascas to partition the time series dataset as nominal
and anomalous subsets; by ignoring the anomalous subset during training, the dataset
distribution is effectively biased towards the nominal distribution. Sampling from the
trained model and comparing sampled results to the observed data allows us to identify
and quantify deviations from nominal.

Figure 1. ascans as shown plotted in the top-right column record the time-of-flight and amplitude
response of UT pulses emitted by a probe and then received again after reflection from the test subject.
These data are taken from a UT scan of a calibration fixture, inscribed with notches to simulate flaws
of various size. Given the time of flight, we can use the speed of sound in the transmitting medium, in
this case D2O, to obtain the distance from the probe to the reflecting surface. The bscan in the top-left
column consists of 3600 successive ascans grouped together and viewed as an image; this represents
one full rotation of the NDE tool in the PT. The maximum amplitude in the bscan (the oscillating black
white lo/hi amplitude line) traces the inner diameter of the PT as nominal and anomalous features in
the pipe are scanned. The smoothly changing portion of the line corresponds to the nominal PT inner
diameter, while the departures at gaps in the line correspond to calibration notches. As shown in
the bottom row, we use the peak amplitude response time-of-flight curve as input to train diffusion
models and estimate the nominal time of flight of the peak amplitude response at all radial positions.

The CSDI model is a conditional score-based derivative of DPM first introduced in [6]
and reformulated in [7,8]. The CSDI architecture differentiates itself by exhibiting state-of-
the-art results for time series data imputation on numerous bench-marks and popular time
series performance metrics [5]. We use CSDI to impute or estimate unobserved nominal
data in our UT NDE datasets. We investigate opportunities to improve nominal estimates
by partitioning training datasets to induce bias towards the nominal distribution.

CSDI is based on DiffWave [9], which in turn is based on a U-Net like architecture [10].
U-Nets consist of a symmetric stacked encoder and decoder network; with the encoder
a series of down-sampling blocks, and the decoder a series of up-sampling blocks. Skip
connections run between the corresponding blocks of the encoder and decoder. CSDI
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models are defined as forward and reverse Markov chain processes, where the forward
process noises an input data vector, bringing it from the input data distribution at time
step t = 0, to a Gaussian noise vector at time step t = T. The reverse process denoises, to
bring a sampled noise vector at t = T, to the learned approximation of the data distribution
at time step t = 0. During training CSDI optimizes the error on a learned prediction of
the noise that must be removed from the data at time step t to bring it to the step-wise
denoised data at time step t − 1. In addition to time step information, CSDI models inject
conditional masks, temporal embeddings, and feature embeddings to each up and down
sampling block during training. The embeddings and masks get picked up by the attention
mechanisms [11] in the residual layers [12] of the U-Net encoder and decoder blocks. The
attention mechanisms facilitate the learning of the conditional data distribution.

2. Related Work

Automated Data Analysis of Pressure Tubes, an end-to-end expert system that pro-
vides decision support and explainability for automated flaw characterization in UT NDE
data taken from PT, is proposed in [13–15]. The system is based on deterministic rules
and explainability is generated using a tree-based system developed with input from
practitioners. Ref. [16] investigates the use of a self-supervised two-stage Decibel Scan
(DBSCAN)-based method to identify and cluster anomalies in UT NDE data taken from
PT. The first stage clusters on the basis of learned features in the data, the second on the
basis of location. A proof-of-concept supervised CNN based architecture is used in [17] to
identify flaws in PT UT data. Labels are provided by manual data analysis and training
data are down-sampled and concatenated to manage compute requirements. The results
suggest that supervised training methods are able to identify suitably labeled flaw regions
in UT data, but the results are adversely impacted by noise in the dataset.

All referenced work shares a dependency on labelled data and out of distribution
generalization. In the case of [13–15] labels and analysis are required in order to generate
the set of rules on which the system operates. In the case of [17], labeled data are required
to train the neural networks used to identify flaws. The robustness of any system relying on
labelled data depends on the amount of labeled data provided; more is considered better.
The use of large datasets supports generalization in the type of deep learning systems
trained in [17] and will allow rules-based systems, as in [13–15], to account for a wider
variety of field conditions. The difficulty in terms of real-world applications of sufficient
complexity is that field conditions may vary widely and in an unanticipated fashion, so
that a dataset of any size cannot be guaranteed to provide the information required for
sufficient generalization.

3. UT NDE and Nuclear Fuel Channel Pressure Tubes

A typical Canada Deuterium Uranium (CANDU) reactor contains 480 zirconium alloy
Pressure Tubes (PT). Each is approximately 560 mm long, with a diameter of 100 mm and
wall thickness around five millimeters. During reactor operation the PT house the reactor
fuel. PT operate under high pressure and temperature and experience significant neutron
flux. These factors cause the PT to geometrically deform and make thinning and weakening
of the pipe wall possible over time. PT are also subject to chemical processes that increase
the risk of catastrophic failure due to embrittlement; this is especially relevant in and
around evolving cracks, scratches, and fissures in the PT material [18].

The confirmation of PT integrity by way of physical inspection is one risk-mitigation
strategy employed by nuclear owner operators to ensure continued safe operation. And so
during planned maintenance outages PT are emptied of their fuel and inspected with UT
NDE tooling. A primary goal of inspections is to locate and characterize material flaws.
Flaws are sudden changes in pipe wall geometry such as those caused by abrasion and
wear of reactor fuel bundles and debris interacting with the PT inner diameter surface.
Flaws are of interest primarily because regions at the bounding points of their geometry are
under increased mechanical stress which enhances the risk of catastrophic failure [18]. In
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order to monitor and mitigate the risk of such an outcome PT flaws are characterized and a
set of criteria are used to determine the risk of each to continued safe reactor operation.

4. Dataset Details

The UT probe acquiring the data is situated on a rotating mechanical head which
when centered inside an empty PT, and pushed very slowly down its length as the head
spins, allows data acquisition over the entire inner diameter surface of the PT in a tight
corkscrew pattern. Our dataset contains 3600 ascans per head rotation, on an axial raster
of ∼0.2 mm. In this dataset the subject under test is a calibration fixture, which is a mock
PT, scanned before every real PT inspection. The signal response from notches in the fixture
is used to verify and tune UT probes to meet inspection quality requirements. Figure 1
provides a detailed look at a portion of our dataset. Each ascan in the dataset is associated
with the tool position (axial and rotary) and time of data acquisition. This allows the set to
be ordered (and visualized) in time, or position, of acquisition as desired.

For our purposes we reduce the dimensionality of the ascan dataset, summarizing each
ascan by the time of flight of its maximum value tpa, which we refer to as peak amplitude
response time of flight. This is simply the time in µs at which the peak value of a given
ascan (such as those in the top right column of Figure 1) occurs. Multiplying tpa by the
speed of sound v in D2O (deuterium oxide, or heavy water, is the nuclear fuel coolant in
a CANDU reactor) gives the round-trip distance between the UT probe and the primary
reflector, in this case the calibration fixture inner diameter pipe wall.

We can extract tpa from a given ascan using an argmax(·) function (scientific comput-
ing software libraries generally include an argmax() function that will return an array’s
maximum value and index) operating on the ascan data vector. So, given a set of ascans A
with elements a, we construct dataset X as follows:

X = {argmax(a)|∀a ∈ A} (1)

where argmax(a) yields tpa for a ∈ A.

5. Manual Data Analysis on the Manifold

UT NDE data analysis often involves the identification and characterization of variance
from the nominal trend in some set of assumed continuous measured quantities. In fact, the
estimation of the difference between an observed and an inferred nominal value constitutes
the bulk of UT NDE data analysis effort. In most industrial contexts, anomalies have a
relatively low rate of occurrence and this puts discriminative learning methods, which
rely on a balance of classes within the dataset, at a disadvantage. As we will demonstrate,
generative models like Variational Autoencoders (VAE) and Diffusion Probabilistic Models
(DPM) are accommodating in this regard, in that they allow us to leverage the prevalence
of the nominal trend within the data to predict a would-be nominal signal where it is
unobserved. As an added bonus, the semantics of variational inference lend well to the
expression of the UT NDE data analysis task as sampling from learnable distribution, which
facilitates a technical justification for the use of generative methods in highly regulated
contexts conversant in probabilistic risk assessment.

An extension of the manifold hypothesis [19] is that there exists a set of distinct data-
generating factors, each contributing to the distribution of an observed data set [20]. Given
this is true, we could say that in some sense the process of manual UT data analysis involves
classifying the data caused by these factors as nominal or anomalous and then using the
classification to identify and infer a possibly obscured nominal trend. We draw from the
concept of data generating factors and assume the existence of two groups of factors in
our dataset. A nominal group consisting of all factors supporting the smooth operation of
the data-acquisition system over a continuous surface of the material under test. And an
anomalous set of data generating factors—those causing spurious or noisy operation in
data acquisition and those causing unanticipated discontinuity in the otherwise-continuous
properties and features of the material under test.
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On the basis of this understanding, we can reframe the task of the analyst as the
determination of a partition for nominal and anomalous data and subsequent estimation
of the nominal trend on the basis of the nominal information. Ultimately identifying the
nominal trend allows the estimation of unobserved nominal data, which in turn supports
the estimate of variance from an estimated nominal in observed anomalous data.

Traditional approaches to establish a useful partition may involve some form of data
classification and curve fitting. For instance, some threshold may be used to partition
observed data, and then some curve fitting technique applied to identify nominal trend.
However, accurate identification of the nominal trend is sensitive to the quality of the
partition. Given a correct partition the relative ease of identifying nominal trend follows.
But, as in Figure 2, heuristic approaches are brittle and fail when the partition mixes support
from nominal and anomalous data-generating factors. This detracts from the usefulness of
such methods, as the difficulty in diagnosing errors leads to a lack of confidence in results.

Figure 2. The plot in the first row gives the peak amplitude response time of flight for a series of
ascans taken by a rotating head inside a PT. The data shown in the first row was acquired over two
rotations of the UT probe and the x-axis order the tpa by time of acquisition. Detail of the two irregular
excursions in the curve is given in the second row. The histogram gives the log mean squared error of
reconstruction of a VAE trained on the set of ascans from which the data in the plots were taken. The
red and cyan lines on the vertical plot are at the mean log MSE and 2.75 × 10−6 less than the mean,
respectively. Using these two log MSE values as thresholds to partition the data, the red and cyan
traces are fit to all data less than the similarly color-coded threshold value using a Savitzky–Golay
Filter (SGF). We observe that the traces are quite similar across the first peak, but do not track the
nominal trend well. On the second peak, the fits diverge so that the cyan trace appears to represent
the nominal trend. However, without ground truth, there is no clear method to select the partition
leading to the best line of best fit and no clear path to fault diagnosis.

6. A Probabilistic Model for UT Data Analysis

Given an ordered set of ascans taken as a UT probe passes over the surface of a test
subject. Let dataset X be the similarly ordered peak amplitude response time of flight of
each ascan in the set. Let the ordering provide a one-to-one mapping between each x ∈ X
and a unique time and position of data acquisition. Define X as the union of nominal and
anomalous data subsets X n and X a so that X is partitioned:

X = X n ∪ X a (2)

Then according to our understanding of data generating factors x is distributed as
joint probability

x ∼ P(xn, xa) (3)
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where xn ∈ X n and xa ∈ X a.
We define dataset X u with elements xu ∈ X u to allow reference to unobserved nominal

data. The xu are the nominal signals that would have been observed were it not for the
occurrence of an anomalous data generating factor. In terms of causality we might conceive
of X u as the observations that would have occurred had we intervened to constrain the
effect of anomalous data-generating factors.

We desire estimates for xu ∈ X u. An analyst estimates the unobserved nominal data
by first classifying observed data as either nominal or anomalous and then estimating
unobserved nominal data on the basis of observed local nominal signal. This estimate relies
on an inference process that makes strong use of the observed element wise continuity
in X n. We model this estimation process as sampling the unobserved nominal with a
conditional dependence on the observed nominal:

xu ∼ P(xu|X n) (4)

In the unsupervised learning setting we are given no knowledge of membership in
X n, X a, or X u. The best we can do directly from the dataset is sample xu ∼ P(x|X ). We
believe that with some engineering we can do better than this, and make the reasonable
assumption that unobserved nominal data are distributed as the observed nominal so that

xu ∼ P(X n) (5)

Substituting xn for xu in Expression (4) gives

xu ∼ P(xn|X n) (6)

which, given the assumptions, allows the estimation of X u by way of some unsupervised
generative model trained to sample from P(xn|X n) by training on partitioned dataset X .

Because PT are well maintained, and data are acquired with very strict quality controls,
we expect that cardinality |X n| ≫ |X a|. This implies that in general P(xn) ≫ P(xa) and
allows us to consider the approximation

xn ∼ P(X ) (7)

This circuitously suggests a model trained on all observed data

xu ∼ P(x|X ) (8)

which could also allow the accurate estimation of xu ∈ X u. We coin Expression (6) the
Nominal Data Model (NDM), and (8) the Observed Data Model (ODM).

7. Diffusion Probabilistic Models

Diffusion Probabilistic Models (DPM) are a class of latent variable models of the form
pθ(x0) :=

∫
pθ(x0:T)dx1:T where the data vector x0 ∼ q(x0) is of the same dimension as

latent vectors x1, ..., xT and p is parameterized by θ [7]. The model chains the input variable
vector x0 with the T latent variable vectors and defines a forward and reverse process over
the chain. The model architecture presumes a learned Gaussian transition from each vector
in the chain to the next, with each transition parameterized by a neural network of input
and output dimension equal to the input variable vector. (We assume that the reader is
familiar with the semantics and notation that is the lingua franca of variational inference
and diffusion processes so that this high-level overview may serve as a refresher. For a
full treatment and development of variational inference and VAE, see [21], for Denoising
Diffusion Probabilistic Models see [7], and for Conditional Score-Based Diffusion, see [5]).
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The approximate posterior q(x1:T |x0), or forward process, is defined as a Markov chain
that transforms input data vectors to a target distribution by gradually adding noise at
each of T steps according to a learnable variance schedule β1, . . . , βT :

q(x1:T |x0) :=
T

∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√

1 − βtxt−1, βtI) (9)

The reverse process is a joint probability pθ(x0:T) defined as a Markov chain starting
at p(xT) = N (xT ; 0, I) that transforms its input across T learned Gaussian transitions:

pθ(x0:T) := p(xT)
T

∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1; µθ(xt, t), Σθ(xt, t)I) (10)

Diffusion models admit closed form expressions for sampling xt at arbitrary step t.
Being differentiable they support training by stochastic gradient descent to optimize the
variational lower bound L on negative log likelihood:

E[− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T)

q(x1:T |x0)

]
= Eq

[
− log p(xT)− ∑

t≥1
log

pθ(xt−1|xt)

q(xt|xt−1)

]
:= L (11)

where E is the expectation. Sampling of xt at arbitrary time step t is achieved as follows:

q(xt|x0) = N (xt;
√

ᾱx0, (1 − ᾱt)I) (12)

where αt := 1 − βt and ᾱt := ∏t
s=1 αs.

7.1. Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPM) reformulate the variational bound
in Equation (11) [7] as follows:

L := Eq

[
DKL(q(xT |x0)||p(xT)) + ∑

t>1
DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))− log pθ(x0|x1)

]
(13)

where the forward process variance schedule βt, which may be learned, is fixed to constants.
This removes all learnable parameters from the first term of Equation (13); removing it
from consideration during training. The reverse process covariance matrix Σθ(xt, t) = σ2I
is also set to step dependent unlearned constants; which removes it from consideration
during training also. Reparameterizing the sampling procedure in Equation (12) with
xt(x0, ϵ) =

√
ᾱtx0 +

√
1 − ᾱtϵ where ϵ ∼ N (0, I) leads to the parameterization

µθ(xt, t) =
1
αt

(
xt −

βt√
1 − αt

ϵθ(xt, t)
)

, σθ(xt, t) = β̃1/2
t , where β̃t =

{
1−αt−1

1−αt
βt t > 1

β1 t = 1
(14)

where ϵθ is a learnable denoising function that reverses the forward process. With this
parameterization, the DDPM loss function reduces to

LDDPM(θ) := Et,x0,ϵ

[
∥ϵ − ϵθ(

√
ᾱx0 +

√
1 − ᾱtϵ, t)∥2

]
(15)

The DDPM model includes a decoder in the final step of the reverse process to improve
sampling. The decoder relies on the linear scaling of data on the range [−1, 1] and allows
the direct sampling of µθ(x1, 1) without any addition of noise.
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7.2. Conditional Score-Based Diffusion

Conditional Score-Based Diffusion (CSDI) [5] models introduce a conditional into the
reverse process of the DDPM as follows:

pθ(xta
0:T |xco

0 ) := p(xta
T )

T

∏
t=1

pθ(xta
t−1|xta

t , xco
0 ), xta

T ∼ N (0, I), (16)

pθ(xta
t−1|xta

t , xco
0 ) := N (xta

t−1; µθ(x
ta
t , t|xco

0 ), σθ(xta
t , t|xco

0 )I) (17)

where imputation targets xta
0 ∈ X ta are unobserved data, and xco

0 ∈ X co are the observed
data on which estimates of the unobserved data are made conditional. Introducing a
conditional into the expression for ϵθ in the DDPM parameterization in Equation (14), we
arrive at the parameterization for CSDI:

µθ(x
ta
t , t|xco

0 ) =
1
αt

(
xta

t − βt√
1 − αt

ϵθ(xta
t , t|xco

0 )

)
(18)

σθ(xta
t , t|xco

0 ) = β̃1/2
t , where β̃t =

{
1−αt−1

1−αt
βt t > 1

β1 t = 1
(19)

Which implies the corresponding CSDI loss function:

min
θ

L(θ) := min
θ

Ex0∼q(x0),ϵ∼N (0,I),t∥ϵ − ϵθ(xta
t , t|xco

0 )∥2
2 (20)

CSDI implements a self-supervised learning method, inspired by training in masked
language models, which holds back observed data, in an amount determined by the
“missing ratio” hyperparameter, as simulated unobserved targets with ground truth. The
CSDI architecture uses an attention mechanism with multi-head and fully connected layers
to identify temporal and feature dependencies. The feature dependencies are used to
generate “side information” that is passed to the gated activation unit in each residual
diffusion layer. The diffusion layers are each composed as a U-Net with skip connections
all passing information to the final convolutional output layers.

8. Experiments and Results

We seek to interpret results in terms of the probabilistic models developed in Section 6.
Where alignment between the models and results gleaned from their implementations will
be taken to imply that there exists a principled basis to which we may fix an understanding
of performance, and that this may in turn provide the basis for a technical justification of the
use of diffusion-based methods in safety-critical contexts. To make relevant observations
we begin by constructing a number of datasets to train diffusion models on.

Dataset X that underlies the NPM and OPM of Expressions (6) and (8), respectively, is
defined as a partition X n, X a that classifies the data as nominal or anomalous. To test the
validity of the probabilistic models, and their DPM based implementations, we generate
a collection of datasets each based on a unique partition of the data. We first use manual
classification to construct a ground truth dataset Xgt with partition formed by X n

gt, and X a
gt.

We then use a method similar to that described in [22] to construct a series of datasets with
partitions generated using output from a VAE. Partitions are constructed by first training a
VAE to encode and decode the ascans from which dataset X is derived. Then percentiles of
the mean squared error of ascan reconstruction are used as thresholds to partition X so that
the time of flight associated with ascans with a reconstruction error less than the threshold
percentile value are classified as nominal, and otherwise anomalous. Thus, given the value
of the 90th MSE percentile we construct dataset X0.90 the union of X n

0.90, and X a
0.90. Each of

the constructed datasets is then a unique partition over the data.
We test DDPM and CSDI diffusion models on each of the datasets and train them for

five epochs. Our implementations of DDPM and CSDI are based on the code provided
with [5]. The training of CSDI models requires a missing ratio hyperparameter which is
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equivalently expressed as the percentage rate of observed data held back as simulated
ground truth during training. This percentage regulates the degree to which the conditional
mechanism of the model is exercised on the observed nominal data. DDPM models do
not exercise a conditional mechanism when training. We test CSDI models on the range of
missing data rates [10%, 20%, ..., 50%].

For each trained model we sample five estimates for each data-point in the dataset.
We take the mean and standard deviation of each set of five samples and then fit a curve to
the high confidence means with a standard deviation < 1, using an SGF. We then take the
mean squared, mean absolute, mean absolute percentage, and maximum absolute error of
each fitted curve against a SGF fit of X n

gt.
Tables A1–A5 in Appendix A tabulate the results of a series the experiments conducted

as described above; results are also summarized in the series of plots given in Figure 3.
The plots in Figure 3 reveal consistent dynamics related to the training of the models
over the datasets. In general, the CSDI models outperform their DDPM counterparts
and achieve the best performance in each error category with the exception of maximum
absolute error. The hatched constant vertical lines in the plots of Figure 3 show the
performance of the models when trained on the ground truth dataset Xgt. Although there
are some exceptions, generally, models trained on the ground truth dataset out-perform
their counterparts trained on the MSE threshold based datasets; this suggests that models
trained on the ground truth datasets are indeed learning ∼P(xn

gt|X n
gt), while those trained

on datasets whose partitions mix data from nominal and anomalous data generating factors
are learning some other similar but different distributions. Further, we posit that when
model performance on an arbitrary MSE dataset Xκ meets or exceeds the performance of the
same model when trained on Xgt, then it is likely that the distribution learned by the model,
presumably ∼P(xn

κ |X n
κ ), is in some meaningful way similar to the distribution learned by

the model trained on ground truth—presumably P(xn
gt|X n

gt). This line of thinking suggests
that the NDM and ODM, in so far as they are able to predict aspects of implemented neural
network performance, provide some measure of explainability to results. In a practical
setting this explainability, in conjunction with quantitative targets for error, can be leveraged
to generate confidence that a model has achieved a satisfactory level of performance, and
allows regulators to understand the basis for results.

A consistent feature of the plots in Figure 3 is a spike in error rates somewhere above
the 96th MSE percentile. Figure 4 may explain this by providing insight into the quality of
the data being added to the nominal population at the high MSE threshold range. It is at
just above the 96th MSE percentile that the qualitative nature of the intersection population
growth curves changes. We note that at the lower range of threshold values, changes in
intersection membership occur in large steps. At the upper range of threshold values, the
change in membership occurs more smoothly. This speaks directly to the uniqueness, or
alternatively to the amount of information, in the data being added to the intersection. As
per information theory, the more unique a datum, the more information it carries relative to
the data. So, we observe that as intersection set membership additions become increasingly
unique, the model error in Figure 3 increases dramatically. This suggests that the trend of
the highly informative data are not as easily encoded as the more common low MSE data
in the weights of the neural networks implementing the DPM.

From the perspective of the CSDI conditional loss function, the information content
of the unique outliers is largely irrelevant. An outlying time of flight has very little
information to relate about the largely continuous nominal signal in and around which it
occurs. More over with their high information content the outliers are likely to generate
some number of spurious correlations with the rest of the dataset. So the conditional CSDI
model struggles, colloquially in two directions, to make sense of the highly informative
anomalous information. Conversely, when on average there is less information per element
in the nominal partition the CSDI model is enabled to learn the possibly continuous,
possibly well-defined structure of the data. In the case of a highly structured dataset, each
element bears a strong, identifiable, possibly causal conditional relation to neighboring
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data. CSDI leverages this conditional structure and given a largely nominal signal in the
dataset readily learns the nominal distribution. DDPM models do not take advantage of
this conditional perspective on the nominal information and, as borne out in the results, are
slightly impaired in learning the nominal distribution. DDPM models are also more tolerant
of outliers when they occur. This is directly observed in Figure 3 where at thresholds less
than the 96th MSE percentile CSDI models generally outperform DDPM models, but in the
range above the 96th, their error ramps up quickly and often exceeds that of DDPM models.

Figure 3. The plots summarize the results of training CSDI and DDPM models on the set of datasets
{X0.70,X0.75,X0.80,X0.85,X0.90,X0.91,X0.92,X0.93,X0.94,X0.95,X0.96,X0.97,X0.98,X0.99,X1.00,Xgt} on
the range of missing data rates [10%, 20%, 30%, 40%, 50%] for five epochs. The hatched cyan and
orange constant lines mark the baseline performance of the CSDI and DDPM models trained on Xgt.

Figure 4. The plots on the first row show the growth in the cardinality X a
gt ∩ X n

MSEn
generated on the

range of percentile values [0%, 100%] and high range [95%, 100%]. The second row shows the same
plots for the growth in the cardinality of intersection X a

gt ∩ X n
MSEn

generated on like ranges.
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Figure 5 show the results of a second set of experiments where we test the effect of
enlarging a dataset with predominantly nominal signal. This drives the ratio of the nominal
to total population in each dataset towards unity. This tests and affirms the assumption that
lim |X n |

|X | →1
P(x|X ) = P(xn|X n). We observe that as the dataset size increases MAE error

improves across the range of datasets. We also observe that the range of error increases
so that over and above the 96th percentile error ramps up more quickly as dataset size
enlarges. This is suggests that as training becomes saturated by the nominal signal in the
dataset the loss function naturally encodes information in the neural network weights
that secure the most numerical benefit. This in turn causes error to become increasingly
sensitive to anomalous data.

Figure 5. The top plot shows peak amplitude time of flight data, and the three color-coded vertical
bars mark the final datum of three increasingly large data sets; with sizes of 111,222, 219,438, and
435,369 elements. The second row plot shows the color-coded MAE error of CSDI model trained
with 50% missing data ratio on the three datasets of increasingly large size. We use the VAE MSE
threshold procedure to construct 28 unique partitions for each dataset size and train on each.

9. Practical Application and Future Work

Figure 6 gives the error in microns (µm) against ground truth, for estimates of peak
amplitude time of flight as provided by CSDI models trained on X0.95 and X0.70 partitioned
datasets. For the UT NDE inspection of nuclear CANDU PT, the minimum deviation from
nominal that must be reported is 100 µm. In practice, the minimum reportable deviation sits
at the edge of human cognitive abilities, and for anomalies in this range the data are often
unclear, which causes analysis to be somewhat subjective. To support this point of view we
note that, in the best conditions, subject matter experts consider the accuracy of manual
analysis to be within a 40 µm band. This suggests that the CSDI-based estimates are at least
on par with manual analysis. To be sure, a further study and quantification of the delta
between model-based estimates and manual analysis in the low range <100 µm is required.
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Figure 6. The practical error in µm of a CSDI model trained on the X0.95 and X0.70 partitioned
datasets of size 435,369, as shown in Figure 5, for 5 epochs. For these results, CSDI estimates for
tpa are multiplied by the speed of sound in D2O to arrive at the estimated nominal round-trip
distance from the UT probe to the calibration fixture inner diameter. The X0.95 and X0.70 models have
maximum error, relative to ground truth, of 13.2 µm and 16.3 µm, respectively.

In-the-field usage of DPM-based estimates would require some means for fault di-
agnosis without reference to ground truth. There are numerous avenues for engineering
solutions that involve the use of agreement between multiple independent estimation
techniques. One opportunity for a second estimation technique, currently being inves-
tigated, involves the use of a dynamic nominal partition that changes in response to a
self-supervised signal provided during training. Though this may improve the robustness
of results, without ground truth we see no opportunity to provide concrete guarantees
on model performance. Given that this is the case, we think it likely that automation
and decision support for UT NDE data analysis will necessarily involve a human in the
loop, driving an iterative process of training, verification, and reclassification. So for in-
stance, a practical procedure might assign a well chosen partition to a UT NDE dataset
and train a model on it, and after sampling allow an analyst to verify the classification of
data in regions where the sampled estimates vary, beyond some bound, from observed
data. The analyst might then tweak the partition and retrain the model to achieve superior
results. This process of training and directed manual reclassification would continue, until
some quantifiable error objective was achieved; this process would almost surely force the
nominal partition in the direction of ground truth and ensure satisfactory performance
across the dataset.

A number of opportunities exist for improving results. Figure 7 shows in detail the fit
of CSDI estimates, as well as the support of X n

0.95 on which the model was trained. What
is clear is that the SGF fit on estimates overshoots the weight of the data in and around
regions where its derivative is close to zero. This wig wag could in part be due to the
Gaussian prior distribution used by CSDI models, and could also in part be due to the
nature of SGF curve fitting. A post-processing step that introduced weight to the SGF from
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observed data in and around the neighborhood of estimates might serve to ameliorate
the wig wag. A slightly more involved improvement might involve the use of alternative
priors, with more degrees of freedom than the Gaussian, in the diffusion process [23].

One area of concern is the degree of support from nominal data on which estimates
are based. Typically, inspection processes have some data quality argument attached to
them that specifies the minimum level of support from observed data on which an estimate
must be based. We pay attention, in Figure 7, to the shaded gray region of the scatter plot
showing the set membership in X n

0.95 on which CSDI estimates are based. There we see
that the partition selected by the 95th MSE percentile discriminates against likely nominal
observed data, and places it in X a

0.95. Although the estimates are of high quality, it would
be better, from a process quality point of view, to include the discriminated data in the
nominal set. Again an iterative process with a human in the loop could include tools that
identify regions of low support, allow for suitable data reclassification, and then retraining.

Figure 7. Opportunities for improvement: wig, wag, and support. The plot shows detail of the CSDI
prediction fit, and support from X n

0.95.

10. Conclusions

We model the UT NDE data analysis task probabilistically as the NDM and ODM and
evaluate the potential to provide decision support and automation to UT NDE data analysis
using their CSDI- and DDPM-based implementations. We demonstrate the veracity and
utility of the NDM and ODM by way of their ability to explain the variance in CSDI and
DDPM performance across a variety of uniquely partitioned UT NDE datasets. We show
that the NDM and ODM provide a basis for understanding the behavior of their CSDI
and DDPM based implementations. And thus provide a basis for a technical justification
needed to support the use of diffusion based methods in safety critical contexts in practice.

We train the CSDI model on various datasets to learn the NDM and sample from
it to obtain estimates of peak amplitude response time of flight. We sample estimates
from trained CSDI models and find their accuracy, against ground truth, to be on par
with manual analysis. The unsupervised training procedure does not rely on dataset
labelling or annotation, and the accuracy of sampled estimates depends only on learning
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the distribution of a single dataset. In this way, the approach may be used offline on a
per-inspection basis, with no data annotation, and without recourse to out of distribution
generalization. We suggest various means to improve results and confidence therein. We
also suggest an iterative human-in-the-loop training verification process that may act, in
lieu of the availability of ground truth, as a means for fault detection and remediation.

The method improves greatly upon prior work where results rely on data annotation,
pre-processing, brittle heuristics, and out-of-distribution generalization. And the proba-
bilistic model-based explainability provides a basis for interface with regulatory bodies
seeking some justification for usage of novel methods in safety-critical contexts.
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ADAPT Automated Data Analysis of Pressure Tubes
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DDPM Denoising Diffusion Probabilistic Model
DPM Diffusion Probabilistic Model
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NDE Non-Destructive Evaluation
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TOF Time Of Flight
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Appendix A

Table A1. Training with missing ratio of 10%.

Dataset Model MAE MAPE MSE Max.Abs.Err.

X0.70 csdi 5.04 × 10−3 1.94 × 10−2 4.71 × 10−5 3.06 × 10−2

X0.70 ddpm 1.38 × 10−2 1.47 × 10−1 1.67 × 10−3 4.68 × 10−1

X0.75 csdi 5.78 × 10−3 3.55 × 10−2 6.00 × 10−5 3.52 × 10−2

X0.75 ddpm 8.90 × 10−3 8.67 × 10−2 4.99 × 10−4 2.68 × 10−1

X0.80 csdi 3.96 × 10−3 2.12 × 10−2 2.83 × 10−5 3.11 × 10−2

X0.80 ddpm 5.76 × 10−3 4.54 × 10−2 1.08 × 10−4 9.51 × 10−2

X0.85 csdi 4.06 × 10−3 1.51 × 10−2 2.82 × 10−5 2.55 × 10−2

X0.85 ddpm 5.02 × 10−3 4.05 × 10−2 6.09 × 10−5 5.75 × 10−2

X0.90 csdi 3.89 × 10−3 2.02 × 10−2 2.61 × 10−5 3.46 × 10−2

X0.90 ddpm 4.06 × 10−3 1.82 × 10−2 3.14 × 10−5 6.28 × 10−2
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Table A1. Cont.

Dataset Model MAE MAPE MSE Max.Abs.Err.

X0.91 csdi 4.17 × 10−3 1.60 × 10−2 3.22 × 10−5 3.22 × 10−2

X0.91 ddpm 3.92 × 10−3 3.48 × 10−2 3.02 × 10−5 4.55 × 10−2

X0.92 csdi 4.69 × 10−3 1.96 × 10−2 3.73 × 10−5 3.17 × 10−2

X0.92 ddpm 3.81 × 10−3 1.61 × 10−2 2.56 × 10−5 3.79 × 10−2

X0.93 csdi 3.91 × 10−3 1.29 × 10−2 2.65 × 10−5 3.07 × 10−2

X0.93 ddpm 3.66 × 10−3 2.05 × 10−2 2.20 × 10−5 2.78 × 10−2

X0.94 csdi 4.56 × 10−3 1.70 × 10−2 3.53 × 10−5 3.20 × 10−2

X0.94 ddpm 3.80 × 10−3 1.31 × 10−2 2.52 × 10−5 2.96 × 10−2

X0.95 csdi 4.39 × 10−3 1.53 × 10−2 3.10 × 10−5 2.61 × 10−2

X0.95 ddpm 3.79 × 10−3 1.73 × 10−2 2.86 × 10−5 5.43 × 10−2

X0.96 csdi 4.62 × 10−3 1.85 × 10−2 3.51 × 10−5 2.51 × 10−2

X0.96 ddpm 4.00 × 10−3 2.17 × 10−2 2.80 × 10−5 3.95 × 10−2

X0.97 csdi 4.26 × 10−3 1.90 × 10−2 3.16 × 10−5 2.65 × 10−2

X0.97 ddpm 3.97 × 10−3 1.38 × 10−2 2.79 × 10−5 3.52 × 10−2

X0.98 csdi 8.30 × 10−1 9.13 × 10−2 1.11 × 102 1.94 × 102

X0.98 ddpm 5.07 × 10−3 2.62 × 10−2 2.75 × 10−4 3.70 × 10−1

X0.99 csdi 3.92 × 10−2 1.53 × 10−1 1.65 × 10−1 7.33 × 100

X0.99 ddpm 4.98 × 10−3 1.83 × 10−2 2.31 × 10−4 3.05 × 10−1

X1.00 csdi 4.29 × 10−2 6.27 × 10−1 3.01 × 10−2 2.87 × 100

X1.00 ddpm 3.60 × 10−2 1.14 × 100 3.71 × 10−2 4.51 × 100

XGT csdi 4.31 × 10−3 1.58 × 10−2 3.11 × 10−5 3.01 × 10−2

XGT ddpm 4.07 × 10−3 1.72 × 10−2 2.62 × 10−5 2.19 × 10−2

Table A2. Training with missing ratio of 20%.

Dataset Model MAE MAPE MSE Max.Abs.Err.

X0.70 csdi 4.60 × 10−3 2.67 × 10−2 3.64 × 10−5 2.70 × 10−2

X0.70 ddpm 1.57 × 10−2 3.43 × 10−1 1.89 × 10−3 5.21 × 10−1

X0.75 csdi 4.71 × 10−3 3.70 × 10−2 3.74 × 10−5 3.12 × 10−2

X0.75 ddpm 1.20 × 10−2 2.15 × 10−1 8.40 × 10−4 2.65 × 10−1

X0.80 csdi 4.89 × 10−3 1.96 × 10−2 4.02 × 10−5 2.62 × 10−2

X0.80 ddpm 7.18 × 10−3 5.17 × 10−2 1.91 × 10−4 1.35 × 10−1

X0.85 csdi 4.65 × 10−3 1.76 × 10−2 3.60 × 10−5 3.50 × 10−2

X0.85 ddpm 5.41 × 10−3 3.48 × 10−2 6.95 × 10−5 6.77 × 10−2

X0.90 csdi 4.34 × 10−3 1.37 × 10−2 3.23 × 10−5 2.69 × 10−2

X0.90 ddpm 4.12 × 10−3 3.93 × 10−2 3.41 × 10−5 5.77 × 10−2

X0.91 csdi 4.13 × 10−3 1.66 × 10−2 2.95 × 10−5 3.49 × 10−2

X0.91 ddpm 4.21 × 10−3 2.58 × 10−2 3.62 × 10−5 5.67 × 10−2

X0.92 csdi 4.12 × 10−3 3.65 × 10−2 2.83 × 10−5 2.08 × 10−2

X0.92 ddpm 3.91 × 10−3 4.89 × 10−2 2.86 × 10−5 5.47 × 10−2

X0.93 csdi 3.70 × 10−3 1.25 × 10−2 2.22 × 10−5 2.66 × 10−2

X0.93 ddpm 3.99 × 10−3 1.64 × 10−2 3.11 × 10−5 5.40 × 10−2

X0.94 csdi 4.32 × 10−3 1.31 × 10−2 3.10 × 10−5 2.90 × 10−2

X0.94 ddpm 3.87 × 10−3 1.55 × 10−2 2.63 × 10−5 4.38 × 10−2

X0.95 csdi 3.88 × 10−3 1.30 × 10−2 2.78 × 10−5 3.02 × 10−2

X0.95 ddpm 4.16 × 10−3 1.05 × 10−1 4.28 × 10−5 8.78 × 10−2

X0.96 csdi 3.39 × 10−3 1.35 × 10−2 2.07 × 10−5 2.64 × 10−2

X0.96 ddpm 3.73 × 10−3 1.34 × 10−2 2.87 × 10−5 6.32 × 10−2

X0.97 csdi 3.40 × 10−3 1.27 × 10−2 2.07 × 10−5 3.73 × 10−2

X0.97 ddpm 3.99 × 10−3 1.58 × 10−2 3.15 × 10−5 6.13 × 10−2

X0.98 csdi 4.67 × 10−2 1.67 × 10−1 3.08 × 10−1 1.22 × 101
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Table A2. Cont.

Dataset Model MAE MAPE MSE Max.Abs.Err.

X0.98 ddpm 4.64 × 10−3 2.02 × 10−2 1.71 × 10−4 2.85 × 10−1

X0.99 csdi 1.66 × 10−2 1.79 × 10−1 2.43 × 10−2 3.93 × 100

X0.99 ddpm 5.56 × 10−3 2.88 × 10−2 4.32 × 10−4 3.94 × 10−1

X1.00 csdi 4.17 × 10−2 3.28 × 10−1 3.63 × 10−2 3.77 × 100

X1.00 ddpm 3.32 × 10−2 1.31 × 10−1 2.60 × 10−2 3.66 × 100

XGT csdi 4.32 × 10−3 1.40 × 10−2 3.13 × 10−5 2.32 × 10−2

XGT ddpm 3.69 × 10−3 1.68 × 10−2 2.19 × 10−5 2.18 × 10−2

Table A3. Training with missing ratio of 30%.

Dataset Model MAE MAPE MSE Max.Abs.Err.

X0.70 csdi 4.85 × 10−3 3.84 × 10−2 4.70 × 10−5 4.77 × 10−2

X0.70 ddpm 2.01 × 10−2 2.04 × 10−1 2.22 × 10−3 4.06 × 10−1

X0.75 csdi 3.98 × 10−3 4.05 × 10−2 2.70 × 10−5 2.52 × 10−2

X0.75 ddpm 1.23 × 10−2 9.85 × 10−2 6.79 × 10−4 2.17 × 10−1

X0.80 csdi 4.11 × 10−3 2.01 × 10−2 3.13 × 10−5 3.37 × 10−2

X0.80 ddpm 1.10 × 10−2 1.02 × 10−1 6.89 × 10−4 3.86 × 10−1

X0.85 csdi 3.73 × 10−3 2.18 × 10−2 2.34 × 10−5 2.36 × 10−2

X0.85 ddpm 6.81 × 10−3 4.51 × 10−2 1.40 × 10−4 1.64 × 10−1

X0.90 csdi 4.51 × 10−3 1.94 × 10−2 3.39 × 10−5 2.55 × 10−2

X0.90 ddpm 5.44 × 10−3 3.70 × 10−2 7.38 × 10−5 1.19 × 10−1

X0.91 csdi 4.14 × 10−3 1.49 × 10−2 3.11 × 10−5 2.40 × 10−2

X0.91 ddpm 5.44 × 10−3 2.40 × 10−2 8.15 × 10−5 1.10 × 10−1

X0.92 csdi 3.62 × 10−3 1.20 × 10−2 2.28 × 10−5 2.82 × 10−2

X0.92 ddpm 5.04 × 10−3 3.41 × 10−2 6.21 × 10−5 9.73 × 10−2

X0.93 csdi 3.92 × 10−3 1.25 × 10−2 2.70 × 10−5 2.75 × 10−2

X0.93 ddpm 4.73 × 10−3 1.83 × 10−2 5.37 × 10−5 1.08 × 10−1

X0.94 csdi 3.79 × 10−3 1.53 × 10−2 2.49 × 10−5 2.97 × 10−2

X0.94 ddpm 4.81 × 10−3 2.94 × 10−2 6.37 × 10−5 1.06 × 10−1

X0.95 csdi 3.43 × 10−3 1.07 × 10−2 2.03 × 10−5 3.10 × 10−2

X0.95 ddpm 4.74 × 10−3 2.51 × 10−2 4.23 × 10−5 5.65 × 10−2

X0.96 csdi 3.36 × 10−3 1.19 × 10−2 1.91 × 10−5 2.67 × 10−2

X0.96 ddpm 4.20 × 10−3 1.72 × 10−2 3.66 × 10−5 7.12 × 10−2

X0.97 csdi 3.71 × 10−3 1.37 × 10−2 2.50 × 10−5 3.52 × 10−2

X0.97 ddpm 4.21 × 10−3 1.95 × 10−2 3.81 × 10−5 7.50 × 10−2

X0.98 csdi 5.24 × 10−2 3.40 × 10−1 3.51 × 10−1 1.51 × 101

X0.98 ddpm 3.01 × 10−1 1.01 × 10−1 9.83 × 100 5.54 × 101

X0.99 csdi 7.87 × 10−3 1.05 × 10−1 1.57 × 10−3 7.01 × 10−1

X0.99 ddpm 4.51 × 10−2 1.00 × 10−1 1.68 × 10−1 9.09 × 100

X1.00 csdi 4.32 × 10−2 4.72 × 10−1 5.42 × 10−2 5.40 × 100

X1.00 ddpm 3.21 × 10−2 2.03 × 10−1 2.47 × 10−2 3.55 × 100

XGT csdi 3.48 × 10−3 3.08 × 10−2 2.02 × 10−5 2.44 × 10−2

XGT ddpm 4.22 × 10−3 6.94 × 10−2 3.03 × 10−5 3.76 × 10−2
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Table A4. Training with missing ratio of 40%.

Dataset Model MAE MAPE MSE Max.Abs.Err.

X0.70 csdi 4.78 × 10−3 9.55 × 10−2 4.45 × 10−5 3.28 × 10−2

X0.70 ddpm 2.81 × 10−2 2.40 × 10−1 3.31 × 10−3 4.80 × 10−1

X0.75 csdi 4.77 × 10−3 2.93 × 10−2 4.19 × 10−5 3.18 × 10−2

X0.75 ddpm 2.02 × 10−2 4.94 × 10−1 1.64 × 10−3 3.66 × 10−1

X0.80 csdi 4.33 × 10−3 2.01 × 10−2 3.49 × 10−5 3.07 × 10−2

X0.80 ddpm 1.43 × 10−2 9.67 × 10−2 7.76 × 10−4 3.56 × 10−1

X0.85 csdi 4.28 × 10−3 1.70 × 10−2 3.07 × 10−5 2.41 × 10−2

X0.85 ddpm 9.11 × 10−3 6.59 × 10−2 2.01 × 10−4 1.41 × 10−1

X0.90 csdi 3.61 × 10−3 2.98 × 10−2 2.30 × 10−5 2.37 × 10−2

X0.90 ddpm 8.51 × 10−3 4.84 × 10−2 1.97 × 10−4 1.78 × 10−1

X0.91 csdi 3.73 × 10−3 1.40 × 10−2 2.47 × 10−5 2.62 × 10−2

X0.91 ddpm 7.44 × 10−3 4.25 × 10−2 1.94 × 10−4 2.13 × 10−1

X0.92 csdi 3.43 × 10−3 1.48 × 10−2 1.98 × 10−5 2.17 × 10−2

X0.92 ddpm 6.74 × 10−3 4.30 × 10−2 1.51 × 10−4 2.24 × 10−1

X0.93 csdi 3.87 × 10−3 1.46 × 10−2 2.55 × 10−5 2.31 × 10−2

X0.93 ddpm 6.62 × 10−3 3.27 × 10−2 1.03 × 10−4 1.10 × 10−1

X0.94 csdi 3.55 × 10−3 1.13 × 10−2 2.20 × 10−5 2.66 × 10−2

X0.94 ddpm 6.23 × 10−3 2.20 × 10−2 1.02 × 10−4 1.15 × 10−1

X0.95 csdi 3.80 × 10−3 1.77 × 10−2 2.41 × 10−5 2.83 × 10−2

X0.95 ddpm 6.70 × 10−3 2.56 × 10−2 1.22 × 10−4 1.39 × 10−1

X0.96 csdi 3.43 × 10−3 1.18 × 10−2 2.02 × 10−5 2.57 × 10−2

X0.96 ddpm 5.75 × 10−3 1.85 × 10−2 6.82 × 10−5 7.44 × 10−2

X0.97 csdi 3.46 × 10−3 1.40 × 10−2 2.09 × 10−5 3.24 × 10−2

X0.97 ddpm 5.74 × 10−3 2.26 × 10−2 7.12 × 10−5 9.69 × 10−2

X0.98 csdi 9.62 × 10−3 1.21 × 10−1 3.89 × 10−3 1.33 × 100

X0.98 ddpm 6.42 × 10−3 1.95 × 10−2 1.45 × 10−4 1.69 × 10−1

X0.99 csdi 6.97 × 10−2 9.52 × 10−2 6.84 × 10−1 1.73 × 101

X0.99 ddpm 6.75 × 10−3 2.36 × 10−2 2.75 × 10−4 3.32 × 10−1

X1.00 csdi 3.80 × 10−2 1.65 × 10−1 3.46 × 10−2 4.06 × 100

X1.00 ddpm 2.40 × 10−2 8.85 × 10−2 1.13 × 10−2 2.05 × 100

XGT csdi 3.18 × 10−3 1.67 × 10−2 1.67 × 10−5 2.22 × 10−2

XGT ddpm 6.58 × 10−3 4.23 × 10−2 7.30 × 10−5 5.85 × 10−2

Table A5. Training with missing ratio of 50%.

Dataset Model MAE MAPE MSE Max.Abs.Err.

X0.70 csdi 5.45 × 10−3 2.91 × 10−2 5.50 × 10−5 4.39 × 10−2

X0.70 ddpm 6.76 × 10−2 1.29 × 100 1.69 × 10−2 8.06 × 10−1

X0.75 csdi 5.15 × 10−3 3.92 × 10−2 4.83 × 10−5 3.21 × 10−2

X0.75 ddpm 4.79 × 10−2 6.44 × 10−1 8.94 × 10−3 6.32 × 10−1

X0.80 csdi 4.20 × 10−3 1.87 × 10−2 3.16 × 10−5 3.39 × 10−2

X0.80 ddpm 3.21 × 10−2 3.10 × 100 3.93 × 10−3 4.82 × 10−1

X0.85 csdi 4.34 × 10−3 2.11 × 10−2 3.28 × 10−5 2.66 × 10−2

X0.85 ddpm 1.94 × 10−2 1.59 × 10−1 1.18 × 10−3 4.16 × 10−1

X0.90 csdi 3.66 × 10−3 1.32 × 10−2 2.24 × 10−5 2.73 × 10−2

X0.90 ddpm 1.49 × 10−2 1.55 × 10−1 5.74 × 10−4 1.76 × 10−1

X0.91 csdi 4.44 × 10−3 2.90 × 10−2 3.39 × 10−5 3.41 × 10−2

X0.91 ddpm 1.22 × 10−2 4.88 × 10−2 3.48 × 10−4 2.10 × 10−1

X0.92 csdi 3.40 × 10−3 1.46 × 10−2 1.92 × 10−5 3.22 × 10−2

X0.92 ddpm 1.12 × 10−2 4.24 × 10−2 3.70 × 10−4 2.70 × 10−1

X0.93 csdi 3.82 × 10−3 1.16 × 10−2 2.49 × 10−5 2.55 × 10−2

X0.93 ddpm 1.19 × 10−2 4.52 × 10−2 3.88 × 10−4 2.74 × 10−1

X0.94 csdi 4.04 × 10−3 1.54 × 10−2 2.83 × 10−5 2.68 × 10−2

X0.94 ddpm 1.09 × 10−2 3.92 × 10−2 2.51 × 10−4 1.33 × 10−1
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Table A5. Cont.

Dataset Model MAE MAPE MSE Max.Abs.Err.

X0.95 csdi 3.48 × 10−3 1.21 × 10−2 2.15 × 10−5 3.75 × 10−2

X0.95 ddpm 1.08 × 10−2 7.26 × 10−2 3.28 × 10−4 2.67 × 10−1

X0.96 csdi 3.51 × 10−3 1.76 × 10−2 2.11 × 10−5 2.23 × 10−2

X0.96 ddpm 9.84 × 10−3 3.66 × 10−2 2.55 × 10−4 1.89 × 10−1

X0.97 csdi 4.17 × 10−3 1.79 × 10−2 5.38 × 10−5 1.35 × 10−1

X0.97 ddpm 2.08 × 10−1 8.47 × 10−2 5.98 × 100 5.54 × 101

X0.98 csdi 1.90 × 10−2 1.38 × 10−1 3.37 × 10−2 4.45 × 100

X0.98 ddpm 9.61 × 10−3 3.12 × 10−2 2.97 × 10−4 2.77 × 10−1

X0.99 csdi 5.13 × 10−1 1.10 × 10−1 4.54 × 101 1.25 × 102

X0.99 ddpm 9.58 × 10−3 5.11 × 10−2 4.75 × 10−4 4.05 × 10−1

X1.00 csdi 3.99 × 10−2 2.70 × 10−1 2.62 × 10−2 2.98 × 100

X1.00 ddpm 2.45 × 10−2 8.68 × 10−2 1.07 × 10−2 2.24 × 100

XGT csdi 3.40 × 10−3 1.42 × 10−2 1.94 × 10−5 2.38 × 10−2

XGT ddpm 8.34 × 10−3 3.96 × 10−2 1.13 × 10−4 5.17 × 10−2
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