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Abstract: Clustering algorithms are usually iterative procedures. In particular, when the clustering
algorithm aims to optimise an objective function like in k-means clustering or Gaussian mixture
models, iterative heuristics are required due to the high non-linearity of the objective function. This
implies higher computational costs and the risk of finding only a local optimum and not the global
optimum of the objective function. In this paper, we demonstrate that in the case of one-dimensional
clustering with one main and one noise cluster, one can formulate an objective function, which
permits a closed-form solution with no need for an iteration scheme and the guarantee of finding the
global optimum. We demonstrate how such an algorithm can be applied in the context of laboratory
medicine as a method to estimate reference intervals that represent the range of “normal” values.

Keywords: single-pass clustering; noise clustering; closed-form solution; reference interval

1. Introduction

Cluster analysis is often characterised as methods for partitioning data into homoge-
neous groups called clusters or hidden classes [1–3]. Although this idea of clustering to
partition data into well-separated groups is appealing and commonly accepted, cluster
analysis is often (mis-)used for other purposes like pure partitioning without the require-
ment of separateness or—in the extreme case—for outlier detection where the presence of
actual clusters or their structures becomes completely unimportant because only single
outlier points are of interest, as in [4]. In this paper, we will focus on a scenario where we
are only interested in finding a single cluster. Nevertheless, applying such an algorithm in
a repeated manner by removing each time the identified cluster from the data can also be
used to find multiple clusters. This strategy is also called subtractive clustering.

As mentioned before, cluster analysis is usually viewed as a data partitioning task
to discover hidden or latent classes. Clustering is therefore very popular as a central
approach in many applications where a hidden structure is suspected in a dataset [5]
with applications in almost all fields ranging from engineering [6] to social economics and
education [7].

Validity measures or indices for the evaluation of clustering results reflect the idea
of finding more or less distinct clusters with homogeneity within each cluster and high
heterogeneity between different clusters [8]. In particular, internal indices, which are based
on the data to be clustered, focus on these properties [9], whereas external validation
measures use other external properties provided about the data [10].

As an application example for our clustering algorithm, we consider measurements
in laboratory medicine where reference intervals play a crucial role. A reference interval
for an analyte like haemoglobin represents the “normal range” representing the central
95% of a healthy cohort. Indirect methods for the determination of reference intervals use
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all measurements for an analyte and try to separate the main cluster of non-pathological
values from pathological values. Therefore, the focus here is to identify a single cluster in a
dataset and to separate it from the remaining “noise” data. Because we are not interested
in finding all clusters, we do not apply internal validation measures, but external ones in
the sense of comparing the computed reference intervals with theoretical ones in the case
of synthetic data and with reference intervals from other algorithms in the case of real data.

One way to approach cluster analysis is a purely algorithmic one, i.e., one defines an
algorithm that joins data points together to clusters by reasonable criteria. Hierarchical
clustering is probably the most popular algorithm in this class. The closest data points are
joined together to clusters step by step. Density-based clustering algorithms like DBSCAN
(density-based spatial clustering of applications with noise) [11] or its extension, OPTICS
(ordering points to identify the clustering structure) [12], fall into the same class. They
find regions of high data density step-by-step to define clusters. Neural network-based
self-organising maps [13] fall also into this class of algorithms and adjust feature vectors
representing the clusters in an iterative manner.

Other clustering algorithms are based on an objective function, which measures how
well a clustering fits the data. A very simple and popular representative of this class of
clustering methods is the k-means algorithm. The algorithm tries to minimise the squared
distances between data points and their cluster centres by greedy heuristics that optimise
the locations of the cluster centres and the assignment of the data to the cluster in an
alternating fashion based on a random or “clever” initialisation [14], leading to an iterative
greedy algorithm that is prone to being stuck in local minima. Fuzzy clustering generalises
the dichotomous assignments to clusters by membership degrees between 0 and 1 and
adapts the alternating optimisation scheme to a corresponding modified objective function.

Mixture models interpret the clusters as multivariate—e.g., Gaussian—probability
distributions, and aim to maximise the likelihood for the data using the EM (expectation
maximisation) algorithm [15], which is also a greedy alternating optimisation strategy.

Even the simple k-means setting belongs to the class of NP-hard problems [16], so there
is probably no other way than using a heuristic strategy to optimise its objective function.
Nevertheless, there are various attempts to design single-pass clustering algorithms, see, for
instance, [17,18], especially in the context of data stream clustering [19], where the price for
the acceleration is often an inferior local optimum of the objective function.

Because even the simple k-means problem is NP-hard, there is little hope of finding
closed-form solutions for the global optimum of the objective function for more sophisti-
cated algorithms in a general setting. However, for specific cluster analysis problems with
further restricting assumptions, it can be possible to derive closed-form solutions yielding
single-pass algorithms with a guarantee to find the global optimum. Here, we consider
such a specific clustering setting where we can derive a closed-form solution. Section 2
provides the technical and formal background on which our algorithm is based. Section 3
describes the specific clustering problem we consider and derives the closed-form solution
for the optimum of the objective function. Limitations, parameter settings, and an extension
of the algorithm are discussed in Section 4. An application to so-called indirect reference
interval estimation in laboratory medicine is illustrated in Section 5 before we conclude the
paper with a discussion in Section 6.

2. Fuzzy and Noise Clustering

The k-means clustering algorithm requires as input a dataset {x1, . . . , xn} ⊂ Rq. As-
suming a predefined number of clusters k, the algorithm tries to minimise the objective
function, as follows:

f =
k

∑
i=1

n

∑
j=1

uijdij (1)
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under the constraints
k

∑
i=1

uij = 1 for all j ∈ {1, . . . , n} (2)

where uij ∈ {0, 1} indicates whether data point xj is assigned to cluster i (uij = 1) or not
(uij = 0). dij =∥ xj − vi ∥2 denotes the squared Euclidean distance between data point xj
and cluster centre vi. As already mentioned before, the k-means algorithm tries to solve an
NP-hard problem [16], which is a mixed discrete and continuous optimisation problem. The
assignment of the data points to the clusters is a discrete problem whereas the estimation
of the cluster centres is a continuous problem.

Fuzzy clustering turns the mixed optimisation problem into a purely continuous one
by relaxing the constraint uij ∈ {0, 1} to uij ∈ [0, 1]. It is, however, quite easy to see that the
optimum of the objective function with the relaxed constraint is still found at the margins,
i.e., for the optimum uij ∈ {0, 1} will hold although intermediate values are permitted.
The simple reason is that for a data point, there is no benefit in assigning any share of its
membership degree to a cluster centre that is not closest to the data point, as this would
obviously increase the value of the objective function. There are essentially two different
strategies to avoid the problem [20]. One way is the “fuzzification” of the membership
transformation, i.e., to modify the linear weighting with the membership degrees uij in
Equation (1) to

f =
k

∑
i=1

n

∑
j=1

h(uij)dij (3)

with a suitable non-linear function, h. The most common function, h, is h(u) = u2 [21], or
its generalisation, h(u) = um, with the so-called fuzzifier, m > 1 [22].

The alternative is to keep the linear weighting with the membership degrees and to
introduce a regularisation term instead that punishes the values 0 and 1 by

f =
k

∑
i=1

n

∑
j=1

uijdij + α
k

∑
i=1

n

∑
j=1

g(uij) (4)

with a suitable convex function, g, on the unit interval. The parameter α controls the penalty
for membership degrees of 0 and 1. For α = 0, one obtains the original k-means objective
function. The larger the α, the more the membership degrees are pushed away from 0 and
1. As pointed out in [20], Daróczy entropy [23] provides a number of example functions for
g, leading to an approach that is very closely related to the EM algorithm [24]. In Section 3,
the approach in Equation (4) will be used with a specific choice of the function g and the
introduction of a so-called noise cluster.

The idea of noise clustering goes back to Davé [25] who introduced an additional
cluster without a cluster centre or any other parameter to be optimised. Instead, the noise
cluster has a fixed large predefined distance δ to all data points. In this way, this noise
cluster collects all points lying far away from all other clusters or cluster centres.

3. Derivation of the Algorithm

We consider the objective function (4) that should be minimised under the following
constraints:

k

∑
i=1

uij = 1 for all j ∈ {1, . . . , n} (5)

and
uij ≥ 0 for all i ∈ {1, . . . , k} and for all j ∈ {1, . . . , n} (6)

where uij indicates how much data point xj is assigned to cluster i. dij =∥ xj − vi ∥2 is the
squared Euclidean distance between data point xj and cluster centre vi.
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The second term in Equation (4) should reward non-crisp membership degrees, i.e.,
values greater than zero but smaller than one. For this purpose, we require that the function
g : [0, 1] → R be twice differentiable and that g′′(x) > 0 holds. The parameter α controls
the extent to which membership degrees deviating from zero and one are rewarded.

The corresponding Lagrange function for this optimisation problem is as follows:

fLagrange =
k

∑
i=1

n

∑
j=1

uijdij + α
k

∑
i=1

n

∑
j=1

g(uij) +
n

∑
j=1

λj

(
1−

k

∑
i=1

uij

)
. (7)

The partial derivative with respect to uij is then

∂ fLagrange

∂uij
= dij + α · g′(uij) − λj = 0 (8)

for all i ∈ {1, . . . , k} and for all j ∈ {1, . . . , n}. This implies

λj = dij + α · g′(uij) = drj + α · g′(urj) (9)

for i, r ∈ {1, . . . , k}, i ̸= r.
For the special case of g′(x) = x, i.e., g(x) = x2

2 , we obtain the following:

urj =
dij − drj

α
+ uij (10)

implying

1 =
k

∑
r=1

urj =
k · dij −∑k

r=1 drj

α
+ k · uij (11)

leading to

uij =
1
k
+

1
k

(
∑k

r=1 drj

)
− dij

α
. (12)

Equation (12) can lead to negative values for uij, violating constraint (6). One can
either choose α sufficiently large so that uij ≥ 0 is always guaranteed or one has to remove,
step by step, the largest negative uij and simultaneously reduce the number of clusters, k,
in Equation (12), in a similar manner as in [26].

We now restrict the problem to one single cluster and a noise cluster, meaning that we
have only two membership degrees for each data point, i.e., the membership degrees to the
single cluster and the noise cluster. Such an approach can be used to identify a main cluster
as in Section 5 or to apply a subtractive clustering strategy removing single clusters step by
step [27–29]. Assuming a sufficiently large α, Equation (12) simplifies to the following:

uj =
1
2
+

δ− dj

2α
(13)

where uj is the membership degree of data point xj to the single cluster and δ is the (squared)
noise distance. The membership degree of data point xj to the noise cluster is 1− uj.

In the one-dimensional case, Equation (4) is as follows:
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f (x) =
n

∑
j=1

(
uj(xj − x)2 + (1− uj)δ + α

(
u2

j

2
+

(1− uj)
2

2

))

=
n

∑
j=1

(
uj

(
(xj − x)2 − δ

)
+ δ + αu2

j − αuj +
α

2

)

=

(
n

∑
j=1

uj

(
αuj + (xj − x)2 − δ− α

))
+ nδ +

nα

2

=

[
n

∑
j=1

(
1
2
+

δ− (xj − x)2

2α

)(
α

(
1
2
+

δ− (xj − x)2

2α

)
+ (xj − x)2 − δ− α

)]

+ nδ +
nα

2
. (14)

i.e., it is a fourth-degree equation in the cluster centre, x, so that the derivative is a cubic
equation in x.

Taking the derivative of Equation (4) yields the following:

f ′(x) =
1
α

n

∑
j=1

(
x3

j − αxj − δxj + (α + δ− 3x2
j )x + 3xjx2 − x3

)
= 0. (15)

This cubic equation, which can be solved by Cardano’s formula, should have (up to)
three real solutions. Because the coefficient of x3 is negative, this implies that the coefficient
of x4 in Equation (4) is negative, meaning that Equation (4) goes to −∞ for x → ±∞.
Therefore, the three real solutions of the derivative should correspond to two local maxima
and one local minimum between the two local maxima. This local minimum is the solution
we are looking for. The global minimum of Equation (14) is at ±∞, i.e., moving the cluster
centre to infinity. This would, however, imply that the membership degrees to the cluster
become negative according to Equation (13).

Algorithm 1 describes the basic clustering algorithm, which only works if α is chosen
sufficiently large. The problem of α being too small will be discussed in the next section.

Algorithm 1 Basic clustering algorithm

1: procedure ONECLUSTER(x, δ, α) ▷ Input x ∈ Rn values to be clustered
2: ▷ δ > 0 noise distance, α > 0 (see Equation (4))
3: (y1, y2, y3)← Cardano (Equation (15)) ▷ Roots of Equation (15), y1 < y2 < y3
4: ▷ y2 is the cluster centre.
5: for i ∈ {1, . . . , n} do ▷ Compute membership degrees according to

6: uj ← 1
2 +

δ−(xj−y2)
2

2α ▷ Equation (13)
7: end for
8: return y2, u1, . . . , un ▷ Cluster centres and membership degrees
9: end procedure

4. Properties of the Algorithm and Its Extensions

For the derivation of Algorithm 1, the constraint uj ∈ [0, 1] was not incorporated in
the derivation, and according to Equation (13), it is also possible that negative values or
values larger than 1 are possible for uj if α is not chosen sufficiently large. For illustration
purposes, we consider the simple dataset, {1, 2, 3, . . . , 10}. Figure 1 shows the objective
function (left) and its derivative (right) for this dataset with the parameter settings δ = 10
and α = 30. It should be noted that δ must be interpreted as the squared noise distance.
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Figure 1. Objective function according to Equation (4) (left) and its derivative according to
Equation (15) (right) for the dataset {1, 2, 3, . . . , 10} with δ = 10 and α = 30.

One can easily identify the two local maxima and the local minimum in between the
objective function and the corresponding roots of the derivative. Due to the construction
of the dataset, the local minimum of the objective function—the cluster centre—is at 5.5
and the curve is symmetric with respect to this point. In this case, α is sufficiently large,
resulting in only positive membership degrees.

For Figure 2, α was changed to the smaller, value α = 10. In this case, α is too small,
and the local minimum of the objective function vanishes while the two local maxima
are joined together. The derivative has only one real root. Computing the membership
degrees with the cluster centre at 5.5, Equation (13) yields partly negative values. In this
case, Algorithm 1 would fail because it relies on three different real roots of the derivative
of the objective function.
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Figure 2. Objective function according to Equation (4) (left) and its derivative according to
Equation (15) (right) for the dataset {1, 2, 3, . . . , 10} with δ = 10 and α = 10.

To amend this problem, we modify Algorithm 1 by checking whether the derivative
in Equation (15) has three different real roots. If not, α is increased step by step by a
constant factor until it is large enough to produce three different real roots for Equation (15).
Algorithm 2 describes this modified version in detail.
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Algorithm 2 Modified clustering algorithm

1: procedure ONECLUSTERMOD(x, δ, α) ▷ Input x ∈ Rn values to be
2: ▷ clustered, δ > 0 noise distance, α > 0 (see Equation (4))
3: c← 1.1 ▷ Factor for increasing α
4: (y1, y2, y3)← Cardano (Equation (15)) ▷ Roots of Equation (15)
5: has3roots← (y1, y2, y3 ∈ R∧ y1 ̸= y2 ̸= y3 ̸= y1)
6: while !has3roots do
7: α← c · α
8: (y1, y2, y3)← Cardano (Equation (15))
9: has3roots← (y1, y2, y3 ∈ R∧ y1 ̸= y2 ̸= y3 ̸= y1)

10: end while
11: for i ∈ {1, . . . , n} do ▷ Compute membership degrees according to

12: uj ← 1
2 +

δ−(xj−y2)
2

2α ▷ Equation (13)
13: end for
14: return y2, α, u1, . . . , un
15: end procedure

Instead of using the iterative procedure for the adjustment of the parameter α, one
could also use a “worst case scenario” for α to guarantee that membership degrees are
between 0 and 1. For a given value of δ, Equation (13) satisfies the constraint 0 ≤ uj ≤ 1 if
and only if ∣∣∣∣ δ− dj

2α

∣∣∣∣ ≤ 1
2

(16)

holds for all j ∈ {1, . . . , n} or, equivalently

α ≥ max
j∈{1,...,n}

∣∣δ− dj
∣∣. (17)

Because dj is the squared distance to the cluster centre, which must not lie between
the smallest and largest data point, Equation (17) is satisfied if

α ≥ max
{

δ, (max{x1, . . . , xn} −min{x1, . . . , xn})2 − δ
}

. (18)

Equation (18) is very conservative because it considers the extreme cases where the cluster
centre coincides with one of the data points—dj = 0—or it is one of the extreme points—the
smallest or largest value—in the dataset—dj = (max{x1, . . . , xn} −min{x1, . . . , xn})2.

Choosing α according to Equation (18) can lead to a very large value for α. It is obvious
from Equation (13) that α → ∞ implies uj → 1

2 . If there are outliers and one extreme
outlier xo in the dataset, Equation (18) would still lead to a small membership degree for
the extreme outlier because do ≈ (max{x1, . . . , xn} −min{x1, . . . , xn})2 would hold for the
extreme outlier. But for less extreme outliers and all other data points, uj ≈ 1

2 would hold
and the less extreme outliers would still have a strong influence on the cluster centre.

5. Application to Indirect Reference Interval Estimation in Laboratory Medicine

In laboratory medicine, reference intervals for blood values contain, by definition, the
central 95% of a healthy sub-collective. Reference intervals can be age- and sex-dependent
so that the healthy sub-collective can be a specific age group of women or men. Reference
intervals should be checked regularly by the laboratories. Applying direct methods to deter-
mine or evaluate such reference intervals can be difficult and expensive due to the fact that
relatively large cohorts of healthy persons need to be recruited. Therefore, in recent years,
so-called indirect methods for the estimation of reference intervals have gained importance.
Indirect methods estimate the reference intervals from routinely collected laboratory results,
which include healthy and pathological values [30]. This means that one cannot simply
compute the 2.5%- and 97.5%-quantiles from such mixed data to estimate the reference
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interval. It is not known what values originate from healthy persons. Although the majority
of measurements should represent non-pathological values, their exact proportion is also
not known. Distributional assumptions on the values of the healthy sub-collective are
required in order to apply suitable statistical methods to filter out the pathological values
and estimate the reference interval based on the non-pathological values.

A common assumption is that the non-pathological values represent the majority
of the values and that they follow a normal distribution after a suitable transformation.
Various approaches [31–35] try to find a suitable Box–Cox transformation leading to long
computation times. It was shown in [36] that the estimation of the parameter λ of the
Box–Cox transformation on the one hand incorporates a high uncertainty, whereas on
the other hand, a wrong estimation of λ has limited influence on the estimated reference
interval as long as one can mainly differentiate between λ ≈ 0 or λ ≈ 1. We, therefore,
assume in the following that the values from the healthy sub-collective follow either a
normal (λ = 1) or a lognormal distribution (λ = 0) and use the method proposed in [37] to
decide whether to use the original data or apply a logarithmic transformation. In this way,
we can assume that the values from the—possibly transformed—values from the healthy
sub-collective follow a normal distribution. So, the task is to identify a main cluster that
follows a normal distribution in a dataset with additional pathological values—a problem
that is suited for the clustering Algorithm 2.

However, the application of the algorithm requires the setting of the parameters α.
The choice of α is not critical unless it is too large. If α is too small, Algorithm 2 will
automatically adapt it. The noise distance δ is essential. If it is too large, pathological values
will not be excluded from the main cluster. A small value of δ would shrink the healthy
sub-collective and result in too narrow reference intervals. The basic idea of our algorithm
for indirect reference interval estimation is therefore to vary δ from a very large value to a
very small value.

For each of these δ-values, we compute the weighted mean and the weighted standard
deviation from the main cluster identified by Algorithm 2. The weights correspond to the
membership degrees. It should be noted that in rare cases negative weights or weights
larger than 1 are possible. In these cases, we cut off the weights at 0 and 1, respectively.

In this way, we obtain a sequence of weighted means and standard deviations for the
main cluster depending on the value of the noise distance δ. Starting with large δ-values,
pathological values will still contribute to the weighted mean and standard deviation. For
small δ-values, measurements from the healthy sub-collective will be truncated. Therefore,
we take the medians of the weighted means and standard deviations to estimate the mean
and standard deviation of the normal distribution representing the healthy sub-collective.
Finally, the reference interval is estimated from the theoretical 2.5%- and 97.5%-quantiles of
this normal distribution. Algorithm 3 describes this procedure in more detail.

As a range for the δ-values, we choose as the largest distance the maximum of the
(squared) distances between the median and the 10%- and the 90%-quantiles, respectively.
In Algorithm 3, xβ denotes the β-quantile of the sample, x. The smallest distance is chosen
as the difference between the 60%- and 40%-quantiles of the values. α is set to a quarter of
the maximum value for δ. In case α is too small, α will be automatically adapted in the call
of Algorithm 2.

We decrease the noise distance in 100 steps of equal length. Of course, one could also
use more or fewer steps, but our experiments indicated that an increase in the number of
steps would not change the results significantly. The last lines of the code compute the
2.5%- and 97.5%-quantiles of the corresponding normal distribution whose parameters
were estimated by the median of the means and the median of the standard deviations
computed in the for-loop. Φ denotes the cumulative distribution function of the standard
normal distribution.
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Algorithm 3 Reference interval estimation

1: procedure ONECLUSTERRI(x) ▷ Input x ∈ Rn lab values
2: δmax ← (max{x0.9 − x0.5, x0.5 − x0.1})2

3: δmin ← (x0.6 − x0.4)
2

4: α← δmax
4

5: k← 100 ▷ No. of steps for δ
6: for i ∈ {1, . . . , k} do
7: δ← δmin + (δmax − δmax)

k−i
k

8: C ← oneClusterMod(x, δ, α)
9: u← cutWeights(Cu) ▷ Cut off weights at 0 and 1.

10: µ[i]← weightedMean(x, u)
11: σ[i]← weightedStandardDeviation(x, u)
12: end for
13: m←median(µ)
14: s←median(σ)
15: lowerLimit← m + s ·Φ−1(0.025) ▷ 2.5%-quantile of the N(m, s)
16: upperLimit← m + s ·Φ−1(0.975) ▷ 97.5%-quantile of the N(m, s)
17: return lowerLimit, upperLimit
18: end procedure

It should be noted that the call of the function oneClusterMod in Algorithm 3 is
modified in the actual implementation in order to avoid repeated computations of sums of
powers of the data for the coefficients of the cubic polynomial in Equation (15). Because
only the values δ and α are subject to changes in Algorithms 2 and 3, the sums of powers of
the data need to be computed only once initially.

As a first example, we consider a synthetic dataset that simulates haemoglobin (HGB)
in women with a reference interval from 12–16 [g/dL]. We simulated 500 values from a
normal distribution with a mean of 14 and a standard deviation of 1 and added another
50 pathological values from a normal distribution with a mean of 11 and a standard
deviation of 1. The last row in Table 1 shows the results for the methods reflimR and
refineR [31], available as R packages and our above-described approach oneClusterRI
detailed in Algorithm 3.

Table 1. Estimated reference intervals for the HCV dataset—a publicly available laboratory dataset—
and synthetic data (last row) based on the available R packages reflimR and refineR and our method
(oneClusterRI).

reflimR refineR oneClusterRI

Lower Upper Lower Upper Lower Upper

ALB 35.01 51.13 37.26 50.20 36.61 50.21
ALP 29.99 101.18 36.44 98.67 34.67 91.20
ALT 10.69 65.99 10.20 65.11 12.78 64.82
AST 17.07 42.04 14.68 41.56 16.24 45.07
BIL 3.25 19.71 3.46 14.54 3.03 19.00

CHE 4.91 12.38 4.38 12.03 5.92 11.75
CHOL 3.55 7.87 3.32 7.75 4.00 7.49
CREA 60.71 115.87 59.33 113.04 63.47 112.34
GGT 9.39 61.23 9.52 55.23 9.59 64.95

PROT 64.04 81.58 64.06 81.54 66.16 80.99
HGB 11.85 15.95 11.90 15.99 12.27 15.88

The other rows in Table 1 are the corresponding estimates for the reference intervals
for men for the analytes albumin (ALB), alkaline phosphatase (ALP), alanine aminotrans-
ferase (ALT), aspartate transferase (AST), bilirubin (BIL), cholinesterase (CHE), cholesterol
(CHOL), creatinine (CREA), gamma-glutamyl transferase (GGT), and total protein (PROT)
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based on the HCV dataset (see https://archive.ics.uci.edu/dataset/571/hcv+data, ac-
cessed on 22 December 2023). This dataset contains laboratory values from—probably
healthy—blood donors and pathological values from people with liver diseases. In most
cases, the estimated reference intervals for all three methods differ but are coherent, i.e.,
the differences are not too large. It should be noted that the reference intervals are com-
puted independently for each of the analytes so that the algorithms were applied to each
analyte separately.

Figure 3 shows the mean computation time of the three algorithms compared in Table 1
on a standard PC. The computation time for each algorithm is computed as the mean time
needed for ten artificial datasets for each sample size.

1 
 

 

Figure 3. Mean computation time of three methods for indirect reference estimation for different
sample sizes on a standard PC. The x-axis is shown on a logarithmic scale.

The method reflimR is the fastest one with less than one second of the computation
time for all considered sample sizes, followed by oneClusterRI, also remaining below one
second except for the largest sample size with a computation time of 1.3 s. The method
refineR is more than a magnitude slower, especially for small sample sizes. The method
refineR shows a seemingly counterintuitive behaviour concerning the computation time,
which decreases with the increasing sample size. This can probably be explained by the
complex statistical estimations used by refineR, leading to faster convergence for larger
sample sizes that make the estimates more reliable.

6. Discussion and Conclusions

We demonstrated that it is possible to formulate an objective function with a closed-
form solution for a clustering problem that avoids the otherwise computationally intensive
iteration scheme. This is especially advantageous in applications where the cluster analysis
itself is part of an iterative scheme as in the example of indirect reference interval estimation.
The purpose of this paper was not to introduce a new method for indirect reference interval
estimation but to demonstrate that a suitable formulation of the objective function for
clustering can lead to a closed-form solution when the clustering problem is simplified. Of
course, with the consideration of one-dimensional data with one main cluster and a noise

https://archive.ics.uci.edu/dataset/571/hcv+data
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cluster, our assumptions are very restrictive but still have an application potential as the
example from laboratory medicine shows.

Our approach is of practical use whenever a dataset to be clustered consists of a
main cluster with a relatively symmetric distribution and an unknown number of small
clusters with unknown distributions. For example, when estimating reference intervals
from “impure” values, most of which were collected from a population of healthy reference
persons and a smaller proportion from persons with different diseases. While conventional
methods for distribution deconvolution require statements about the distributions of the
pathological fractions [33], our method allows the entirety of these sick populations to be
defined as noise and the cluster of healthy individuals to be found.

Medical laboratories must evaluate their reference intervals periodically. With hun-
dreds of analytes with different reference intervals for women, men, and various age groups,
altogether thousands of reference intervals must be computed so that fast computation
plays an important role. Although the different algorithms usually yield coherent reference
intervals as in Table 1, in some cases one or the other algorithm fails with an implausible
result. Because there is no “best” solution, it is recommended to apply different algorithms
simultaneously and not to rely on a single one. With its reasonable computation time, our
algorithm can therefore be seen as an additional module for computing and evaluating
reference intervals.

We see another useful application in the evaluation of single-cell analyses, e.g., using
flow cytometry. Here, thousands of measurement data are collected per experiment, from
which the population of the cells of interest is to be recognised against the background noise
of unknown other cells or particles. These can be, for example, clonal tumour cells against
the background of connective tissue cells or microvesicles against the background of prepar-
ative impurities. Although flow cytometry data are in principle multidimensional, there
are one-dimensional representations [38] and applications where such one-dimensional
representations are the basis for the identification of the cells of interest [39].

Our results may also encourage consideration of reformulations of the objective
functions in other clustering approaches, making them amenable to closed-form solutions.

The results of cluster analysis depend heavily on selecting a suitable distance measure.
Here, we used the squared Euclidean distance, which, while common, is not always the
best choice for all clustering problems. Replacing the Euclidean distance with a suitable
other distance or dissimilarity measure might also open a path to closed-form solutions. In
this way, the restrictions of our approach to one-dimensional data and one main cluster
with an additional noise cluster could be overcome.

Implementations of all algorithms developed in this paper are available as R-code in
the Supplementary Material.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/a17040143/s1, R-code for the developed algorithms: oneClusterRI.r.
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