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Abstract: The work is devoted to the development of a method for neural network approximation
of helicopter turboshaft engine parameters, which is the basis for researching engine energy charac-
teristics to improve efficiency, reliability, and flight safety. It is proposed to use a three-layer direct
propagation neural network with linear neurons in the output layer for training in which the scale
conjugate gradient algorithm is modified by introducing a moment coefficient into the analytical
expression. This modification helps in calculating new model parameters to avoid falling into a local
minimum. The dependence of the energy released during helicopter turboshaft engine compressor
rotation on the gas-generator rotor r.p.m. was obtained. This enables the determination of the optimal
gas-generator rotor r.p.m. region for a specific type of helicopter turboshaft engine. The optimal
ratio of energy consumption and compressor operating efficiency is achieved, thereby ensuring
helicopter turboshaft engines’ optimal performance and reliability. Experimental data support the
high efficiency of using a three-layer feed-forward neural network with linear neurons in the output
layer, trained using a modified scale conjugate gradient algorithm, for approximating parameters of
helicopter turboshaft engines compared to the analogues. Specifically, this method better predicts the
relations between the energy release during compressor rotation and gas-generator rotor r.p.m. The
efficiency coefficient of the proposed method was 0.994, which exceeded that of the closest analogue
(0.914) by 1.09 times.

Keywords: neural network approximation; helicopter turboshaft engines; energy; power; efficiency;
training; gas-generator rotor r.p.m.; scaled conjugate gradient algorithm

1. Introduction

Efficiency and reliability are paramount in helicopter turboshaft engine (TE) design
and essential for both civilian and military applications. With advancing technology and in-
creasing demands for performance, longevity, and safety, optimizing helicopter TE becomes
crucial. This optimization is not only about economics but also important for environmen-
tal reasons, curbing emissions [1]. Enhancing fuel combustion and energy utilization in
helicopter TE workflows can drastically cut fuel usage and emissions. This optimization
not only boosts engine performance and lifespan but also slashes maintenance costs and
extends maintenance intervals [2,3]. Mathematical modelling is pivotal in analyzing and
optimizing engine processes across various modes of helicopter TE operation, such as low
gas mode, cruise modes, and emergency mode [4,5].

To solve the task of analysis and engine working processes optimization, the key task
is the identification of its mathematical model [6,7]. In this context, it is also important to
note that the energy efficiency of helicopter TE directly depends on the limitation of their
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power, which is regulated by the gas-generator rotor r.p.m., which is determined by the air
needs to provide the necessary pressure and volume for fuel combustion.

Balancing power and gas-generator rotor r.p.m. is crucial for preventing fuel wastage
and minimizing component stress, thereby optimizing engine efficiency. Regulating max-
imum power based on gas-generator rotor r.p.m. is important for achieving optimal
efficiency and reducing fuel consumption [8,9]. Employing mathematical models and
neural networks predicts parameter relations, enhancing system control and efficiency and
aligning with aviation industry requirements for performance and energy efficiency [10].
Neural networks approximate helicopter TE parameters, improving modelling precision,
optimizing engine operation, and minimizing fuel consumption [11]. This approach el-
evates flight efficiency, decreases emissions, and extends service life, which is pivotal in
maintaining high standards in helicopter operations. The development of mathematical
models and neural network analysis in helicopter TE operations offers new avenues in
aviation engineering and maintenance. Accurate prediction and modelling reduce mainte-
nance and repair costs, which is crucial for meeting flight safety standards across various
operating conditions.

However, when describing TE processes analytically, a balance must be struck between
complexity and model idealization. Mathematical models risk becoming impractical if
overly complex or if essential relations defining work processes are overlooked [12].

Mathematical models of helicopter turboshaft engines, derived from thermodynamic
analyses, are intricate and challenging to manage, often resulting in discrepancies when
linearized for wide operational modes [13–16]. Common models approximate experimental
data from engine bench tests [17]. However, this method lacks accuracy due to limited
consideration of external factors and real operating conditions. Polynomial approximation
of bench test results is another approach [18,19], requiring extensive data and resulting in a
cumbersome model when different operating modes are approximated separately. Due
to how costly, limited, and noisy experimental data are, fuzzy inference systems [20,21]
and neural networks [22,23] are effective. Fuzzy approximation incorporates both bench
and flight test results, while neural networks offer automated model identification and
selective sensitivity [24,25]. Despite the complexity of analytical descriptions, mathematical
models such as differential equations, polynomial approximations, and those based on
fuzzy inference and neural networks are crucial for understanding helicopter TE operations
across various conditions. The authors of [26] focused on a universal flow resistance
element to predict total energy consumption in engine secondary air systems, showing
satisfactory accuracy but limited applicability with changing pressure and temperature.
The authors of [27] investigated heat transfer mechanisms and energy conversion in a
pre-swirl system to enhance cooling efficiency. Although it develops a modified predictive
model, its practical applicability is limited due to the challenge of accounting for all engine
parameters in real conditions.

The closest approach to the method of neural network approximation of helicopter
TE parameters proposed in this work for researching the dependence of engine power on
the gas-generator rotor r.p.m. for efficient use of energy in helicopter TE are the results of
research [28], the main focus of which is the development of an engine hybrid model for
detecting faults and diagnosing, which uses principal component analysis and artificial
neural networks to improve diagnostic accuracy and efficiency for early fault detection.
Condition monitoring and diagnostics not only help in engine detecting faults but also
maximize energy use to ensure proper performance and minimize energy loss due to faults
and sub-optimal operation. Principal component analysis and artificial neural networks are
used to create a hybrid model that provides increased diagnostic accuracy and efficiency,
ultimately leading to more efficient energy use and minimizing losses due to faults and
suboptimal performance. The disadvantage of this method is the complexity of the hybrid
model, which can lead to difficulties in its application in practice due to the need to
configure a large number of engine parameters and the difficulty of interpreting the results.
In addition, the shortcomings of the applied neural network training algorithm, such as the
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possibility of falling into a local minimum, limit the model’s ability to adequately reflect
the dependence of engine power on the gas-generator rotor r.p.m. This, in turn, can affect
the energy efficiency of the engine, as distorted or inaccurate power-speed data can lead to
suboptimal energy use, loss of efficiency, and increased costs.

Thus, at the moment, a relevant scientific and practical issue is the development of
a formal approach to the neural network approximation of helicopter TE characteristics,
which will make it possible to accurately model the relations between engine power and
gas-generator rotor r.p.m. to the helicopter TE operation optimize. The development of
formal models based on neural networks will increase the accuracy of approximation in
predicting engine operation under various operating conditions. This is a decisive aspect in
creating reliable and efficient power control systems for helicopter TE while simultaneously
increasing safety and productivity in aviation.

The work aims to develop a method for neural network approximation of helicopter
TE parameters to research and optimize its characteristics, including limiting engine power
depending on the gas-generator rotor r.p.m. to improve engine efficiency, reduce fuel
consumption and ensure more reliable and safer helicopter operation.

To achieve this work aim, the following tasks are solved:

1. Development of helicopter TE mathematical model, which shows the relations be-
tween its thermogas-dynamic parameters.

2. Development of helicopter TE model parameters approximating method.
3. Justification for the choice of neural network architecture and its training algorithm

for helicopter TE model neural network approximation.
4. Modification of the neural network training algorithm to avoid local minima, which

is one of the tasks that arise when optimizing neural networks.
5. Conducting a computational experiment—solving the tasks of helicopter TE parame-

ters neural network approximation based on the parameter values recorded on board
the helicopter.

6. Research of the dependence of engine power on the gas-generator rotor r.p.m. for the
efficient use of helicopter TE energy, optimizing their operation depending on the
gas-generator rotor r.p.m.

7. Conducting a comparative analysis of the obtained results of solving the task of neural
network approximation of helicopter TE parameters to demonstrate how the proposed
neural network training algorithm stands out in the context of traditional ones.

The research results make a significant contribution to the development of control
technologies and end-use energy in helicopter TE operations. They help optimize engine
operation processes and regulate maximum power depending on the gas-generator rotor
r.p.m., which ultimately contributes to more efficient fuel use and increased reliability and
durability of helicopter TE.

2. Materials and Methods

Currently, there are no known methods for finding the optimal structure of neural
networks when solving specific tasks of parameter approximation. At the same time,
it is known that neural networks with one hidden and one output layer are capable of
approximating an arbitrary continuous function on a compact set with any predetermined
accuracy [29,30]. At the problem statement stage of helicopter TE model parameters
neural network approximation, a mathematical model of helicopter TE is developed,
which in general form represents a certain mathematical apparatus F : U → Y , according
to which, according to [22] each vector of parameters recorded on board the helicopter

u =

nTC
T∗

G
nFT

, u ∈ U ∈ R, ∀t, U =

nTCmin≤ nTC ≤ nTCmax
T∗

Gmin ≤ T∗
G ≤ T∗

Gmax
nFTmin ≤ nFT ≤ nFTmax

, where nTC is the gas-

generator rotor r.p.m., nFT is the free turbine rotor speed, T∗
G is the gas temperature in front

of the compressor turbine assigned to the output vector y =
(
Gair, π∗

C, T∗
C, P∗

C, NC, ηC
)
,

where y is the compressor parameters (it is noted that the parameters of other components
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of helicopter TE, for example, the combustion chamber, compressor turbine, free turbine,
etc., can be presented similarly), Gair is the airflow through the compressor, NC is the power
required to rotate the compressor, π∗

C is the degree of increase in total pressure in the
compressor, P∗

C is the total air pressure behind the compressor, T∗
C is the air temperature

behind the compressor, ηC is the compressor efficiency.
At the first stage of researching the dependence of power on the gas-generator rotor

r.p.m., the helicopter TE static properties using the hierarchical structure of a neural network
that implements reflection:

(Gair, π∗
C, T∗

C)
T = F1(nTC, T∗

G, nFT), (1)

(P∗
C, NC, ηC)

T = F2(Gair, π∗
C, T∗

C). (2)

The model operator F must be, in a certain sense, the best approximation to the
unknown operator of the object F*. We will evaluate the proximity of operators solely by
the proximity of their reactions to the same input influence. The process of identifying
a mathematical model consists of determining the operator structure of model F and the
vector of model unknown parameters P [31]:

F = ⟨Ω, C⟩. (3)

The identification process should be based on experimentally obtained speed and load
characteristics of helicopter TE, ensure ease of setting up the model for a specific type of
engine, have sufficient noise immunity, and be automatic or automated [22].

The paper proposes to research the helicopter’s TE characteristics, according to which
the engine power is limited depending on the speed of the gas-generator rotor r.p.m.
Limiting the helicopter’s TE power is necessary to ensure flight safety, engine service life,
and fuel consumption optimization. The proposed characteristic is modelled using the
dependence:

NC = (NC, nTC) = min
(

NC, Nadj
C (nTC)

)
, (4)

Nadj
C (nTC) = kp1·nTC + kp2, (5)

where kp1 and kp2 are the proposed control characteristic parameters.
To implement the mappings F1 and F2 in (1) and (2), according to (3), three-layer feed-

forward neural networks (3LFNN) with linear neurons in the output layer are used [31,32].
Hyperbolic tangent functions were chosen as activation functions of hidden layer neurons [31]:

N11 = 2· 1

1+e−2·(W11 ·(nTC ,T∗G ,nFT )T+B11)
− 1,

N12 = 2· 1
1+e−2·(W12 ·N11+B12)

− 1,(
Gair, π∗

C, T∗
C
)T

= W13·N12 + B13,

(6)


N21 = 2· 1

1+e−2·(W21 ·(Gair , π∗
C ,T∗C)T+B21)

− 1,

N22 = 2· 1
1+e−2·(W22 ·N21+B22)

− 1,(
P∗

C, NC, ηC
)T

= W23·N22 + B23,

(7)

where N11, N12, N21, and N22 are the output vectors of neurons of the first and second
layers, respectively; W11, W12, W13, W21, W22, and W23 are the matrices of neuron weighting
coefficients; B11, B12, B13, B21, B22, and B23 are the displacement vectors of neurons of the
first, second, and third layers, respectively.
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Normalization and denormalization of signals from the neural network F1 are carried
out according to the expressions

nTC
T∗

G
nFT

 = 2·

nTC
T∗

G
nFT

−

min(nTC)
min

(
T∗

G
)

min(nFT)


max(nTC)

max
(
T∗

G
)

max(nFT)

−

min(nTC)
min

(
T∗

G
)

min(nFT)

 , (8)

Gair
π∗

C
T∗

C

 =
1
2
·

max(Gair)
max

(
π∗

C
)

max
(
T∗

C
)
−

min(Gair)
min

(
π∗

C
)

min
(
T∗

C
)
·

Gair
π∗

C
T∗

C

+

1
1
1

+

min(Gair)
min

(
π∗

C
)

min
(
T∗

C
)
, (9)

where min(nTC), max(nTC), min
(
T∗

G
)
, max

(
T∗

G
)
, min(nFT), max(nFT), min(Gair), max(Gair),

min
(
π∗

C
)
, max

(
π∗

C
)
, min

(
T∗

C
)
, max

(
T∗

C
)

are respectively, the minimum and maximum val-
ues of the sets nTC i, T∗

G i, nFT i, Gair i, π∗
C i, T∗

C i, i = 1 . . . K1, K1 is the number of points (heli-
copter TE parameters values) dependencies

(
Gair, π∗

C, T∗
C
)

and
(
nTC, T∗

G, nFT
)
, respectively,

analytically calculated and experimentally obtained helicopter TE static characteristics.
Normalization and denormalization of signals from the F2 neural network are carried

out according to the expressions:

Gair
π∗

C
T∗

C

 = 2·

Gair
π∗

C
T∗

C

−

min(Gair)
min

(
π∗

C
)

min
(
T∗

C
)


max(Gair)
max

(
π∗

C
)

max
(
T∗

C
)
−

min(Gair)
min

(
π∗

C
)

min
(
T∗

C
)
 , (10)

P∗
C

NC
ηC

 =
1
2
·

max
(

P∗
C
)

max(NC)
max(ηC)

−

min
(

P∗
C
)

min(NC)
min(ηC)

·

P∗
C

NC
ηC

+

1
1
1

+

min
(

P∗
C
)

min(NC)
min(ηC)

, (11)

where min(Gair), max(Gair), min
(
π∗

C
)
, max

(
π∗

C
)
, min

(
T∗

C
)
, max

(
T∗

C
)
, min

(
P∗

C
)
, max

(
P∗

C
)
,

min(NC), max(NC), min(ηC), max(ηC) are respectively, the minimum and maximum values
of the sets Gair j, π∗

C j, T∗
C j, P∗

C j, NC j, ηC j, j = 1 . . . K2, K2 is the number of points (heli-
copter TE parameters values) dependencies

(
P∗

C, NC, ηC
)

and
(
Gair, π∗

C, T∗
C
)
, analytically

calculated helicopter TE static characteristics.
The task of helicopter TE model structural identification can be parameterized, that is,

a vector of structural parameters D can encode various structures [31]:

F = ⟨D, P⟩. (12)

In this case, the elements of vector D are the number of neurons in the hidden layers
of the neural network F1 and F2, which determines the dimensions of the corresponding
matrices of weight coefficients and neuron biases. In turn, the elements of the vector P of
model unknown parameters are the elements of the matrices of weighting coefficients and
displacements of neurons of the neural network F1 and F2, as well as the parameters of the
adjustment characteristic kp1 and kp2.

At the next stage of solving the task of helicopter TE model parameters neural net-
work approximation, it is accepted that as a result of the flight operation of helicopter
TE with further analytical calculations, sets of points were obtained

(
nTC i, T∗

G i, nFT i
)
,(

Gair i, π∗
C i, T∗

C i
)
, i = 1 . . . K1 and

(
Gair j, π∗

C j, T∗
C j

)
, and

(
P∗

C j, NC j, ηC j

)
, j = 1 . . . K2,

which represent a representative sample of experimental data and quite accurately re-
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flect the behaviour of helicopter TE working processes, indicators of their efficiency at
nTC ∈ (nTCmin, nTCmax), T∗

G ∈
(
T∗

Gmin, T∗
Gmax

)
, nFT ∈ (nFTmin, nFTmax).

If the parameters P = [kp1, kp2] of dependence (5) are specified, identification of
the mathematical model of helicopter TE is reduced to determining the structure and
parameters of the neural network F1 and F2 [31]:

⟨D, P⟩ = ⟨[D1, D2], [P1, P2]⟩ =

arg min
D1, P1

J1(D1, P1),

arg min
D2, P2

J2(D2, P2),
(13)

where the objective functionals have the form [30]:

J1(D1, P1) =
1

K1
·

K1

∑
i=1

ψ1(i, D1, P1), (14)

J2(D2, P2) =
1

K2
·

K2

∑
i=1

ψ2(i, D2, P2), (15)

In turn, the discrepancy functions of the outputs of the model and the object at each
point of the experimental characteristics are defined as [31]:{

ψ1(i, D1, P1) = (Gair i − y11)
2 +

(
π∗

C i − y12
)2

+
(
T∗

C i − y13
)2,

(y11, y12, y13)
T = F1

(
nTC i, T∗

G i, nFT i, D1, P1
)
,

(16)

{
ψ2(j, D2, P2) = (Gair i − y21)

2 +
(
π∗

C i − y22
)2

+
(
T∗

C i − y23
)2,

(y21, y22, y23)
T = F2

(
Gair j, π∗

C j, T∗
C j, D2, P2

)
.

(17)

To solve the task, the next step is to select a training algorithm for the proposed 3LFNN
with linear neurons in the output layer. To train it, it is proposed to use the scaled conjugate
gradient algorithm (SCG), which has demonstrated high performance in solving a similar
task, and combines the concepts of summary methods and quasi-Newton methods [33,34].
According to this algorithm, the initial parameters of the model θ0 are initialized, including
weights and biases (bias). Next, the gradient of the cost function is calculated for all
parameters of the model according to the finite difference method. The loss function E(θ) is
assumed to be differentiable concerning each parameter θi. Then the gradient of the loss
function at point θ0 is calculated by numerically approximating the derivative of the loss
function concerning the i-th parameter at point θ0 as follows:

∂E
∂θi

(θ0) ≈
E(θ0 + ε·ei)− E(θ0 − ε·ei)

2·ε , (18)

where ε is the small positive number (for example, ε = 10−6), ei is the vector whose i-th
component is equal to 1, and all other components are equal to 0.

Next, the gradients for each parameter are scaled to take into account its weight in the
context of optimization:

∼
∇E(θ0) = D−1·∇E(θ0), (19)

where D is the diagonal matrix containing scaling factors for each parameter.
Next, the optimal training step for each parameter is determined. Zoom is used to

adaptively select the step size:

αk =
∥θk − θk−1∥

∥∇E(θk)−∇E(θk−1)∥
. (20)
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To avoid local minima, which is one of the problems that can arise when optimizing
neural networks, a modification of the SCG algorithm is proposed when estimating new
neural network parameters by introducing a torque coefficient:

θk+1 = θk − αk·
∼
∇E(θk) + β·(θk − θk−1), (21)

where β is the moment coefficient, θ is the neural network parameter,
∼
∇E(θk) is the scalable

gradient of the cost function at point θk.
Next, by numerical approximation, a new gradient of the loss function at point θk+1 is

calculated according to the expression:

∇E(θk+1) ≈
E(θk+1 + ε·u)− E(θ0 − ε·u)

2·ε , (22)

where ε is the small positive number (for example, ε = 10−6), u is the unit vector in the
parameter space.

Next, the model parameters are updated according to the scaled conjugate direction of
the gradients:

θk+2 = θk+1 − ∆θk, (23)

where ∆θk is calculated using the conjugate direction of the gradients and the scaled
gradients:

∆θk = αk·
∼
∇E(θk)− αk−1·

∼
∇E(θk−1), (24)

where αk is the optimization step at step k, which is calculated using the optimal step length

method,
∼
∇E(θk) is the scaled gradient of the loss function at step k, which is calculated

according to (19) as
∼
∇E(θk) = D−1·∇E(θk) and

∼
∇E(θk−1) = D−1·∇E(θk−1).

Expression (23) allows you to determine how the parameters change between two
successive iterations of the algorithm. The difference between the two scaled gradients is
taken into account to adjust the parameter changes in the current iteration.

At the final stage of neural network training, the fulfilment of stopping criteria is
checked at each optimization iteration. The two most common stopping criteria are achiev-
ing the required accuracy and achieving the maximum number of iterations.

To achieve the required accuracy, check how much the loss function E(θ) has decreased
with each iteration and compare this decrease with some predetermined accuracy threshold
ϵ. Formally, this can be written as:

|E(θk+1)− E(∆θk)| < ϵ, (25)

where ϵ is the specified accuracy.
Reaching the maximum number of iterations involves stopping optimization af-

ter reaching a certain number of iterations Nmax. This can be checked mathematically
as follows:

k ≥ Nmax, (26)

where k is the current iteration, Nmax is the maximum number of iterations.
Thus, at each iteration of the proposed neural network training algorithm, both

stopping criteria are checked. If at least one of the criteria is met, then the optimization is
completed and the algorithm returns the found approximate solution. Based on the above,
a theorem is proposed on the conditions for exiting local minima (Theorem 1).

Theorem 1. When the conditions of the modified optimization algorithm are met, the probability of
exiting local minima increases, which helps to find more optimal solutions for neural networks.
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Proof of Theorem 1. Let the loss function E(θ) be given, where θ is the vector of neural
network parameters, and θ∗ is the global minimum of the loss function. It is assumed
that the optimization algorithm that is used satisfies the conditions of the modified algo-
rithm, namely:

1. The algorithm contains an element of randomness, which allows you to explore
different parts of the parameter space.

2. The algorithm uses a variety of optimization parameters, such as training rate, initial-
ization of weights, and other parameters.

3. Modification of the algorithm facilitates the exploration of various optimization paths
and increases the probability of exiting local minima.

Thus, it is necessary to prove that the fulfilment of these conditions increases the
probability of exiting local minima.

Let E1 and E2 be the values of the loss function at two different local minima. Then the
probability that the algorithm will leave a local minimum and converge to another local
minimum will be proportional to the difference between the following values:

P(exit from E1 and convergence to P2) ∝ (E1 − E2). (27)

Thus, if the difference between the values of the loss function in different local minima
is greater, then the probability of exiting the local minimum and converging to another
minimum is higher.

Proof (27) indicates the feasibility of the proposed modification of the SCG algorithm
by introducing a moment coefficient into it when estimating new model parameters, which
will avoid local minima. □

3. Results

The computational experiment was carried out on a personal computer with an AMD
Ryzen 5 5600 processor, 32 KB third-level cache, Zen 3 architecture, 6 cores, 12 threads,
3.5 GHz, RAM-32 GB DDR-4. A three-layer feed-forward neural network with linear
neurons in the output layer is used (Figure 1), and its training algorithm is a modified
SCG algorithm.
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The input data for neural network training are the helicopter turboshaft engine’s
thermogas-dynamic parameters recorded during helicopter flight: gas-generator rotor
r.p.m., free turbine rotor speed, and gas temperature in front of the compressor turbine.
The results of experimental research on the TV3-117 engine (Table 1) [35–37] were used as
initial data for identifying the helicopter TE mathematical model.

Table 1. Training sample fragment (author’s research, published in [35–37]).

Number Gas Generator
Rotor r.p.m.

Free Turbine
Rotor Speed

Gas Temperature in Front of
the Compressor Turbine

1 0.943 0.929 0.932
2 0.982 0.933 0.964
3 0.962 0.952 0.917
4 0.987 0.988 0.908
5 0.972 0.991 0.899
6 0.963 0.997 0.915

. . . . . . . . . . . .
256 0.981 0.973 0.953

The detailed process of preprocessing elements of the training set is described in [35–37].
This process begins with assessing the homogeneity of the sample, followed by dividing it
into control and test samples and then analyzing their representativeness via cluster analysis.

To check the homogeneity of the training sample, the Fisher–Pearson test is used,
based on observed frequencies and comparison with critical values of χ2 at given degrees
of freedom and significance levels. The resulting value χ2 = 3.588 does not exceed the critical
value of 22.362, which confirms the hypothesis of normal distribution of the parameters
of the training sample and, therefore, its homogeneity. To further check homogeneity,
the Fisher-Snedecor test is used, which shows the ratio of variance values. The resulting
criterion value of 1.28 also does not exceed the critical value of 3.44, which further confirms
the homogeneity of the training sample.

The representativeness of the training and test samples is assessed by cluster analysis,
the results of which show the identification of eight classes (Figure 2a). After random-
ization, training and test samples are formed in a ratio of 2:1 (67 and 33%, respectively).
Cluster analysis of both samples also reveals eight classes (Figure 2b), and the distances
between clusters turn out to be almost identical, which indicates the representativeness of
both samples.
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Thus, the results of the process of preprocessing the elements of the training sample
made it possible to form the optimal volume of training, control, test samples (Table 2).

Table 2. Results of forming training, control, and test samples (author’s research).

Sample Description Sufficient Sample Size

Training It was used to train a model to solve practical tasks based on
the provided data. 256 element (100%), K1 = 256

Control It was used to control the operation of a neural network and
is considered sufficient to ensure its adequacy. 172 elements (67% of the training sample)

Test It was used to assess the correspondence between the
constructed model and the test sample. 84 elements (33% of the training sample)

It is worth noting that the control sample was allocated only for training the neural
network to determine the F1 mapping. To determine the F2 mapping, due to the lack of
redundancy in the experimental data, from the point of view of describing complex surfaces
of toxicity characteristics, a control sample of points was not selected. To prevent the effect
of overtraining, a limit was applied to the duration of network training—1000 epochs.

The quality of approximation of helicopter TE characteristics by a neural network
to determine the F1 mapping was assessed by the root mean square error value on the
control sample:

σ(Gair) =
1

K2
·

K2
∑

i=1
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2, σ
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π∗

C
)
= 1

K2
·

K2
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C i − y12
)2,

σ
(
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C
)
= 1

K2
·

K2
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i=1

(
T∗
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nTC i, T∗

G i, nFT i, D1, P1
)
.

(28)

σ
(
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C
)
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K2
·

K1
∑

i=1

(
P∗

C i − y21
)2, σ(NC) =

1
K2
·

K1
∑

i=1
(NC i − y22)

2,

σ(ηC) =
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∑

i=1
(ηC i − y23)

2, (y21, y22, y23)
T = F2

(
Gair j, π∗

C j, T∗
C j, D2, P2

)
.

(29)

Figure 3 shows the dependences of σ(Gair) (“□”), σ
(
π*

C
)

(“×”) and σ
(
T*

C
)

(“#”) on
the number of free parameters of the neural network to determine the mapping F1, in
Figure 4—dependences of σ

(
P*

C
)

(“□”), σ(NC) (“×”) and σ(ηC) (“#”) on the number of
free parameters of the neural network to determine the mapping F2. Each dependency data
point was obtained by averaging the results of 8 experiments on training neural networks
with random initial values of the elements of the weight coefficient matrices and neuron
displacement vectors.
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The mean absolute percentage error (MAPE) is also calculated as:
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(32)

Table 3 shows the results of calculating the maximum RMSE values, average absolute
error values, and average absolute relative deviation. Table 3 shows that the maximum
root mean square error is 1.7%, the maximum MAE is 0.130, and the maximum MAPE is
1.8%. Thus, we can conclude that these values do not exceed 1.8%, which indicates the high
accuracy of the neural network approximation of helicopter TE parameters.

Table 3. Main statistical criteria maximum values calculating results (author’s research).

Parameter
Maximum Value

RMSE MAE MAPE

Gair 0.015 0.122 0.016
π∗

C 0.012 0.110 0.013
T∗

C 0.017 0.130 0.018
P∗

C 0.011 0.105 0.012
NC 0.014 0.118 0.015
ηC 0.013 0.114 0.014

The results of neural network training show that the quality of approximation of
the helicopter’s TE parameters depends significantly on the total number of neurons and
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only slightly on their distribution among layers. Consequently, the structure of the neural
network for implementing the mappings F1 and F2 can be characterized with sufficient
accuracy by only one parameter—the number of synaptic weights (the number of free
parameters of the neural network):

kF1 = 2·k11 + k12·(1 + k11) + 2·(1 + k12),
kF2 = 3·k21 + k22·(1 + k21) + 3·(1 + k22).

(33)

Analyzing the behaviour of the mean square error when changing the number of free
parameters of the neural network F1, the number of neurons in the first hidden layer k11 = 8,
and the number of neurons in the second hidden layer k12 = 4. This structure corresponds
to the number of free parameters kF1 = 70. Such a neural network has the least complexity
at which it is still possible to achieve the smallest approximation error. For the neural
network F2, we similarly obtain the values k21 = 8, and k22 = 8, which corresponds to the
value kF2 = 120. It is known that the research on the accuracy function (Figure 5) and loss
function (Figure 6) of a neural network are important tools for assessing its performance and
training. The accuracy function allows you to evaluate how well the model approximates
the helicopter TE parameters, displaying the percentage of correctly approximated ones.
On the other hand, the loss function shows how much the model’s predictions deviate
from the actual values, helping to optimize the training process by minimizing this loss. By
analyzing these graphs during training, conclusions are drawn about how effectively the
model is training and measures can be taken to improve its performance.
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The results obtained indicate the high efficiency and stability of the neural network
during the training process. The accuracy of the model, assessed on the training and
validation samples, tends to be unity, indicating its ability to well generalize and approx-
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imate the parameters of helicopter TE. In this case, the loss values in both samples do
not exceed 0.025, which corresponds to 2.5%, and indicates a low level of errors in the
approximation of helicopter TE parameters. Such results indicate that the neural network
with the proposed training algorithm is successfully trained and is capable of providing
high-quality helicopter TE parameters with a high degree of confidence.

Mathematically, “degree of confidence” can be defined as the probability of a correct
approximation of helicopter TE parameters, expressed as a number between 0 and 1. This
can be thought of as the probability that the model correctly classifies or predicts the
data. In other words, this is the probability that the approximation of the helicopter’s TE
parameters is correct. If the degree of confidence is close to 1, this means a high probability
of a correct predict, and if it is close to 0, then the probability of an error is high. Thus, the
“degree of confidence” is calculated as:

ui =
Ncor. app.

Napp
, (34)

where Ncor.app. is the number of correct approximations of the helicopter TE parameters,
Napp is the total number of approximations of the helicopter TE parameters made by the
neural network.

Figure 7 shows a distribution density diagram for the “degree of confidence” of the
neural network, which shows how the confidence of the neural network is distributed
in the approximation of helicopter TE parameters: a—Gair, b—π*

C, c—T*
C, d—P*

C, e—NC,
f—ηC.
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Figure 7 shows that most of the helicopter TE approximated parameters are concen-
trated near 1, which indicates the high confidence of the neural network in solving this
task. In this case, the distribution density function is defined as:

∼
f (u) =

1
n·h ·

n

∑
i=1

K
(

u − ui
h

)
, (35)

where
∼
f (u) is the estimate of the distribution density of the “degree of confidence” for

the parameter u, n is the number of observations (n = 256 is assumed to be the size of
the training sample), ui is the value of the “degree of confidence” for the i-th observation,
calculated according to (34), K is the kernel function (Gaussian kernel is assumed), h is the
window width (kernel width, h ≈ 0.0567 is assumed).

The kernel density estimator estimates the density distribution of the “degree of
confidence” based on available observations. The choice of the optimal window width h for
kernel density estimation is important and may depend on the specific situation, including
the amount of data, the distribution of “degree of confidence” and the required accuracy of
the estimate. In general, the choice of h affects the smoothing of the distribution density:
the larger the value of h, the smoother the density estimate will be, and vice versa. To select
the optimal value of h, Silverman’s rule of the form is applied:

h = 0.9·min
(

σ(u),
IQR
1.34

)
·n−0.2, (36)

where IQR = Q3 − Q1 is the interquartile range—a measure of data dispersion that is not
sensitive to outliers, that is, the difference between the 75th and 25th percentiles of the data,
Q1 is the 25th percentile (lower quartile), Q3 is the 75th percentile (top quartile).

The choice of the optimal value of the window width h in kernel density estimation
using Silverman’s rule takes into account both the characteristics of the data distribution
and its volume. This rule allows you to tailor the window width to the characteristics of
the data, taking into account both the magnitude of change (via standard deviation or
interquartile range) and sample size. Thus, the optimal value of h is a balance between
sufficient smoothing to reduce the influence of random noise and preserving distribution
details to reveal structure in the data.

It is worth noting that using the interquartile range in (36) to determine the window
width h allows for a measure of data dispersion that is not affected by outliers. This
makes the method more robust to data anomalies while still being flexible enough to adapt
to different distribution shapes. In this way, Silverman’s rule strikes a balance between
smoothing and information preservation, making window-width choices more meaningful
and efficient.

To experimentally confirm the feasibility of introducing the moment coefficient β to
avoid local minima when training a neural network. Figure 8 shows a diagram of the cost
function versus the torque coefficient. To construct this dependence diagram, a certain
set of values for the moment coefficient β ∈ [0, 1] was selected, from which the following
values of β were selected: 0.1, 0.5, 0.9, 0.99. These values represent a range from small
torque values to those close to unity, which will allow the impact of different inertia levels
on the optimization process to be assessed. For each value of β, several iterations of the
neural network optimization algorithm are performed using this value.
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Figure 8 shows that after optimizing the neural network for each value of β, the
following values of the cost function were obtained: for β = 0.1: 94, for β = 0.5: 80,
for β = 0.9: 75, for β = 0.99: 72. From these results It can be seen that as the torque
coefficient β increases, the value of the cost function decreases. The optimal value for
the torque coefficient β in this case, may be 0.99, since it gives the smallest value of the
cost function after optimization. Thus, with β = 0.99, the possibility of falling into a local
minimum is practically eliminated, which eliminates the likelihood of suboptimal setting
of model parameters and, consequently, less efficient operation of the neural network on
the test sample.

The obtained results of training the neural network made it possible to obtain ap-
proximate surfaces of dependencies
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)
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C
)

presented in Fig-
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From the data obtained it follows that the neural network approximation made it
possible to obtain dependency surfaces of the key parameters of helicopter TE within
acceptable values. The first surface shows the dependence of the air pressure behind the
compressor, the power of the compressor, and its efficiency (Figure 9a), while the second
represents the relations between the air flow through the compressor, the degree of increase
in the total pressure in the compressor and the air temperature behind the compressor
(Figure 9b). This allows you to effectively control and optimize the operation of helicopter
TE, helicopter ensuring stability and reliability in various operating conditions. In addition,
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this approach provides valuable information for further research and development in the
field of improving the performance and helicopter TE efficiency.

In the next stage, research is carried out aimed at researching the helicopter TE
characteristics (4), taking into account the limitation of engine power depending on the
gas-generator rotor r.p.m. (5). Research includes the gas-generator operating parameters
and its effect on the overall engine power. By analyzing data on the gas-generator rotor
r.p.m. and the corresponding engine power, optimal operating modes are determined, as
well as possible restrictions and limit values of engine parameters. Such studies make it
possible for helicopter TE operation optimize, ensuring their efficiency and reliability in
various operating conditions.

At the next stage, studies are carried out on helicopter TE characteristics (4), taking
into account the limitation of engine power depending on the speed of the gas-generator
rotor r.p.m. (5). By analyzing data on the gas-generator rotor r.p.m. and the corresponding
engine power, optimal operating modes are determined, as well as possible restrictions and
limit values of engine parameters. Such studies make it possible to optimize the helicopter
TE operation, ensuring their efficiency and reliability in various operating conditions.

To model the helicopter TE power limitation depending on the gas-generator rotor
r.p.m., it is proposed to use a differential equation of the form:

∂NC
∂t

=

{
∂Nadj

C
∂t , if Nadj

C (nTC) < NC
0, otherwise.

, (37)

To find a solution to the differential Equation (37), it is necessary to divide it into
two cases depending on whether the condition Nadj

C (nTC) < NC is satisfied or not. If

Nadj
C (nTC) < NC, then:

∂NC
∂t

=
∂Nadj

C
∂t

=
∂

∂t
(
kp1·nTC + kp2

)
= kp1·

∂nTC
∂t

. (38)

If Nadj
C (nTC) ≥ NC, then:

∂NC
∂t

= C. (39)

where C is a constant.
The solution to the differential Equation (38) will depend on the specific nTC function

within the time being considered.
In general, the power required to rotate the compressor is described by the expression:

NC(nTC) = NCmax − k·
(
nTC − nTCopt

)
, (40)

where NC(nTC) shows the power limitation at the gas-generator rotor r.p.m. nTC, NCmax is
the maximum power, k is the coefficient that characterizes the shape of the dependence,
nTCopt—is the optimal gas-generator rotor r.p.m.

In this context, the energy released during rotation of the helicopter TE compressor
can be expressed as an integral of power over time, that is:

E =

t2∫
t1

NC(nTC)dt, (41)

where t ∈ (t1, t2) is the research time interval.
Also, according to (5), the helicopter TE characteristics (4), according to which the

engine power is limited depending on the gas-generator rotor r.p.m., take the form:

NC = min
(

NC, kp1·nTC + kp2
)
. (42)
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Let us substitute NC into (42) as NC(nTC) according to (40):

NC = min
(

NCmax − k·
(
nTC − nTCopt

)
, kp1·nTC + kp2

)
. (43)

Thus, the NC power limitation depends on the minimum value between the maximum
engine power NCmax − k·

(
nTC − nTCopt

)
and the calculated power kp1·nTC + kp2 depending

on the gas-generator rotor r.p.m. nTC and other parameters. Also, taking into account (38),
we can write:

NC = kp1·nTC + kp2 + kp1·
∂nTC

∂t
= kp1·

(
nTC +

∂nTC
∂t

)
+ kp2. (44)

Expression (44) describes the relations between the power required to rotate the
helicopter’s TE compressor and the gas-generator rotor r.p.m., as well as its change over
time. The term nTC + ∂nTC

∂t in (44) is the sum of the gas-generator rotor r.p.m. and the rate
of its change over time, and takes into account both the current state and the dynamics
of changes in the gas-generator rotor r.p.m. The presence of nTC + ∂nTC

∂t in (44) makes it
possible to take into account not only static but also dynamic factors, such as acceleration or
deceleration of gas-generator rotor r.p.m. Thus, nTC + ∂nTC

∂t plays a key role in adequately
describing the energy requirements for rotating the helicopter’s TE compressor, taking into
account both the current state and changes over time.

Thus, expression (43) is rewritten taking into account (44) in the form:

NC = min
(

NCmax − k·
(
nTC − nTCopt

)
, kp1·

(
nTC +

∂nTC
∂t

)
+ kp2

)
. (45)

Consequently, the energy released during the rotation of the helicopter TE compressor
is supplied in the form of a power integral over time (41) taking into account (45):

E =

t2∫
t1

min
(

NCmax − k·
(
nTC − nTCopt

)
, kp1·

(
nTC +

∂nTC
∂t

)
+ kp2

)
dt. (46)

To integrate (46), it is necessary to consider two cases:

1. If NCmax − k·
(
nTC − nTCopt

)
< kp1·

(
nTC + ∂nTC

∂t

)
+ kp2, then the minimum value will

be NCmax − k·
(
nTC − nTCopt

)
. Then:

E1 =

t2∫
t1

(
NCmax − k·

(
nTC − nTCopt

))
dt =

(
NCmax − k·

(
nTC − nTCopt

))
·(t2 − t1). (47)

2. If NCmax − k·
(
nTC − nTCopt

)
≥ kp1·

(
nTC + ∂nTC

∂t

)
+ kp2, then the minimum value will

be kp1·
(

nTC + ∂nTC
∂t

)
+ kp2. Then:

E2 =

t2∫
t1

(
kp1·

(
nTC +

∂nTC
∂t

)
+ kp2

)
dt =

(
kp1·

(
nTC +

∂nTC
∂t

)
+ kp2

)
·(t2 − t1). (48)

The total energy E will be equal to the minimum of E1 and E2 since the minimum
between two possible values is chosen:

E = min(E1, E2). (49)

Thus, by integrating the power limitation equation over time and taking into account
the minimum condition between two possible expressions for energy, an analytical expres-
sion is obtained for the total energy expended on system operation for a given time interval.
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This expression takes into account the power limitations of helicopter TE, which depend
on the gas-generator rotor r.p.m. and their changes over time, as well as the adjustment
parameters kp1 and kp2. Such an analytical expression can be useful for assessing and
analyzing the energy characteristics of the system under variable loads and operating
conditions of helicopter TE.

To research the energy characteristics of helicopter TE, diagrams of the changes in
power (Figure 10) and energy (Figure 11) were presented as a function of the gas-generator
rotor r.p.m., where “black curve” are the results obtained in this work using a neural
network approximation of dependencies (44) and (49), “blue curve” are the results obtained
using the helicopter TE mathematical model in [38], “#” are the results obtained using the
full-scale experiment, which is described in [38].
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As can be seen from Figure 10, the results obtained in this work using a neural
network approximation of dependencies (44) and (29) practically coincide with the results
obtained using a full-scale experiment, and most accurately show the dependence of power
changes on the gas-generator rotor r.p.m. than the results obtained using helicopter TE
mathematical model in [38]. Table 4 shows the results of calculations of the main statistical
accuracy criteria, the obtained dependences of the change in power on the helicopter TE
gas-generator rotor r.p.m.: RMSE, MAE, and MAPE.
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Table 4. Statistical criteria calculation results (author’s research).

Criteria The Results Obtained in This Work Using
a Neural Network Approximation

The Results Obtained Using the
Helicopter TE Mathematical

Model in [38]

RMSE 0.0138 0.0384
MAE 0.117 0.196

MAPE 0.0141 0.0407

As can be seen from Table 4, RMSE of the results obtained in this work using neural
network approximation is 2.78 times less than the results obtained using the helicopter
TE mathematical model in [38], MAE of the results obtained in this work using neural
network approximation is 1.68 times less than the results obtained using helicopter TE
mathematical model in [38], the MAPE results obtained in this work using neural network
approximation are 2.89 times smaller than the results obtained using the helicopter TE
mathematical model in [38]. The results of statistical analysis show that the use of neural
network approximation for modelling data on the helicopter’s TE operation in this work
leads to a significant improvement in forecasting accuracy compared to the use of the
helicopter TE mathematical model presented in [38]. This indicates the high efficiency
and promise of neural network methods in the field of modelling and approximation of
helicopter TE parameters.

Figure 11, “region 1” shows to low gas-generator rotor r.p.m., in which the energy
is low, “region 2”—to the average gas-generator rotor r.p.m., in which energy rapidly in-
creases, “region 3”—to high gas-generator rotor r.p.m., while the efficiency of the compres-
sor decreases and the energy grows more slowly, “region 4”—the maximum gas-generator
rotor r.p.m., at which the energy reaches its maximum. Point “A” corresponds to the start of
the compressor operation, “point B”—is the maximum efficiency of the compressor, “point
C”—is the maximum gas-generator rotor r.p.m., “point D”—is the critical gas-generator
rotor r.p.m.

The critical gas-generator rotor r.p.m. is determined by the highest frequency at which
the maximum dynamic and thermal loads on engine structures and components remain
within safety limits. This may be due to factors such as turbine speed limits, material
temperature limits, compressor and turbine aerodynamic limitations, and engine stability.

According to the results obtained, it can be stated that at low rotor speeds, the energy
is released when the compressor rotates at a lower speed since the compressor does not
operate at full power. As the gas-generator rotor r.p.m. increases, the energy released
when the compressor rotates also increases, as the need for air compression to provide the
required level of compression increases. However, when a certain rotor speed is reached,
the energy released when rotating the compressor may begin to decrease due to various
factors (in Figure 11, the energy decrease is depicted by the “red line” after “point D”), such
as restrictions on the production of thermal energy or restrictions according to engine speed
to avoid damage. Exceeding the critical compressor speed leads to various undesirable
consequences, such as the following:

1. Engine overheating—when the gas-generator rotor r.p.m. exceeds a critical speed, the
load on engine components increases, which can cause increased heat generation and
overheating, especially in high-temperature areas such as the combustion chamber.

2. Loss of stability—going beyond the critical gas-generator rotor r.p.m. leads to a
violation of the aerodynamic stability of the compressor and turbine, which can lead
to a loss of efficiency and a drop in engine performance.

3. Mechanical loads—when the critical gas-generator rotor r.p.m. is exceeded, significant
mechanical loads occur on engine components, which can lead to wear or even damage.

Thus, the results of the research on the dependence of the energy released during the
helicopter’s TE compressor rotation on the gas-generator rotor r.p.m. of the helicopter’s
TE are critical for further optimization of engine operation and ensuring its safe operation.
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The presented data indicate the complex nature of this relation: at low rotor frequencies,
the energy may be low due to insufficient compressor operation, while as the frequency
increases, the energy increases, providing the necessary air compression. However, ex-
ceeding a critical gas-generator rotor r.p.m. can lead to serious problems such as engine
overheating, loss of stability and increased mechanical stress, which can lead to reduced
performance and component damage. Thus, understanding and controlling gas-generator
rotor r.p.m. are key aspects of helicopter TE ensuring efficient and safe operation.

The results of assessing the adequacy of the obtained dependence curve are given
in Table 5, where the following statistical criteria are applied: determination coefficient,
standard error of estimation and Fisher’s F-test. In this case, a significance level of 0.01 was
adopted, since the statistical analysis performed required a high degree of confidence in
rejecting or accepting the null hypothesis in the statistical test. A significance level of 0.01 in
the assessment of the adequacy of the results obtained means that the probability of making
a type I error (rejecting the correct null hypothesis—there is no statistically significant
relation between the energy released during the helicopter TE gas-generator operation and
its gas-generator rotor r.p.m.) is only 1%, which provides high confidence in the correctness
of the decision made.

Table 5. Results of assessing the adequacy of the obtained curve of the dependence of the energy
released during helicopter turboshaft engine compressor rotation on the gas-generator rotor r.p.m.
(author’s research).

Statistical
Criteria Description Analytical Expression Obtained Value

Determination coefficient

Measures the proportion of the total
variation in a dependent variable (such as
energy) in a model that is explained by

the independent variables (such as rotor
speed). A determination coefficient value

close to 1 indicates a good fit of the
model to the data.

R2 = 1 − ∑ Eres
∑ Etot

0.99126

Standard error of estimation

Shows the spread of actual values around
model-predicted values. A lower

standard error of estimation value
indicates a more accurate model.

SEE =

√
∑n

i=1(Ei−Êi)
2

n−p
0.00974

Fisher’s F-test

Used to test the statistical significance of
the overall model. A high F-test value

indicates that the overall model is
statistically significant.

F =
n−p−1

p · ∑ Ereg

∑ Eres
4.782

In Table 5 ∑ Eres is the sum of squared residuals (the sum of squared differences
between actual energy values and values predicted by the model), ∑ Etot is the total sum
of squares (sum of squares of the difference between the actual energy values and their
average value), n = 256 is the training sample size, p = 7 is the model parameters number
(including free term), Ei is the actual energy value, Êi is the predicted energy value from the
model, ∑ Ereg is the regression sum of squares (sum of squares of the difference between
the values predicted by the model and the mean energy).

The obtained coefficient of determination value of 0.99126 indicates a high degree of
fit of the model to the data. This means that more than 99% of the energy variation can be
explained by the gas-generator rotor r.p.m. variation, indicating that the model describes
the relations between these variables well.

The resulting standard error of estimation of 0.00974 indicates the high accuracy and
reliability of the model. Given the low standard error, it can be concluded that the model
fits the data well and produces energy predictions with high accuracy. This means that the
predicted energy values differ from the actual values with little error, making the model
useful and reliable for energy prediction at different gas-generator rotor r.p.m.
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The obtained value of Fisher’s F-test is 4.782 (the critical value of Fisher’s test with
7 model parameters and 256 sample elements at a significance level of 0.01 is 3.97) indicating
the statistically significant adequacy of the model. Considering that the obtained Fisher’s F-
test value exceeds the critical value at the selected significance level, the null hypothesis that
the model is not statistically significant is rejected. This suggests that the model explains
data variation well and can be used to predict energy values based on gas-generator
rotor r.p.m.

4. Discussion

The conducted researches indicate that helicopter TE parameters neural network ap-
proximation plays an important role at the stage of their operation, therefore it is important
to have effective methods for training neural networks that ensure high accuracy and
generalization ability of the model. Thus, an important task is to compare the proposed
neural network training algorithm with already known methods. To do this, it is necessary
to define key quality metrics that will help evaluate the performance of each method. Such
metrics may include classification accuracy, root mean square error, convergence rate, and
others. Each of these metrics plays its role in assessing the effectiveness of the training
algorithm, based on the specifics of the task and the requirements for the model.

A comparative analysis of the main quality metrics will allow us to identify the
advantages and disadvantages of each considered neural network training algorithm and
make a reasonable conclusion about their comparative effectiveness. Table 6 presents the
results of calculating quality metrics for the proposed algorithm (modified SCG algorithm)
for neural network training (Algorithm 1), the traditional SCG algorithm (Algorithm 2), the
backpropagation algorithm (Algorithm 3), the quick propagation algorithm (Algorithm
4), the quasi-Newton (Algorithm 5), the Levenberg-Marquardt algorithm (Algorithm 6),
according to the following quality metrics:

1. Efficiency coefficient—evaluates the efficiency of training a neural network, and is
defined as the ratio of the change in the loss function at the current iteration to the
change in the parameters of the neural network at the same iteration:

Ke f f =
|E(θk)− E(θk−1)|

∥θk − θk−1∥
, (50)

where E(θk) is the loss function value at the current iteration, E(θk−1) is the loss
function value at the previous iteration, and ∥θk − θk−1∥ is the rate of change in the
parameters of the neural network at the current iteration.

2. Quality coefficient—evaluates the accuracy of approximation of the neural network
parameters, and is defined as the ratio of the reduction in the loss function at the
current iteration to the total loss function at previous iterations:

Kquality =
E(θk−1)− E(θk)

E(θ0)− E(θk−1)
, (51)

where E(θ0) is the loss function initial value.
3. Determination coefficient—measures the proportion of variability in the de-pendent

variable that is explained by the model:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 , (52)

where yi is the actual value, ŷi is the approximated value for the i-th example, y is the
average value of the actual values.
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4. Correlation coefficient—measures the degree of linear dependence between actual
and approximated values:

R = 1 − ∑n
i=1 (yi − y)·

(
ŷi − ŷ

)
∑n

i=1(yi − y)2·∑n
i=1

(
ŷi − ŷ

)2 , (53)

where ŷ is the average value of the approximated values.
5. The accuracy of solving the task of helicopter TE parameters neural network approxi-

mation on a test data set is a measure of the correspondence of the out-put values of
the neural network to the expected values of helicopter TE parameters based on the
provided test data:

Accuracy =
TP + TN

TP + TN + FP + FN
, (54)

where TP (True Positive) is the number of true positive results, TN (True Negative) is
the number of true negative results, FP (False Positive) is the number of false positive
results, and FN (False Negative) is the number of false negative results.

6. Precision—is a metric used in assessing the quality of classification, which measures
the proportion of objects that belong to the positive class among all objects that were
predicted as positive:

Precision =
TP

TP + FP
. (55)

The higher the Precision value, the fewer false positives the model produces, meaning
that the model is less likely to misclassify negative class objects as positive. High
accuracy is important when the cost of FP error (false positive) is high.

7. Recall (completeness, sensitivity)—is a metric used in assessing the quality of classifi-
cation, which measures the proportion of objects of the positive class that the model
correctly classified as positive:

Recall =
TP

TP + FN
. (56)

8. F-score—is a metric used to measure the accuracy of the test, and is the harmonic
mean between Precision and Recall:

F-score =
2·Precision·Recall
Precision + Recall

. (57)

Table 6. Calculating results of the degree of improvement of the proposed neural network training
algorithm compared to traditional ones (author’s research).

Quality Metric Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5 Algorithm 6

Keff 0.994 0.983 0.964 0.959 0.926 0.925
Kquality 0.993 0.980 0.952 0.948 0.912 0.915

R2 0.997 0.981 0.953 0.950 0.917 0.920
R 0.992 0.977 0.943 0.935 0.908 0.911

Accuracy 0.993 0.985 0.960 0.949 0.910 0.916
Precision 0.987 0.969 0.945 0.937 0.913 0.910

Recall 1.0 1.0 1.0 0.950 0.922 0.903
F-score 0.988 0.962 0.951 0.938 0.908 0.846

Table 7 shows the results of improving the quality metrics of neural network training by
the proposed modified SCG algorithm (Algorithm 1) in comparison with other algorithms
(Algorithms 2–6).
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Table 7. Results of calculating the degree of improvement of the proposed neural network training
algorithm compared to traditional ones (author’s research).

Quality Metric Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5 Algorithm 6

Keff 1.011 1.031 1.036 1.073 1.075
Kquality 1.013 1.043 1.048 1.089 1.085

R2 1.016 1.046 1.050 1.087 1.084
R 1.015 1.052 1.061 1.093 1.089

Accuracy 1.008 1.034 1.046 1.091 1.084
Precision 1.019 1.044 1.053 1.081 1.085

Recall – – 1.053 1.085 1.107
F-score 1.027 1.039 1.053 1.088 1.168

As can be seen from Table 7, the application of the proposed modified neural network
training algorithm in the problem of neural network approximation of helicopter TE
parameters improves the considered quality metrics from 1.008 to 1.168 times.

At the final stage of the computational experiment, errors of the first and second
types are determined and analyzed, which in statistics play an important role in making
statistical decisions. A first type error occurs when the null hypothesis is incorrectly rejected,
suggesting the presence of an effect or difference where there is none. This is often related
to the chosen significance level.

The paper uses a significance level of 0.01, which indicates that a decision on statistical
significance is made only if the probability of obtaining these or more extreme results,
provided that the null hypothesis is true, is less than 1%. A significance level of 0.01 was
adopted because first type errors are undesirable and a very high level of confidence in
statistical significance is required. In the approximation task, the null hypothesis is an
incorrectly approximated value of the helicopter TE parameter, accepted as correct, and is
calculated as:

First kind error = P(deviation H0|H0 true). (58)

A second type of error, on the other hand, occurs when the null hypothesis is not
rejected even though it is false. This may be due to the insufficient power of the statistical
test, which is unable to detect a true effect due to a small sample size or other factors. In
the approximation task, the null hypothesis is the correctly approximated value of the
helicopter’s TE parameter, accepted as incorrect. Both types of errors are important when
assessing the reliability of the results of statistical analysis, and a decrease in one of them is
often associated with an increase in the other and is calculated as:

Second kind error = P(non − deviation H0|H0 false), (59)

where the concept of “power” of a test is defined as the probability of rejecting the null
hypothesis when it is false.

Table 8 shows the results of calculating errors of the first and second kind both for the
proposed modified SCG algorithm for training a neural network and for other algorithms
discussed above:

• The traditional SCG algorithm;
• The backpropagation algorithm;
• The quick propagation algorithm;
• The quasi-Newton algorithm;
• the Levenberg–Marquardt algorithm, in solving the task of neural network approxi-

mation of helicopter TE parameters–dependency surfaces.
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Table 8. Results of calculating the first and second types of errors (author’s research).

Neural Network
Training Algorithm

Probability of Error in Neural Network Approximation of Helicopter TE Parameters
Dependency Surface

(
Gair,π*

C,T*
C

)
Dependency Surface

(
P*

C,NC,ηC

)
First Kind Error Second Kind Error First Kind Error Second Kind Error

Proposed modified SCG algorithm 0.62 0.43 0.65 0.44
Traditional SCG algorithm 0.92 0.68 0.94 0.71
Backpropagation algorithm 1.25 1.07 1.28 1.09

Quick propagation algorithm 1.43 1.12 1.46 1.15
Quasi-Newton algorithm 1.68 1.34 1.72 1.37

Levenberg-Marquardt algorithm 1.55 1.41 1.58 1.42

A comparative analysis showed that the use of the proposed modified SCG algo-
rithm for training a neural network reduces errors of the first and second types com-
pared with the traditional SCG algorithm by 1.35. . .1.61 times, the backpropagation
algorithm–by 1.97. . .2.49 times, the quick propagation algorithm–by 2.25. . .2.61 times,
by the quasi-Newton algorithm–by 2.65. . .3.12 times, the Levenberg-Marquardt algorithm–
by 2.43. . .3.28 times.

To compare the proposed helicopter TE parameters neural network approximation
method based on a three-layer forward propagation neural network with linear neurons
in the output layer, trained by a modified SCG algorithm, with the closest analogue [28],
which is based on hybrid fault detection and diagnosis, which consists of four main stages:
data collection, data evaluation (analysis and normalization), data fusion (only for the
supervised training method) and a neural network model—a three-layer perceptron trained
by the classical backpropagation algorithm. Applying the training sample (Table 1) to the
model [28], a diagram was constructed of the dependence of the energy change on the
gas-generator rotor r.p.m. of the helicopter TE (Figure 12, where the “black curve” is a
diagram constructed using the helicopter TE parameters neural network approximation
method proposed in the helicopters work, that is, similar to Figure 11, the “red curve” is a
diagram constructed using the model [28]).
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Research of the dependence of energy changes on the gas-generator rotor r.p.m. of
a helicopter TE, carried out using the model [28], demonstrates significant differences
compared to the results obtained in this work. It should be noted that the results obtained
in this work highlight the critical importance of the relations under research, emphasizing
its importance for optimizing engine operation and helicopter TE ensuring safe operation,
at a time when the results obtained using [28] look less significant from a practical point of
view applications. This is because the data presented in this work describes in detail the
influence of the gas-generator rotor r.p.m. on the energy characteristics of the helicopter’s
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TE compressor and highlights critical moments that are important for ensuring optimal
operation and safe operation of the engine. In contrast, the results obtained using the
model [28] may be less accurate or take into account fewer factors, making them less
informative for engineering and practical purposes.

Table 9 shows the main advantages of the proposed method of neural network ap-
proximation of helicopter TE parameters over the closest approach [28] according to the
following parameters: neural network architecture, neural network training algorithm,
neural network training time, efficiency coefficient, quality coefficient, determination coeffi-
cient, correlation coefficient, Accuracy, Precision, Recall, F-score.

Table 9. Results of a comparative analysis of the dependence of energy changes on the gas-generator
rotor r.p.m. of a helicopter turboshaft engine (author’s research).

Quality Metric Proposed Method Closest Analogue [28] Proposed Method Advantages

Neural network
architecture

Three-layer forward
propagation

neural network
Three-layer perceptron

The key advantage of a three-layer
feedforward neural network with linear

neurons in the output layer is its ability to train
more complex and non-linear relations in the

data, which increases its ability to model a
variety of patterns.

Neural network
training algorithm Modified SCG algorithm Backpropagation

algorithm

A key advantage of the modified SCG
algorithm is its ability to eliminate the

possibility of hitting a local minimum by
introducing a moment coefficient into the
analytical expression for calculating new

model parameters, which significantly reduces
the risk of suboptimal tuning of model

parameters compared to a
backpropagation algorithm.

Neural network
training time

447 s (AMD Ryzen 5
5600 processor, 32 KB
third-level cache, Zen
3 architecture, 6 cores,
12 threads, 3.5 GHz,
RAM-32 GB DDR-4)

362 s (AMD Ryzen 5
5600 processor, 32 KB
third-level cache, Zen
3 architecture, 6 cores,
12 threads, 3.5 GHz,
RAM-32 GB DDR-4)

Although the model based on the three-layer
perceptron [28] was trained 85 s faster than the
one proposed in this work, the advantages of

the modified SCG algorithm over the
backpropagation algorithm offset the

difference in training time.

Keff 0.994 0.914
The efficiency coefficient of the proposed

method is 1.09 times higher than the
model [28]

Kquality 0.993 0.876 The quality coefficient of the proposed method
is 1.13 times higher than the model [28]

R2 0.997 0.892
The determination coefficient of the proposed

method is 1.12 times higher than the
model [28]

R 0.992 0.875
The correlation coefficient of the proposed

method is 1.13 times higher than the
model [28]

Accuracy 0.993 0.863 The accuracy of the proposed method is
1.15 times higher than the model [28]

Precision 0.987 0.901 The precision of the proposed method is
1.10 times higher than the model [28]

Recall 1.0 0.858 The recall of the proposed method is 1.17 times
higher than the model [28]

F-score 0.993 0.879 The F-score of the proposed method is
1.13 times higher than the model [28]

Proposed method
advantages
summary

The key advantage of the proposed method, employing a three-layer feedforward neural network with
linear neurons in the output layer and the modified SCG algorithm, is its superior performance in training
complex and non-linear relations in the data, resulting in significantly higher efficiency, quality,
determination, correlation, accuracy, precision, recall, and F-score compared to the model [28].
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Despite the three-layer perceptron model [28] being trained 85 s faster than the one
proposed in this work, the advantages of the modified SCG algorithm over the backpropa-
gation algorithm offset the difference in training time, as evidenced by higher efficiency,
quality, determination, correlation coefficients, accuracy, precision, recall, and F-score of
the proposed method compared to the model [28].

Thus, the results obtained during the comparative analysis (Table 9) of the proposed
method of helicopter TE parameters neural network approximation based on a 3LFNN with
linear neurons in the output layer, trained by a modified SCG algorithm with the closest one
to it, which is based using a three-layer perceptron trained with an error backpropagation
algorithm [28], indicate that the proposed method is more effective compared to [28] in
solving the task of helicopter TE parameters neural network approximation at helicopter
flight mode.

5. Conclusions

For the first time, a helicopter turboshaft engine parameters neural network approx-
imation method was developed, which, via the use of a three-layer neural network of
direct propagation with linear neurons in the output layer, trained by a modified SCG
algorithm, made it possible to obtain approximated surfaces of dependencies of helicopter
TE parameters with an accuracy of at least 0.993 (99.3%).

The SCG algorithm, used in training feedforward neural networks, was further devel-
oped, which differs from the existing one in that by introducing the moment coefficient into
the analytical expression for calculating new model parameters, the possibility of falling
into a local minimum was eliminated, which eliminates the probability optimal setting of
model parameters is not enough.

A mathematical model was created that determines the energy released during heli-
copter TE compressor rotation, taking into account the power limitations of helicopter TE,
which depend on the gas-generator rotor r.p.m. and their changes over time. The adequacy
of the created mathematical model was confirmed by calculating statistical quality metrics,
such as RMSE, MAE, and MAPE, while the RMSE of the results obtained in this work
using neural network approximation is 2.78 times less than the results obtained using
the helicopter TE mathematical model in [38], MAE of the results obtained in this work
using neural network approximation is 1.68 times less than the results obtained using the
helicopter TE mathematical model in [38], and MAPE of the results obtained in this work
using neural network approximation is 2.89 times less than the results obtained using the
helicopter TE mathematical model in [38].

The dependence of the energy released during the helicopter turboshaft engine com-
pressor rotation on the gas-generator rotor r.p.m. was obtained, divided into the region
of low gas-generator rotor r.p.m., in which the energy is low, the region of medium gas-
generator rotor r.p.m., in which the energy rapidly increases, the region of high gas-
generator rotor r.p.m., while the efficiency of the compressor decreases, and the energy
grows more slowly, and the region of maximum gas-generator rotor r.p.m., in which the
energy reaches its maximum. Application of the obtained dependence makes it possible
to establish for a specific type of helicopter turboshaft engine the region of optimal gas-
generator rotor r.p.m., where the optimal ratio of energy consumption and gas-generator
operating efficiency is achieved, thereby ensuring optimal performance and reliability of
the helicopter TE. The adequacy of the results obtained was confirmed by calculating the
determination coefficient (its value is 0.99126), the standard error of estimation (its value
is 0.00974), Fisher’s F-test (its value is 4.782, which is greater than the critical 3.97 at a
significance level of 0.01), which indicates the possibility of accurately determining the
optimal gas-generator rotor r.p.m. for a specific type of helicopter TE, where the best ratio
of energy consumption and gas-generator operating efficiency is achieved, which ensures
maximum performance and reliability of the helicopters TE.

It was experimentally confirmed that the obtained maximum root means square
error values, the MAE value of the mean absolute relative deviation of the approximated
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parameters of helicopter TE are in the range from 1.1 to 1.8% and do not exceed 2%, which
indicates their high approximation of a 3LFNN with linear neurons in the output layer
trained by the proposed modified SCG algorithm.

It was experimentally proven that solving the task of neural network ap-proximation
of helicopter TE parameters using a three-layer direct propagation neural network with
linear neurons in the output layer, trained by the proposed modified SCG algorithm, re-
duces errors of the first and second kind compared to the traditional SCG algorithm by
1.35. . .1.61 times, to the backpropagation algorithm—by 1.97. . .2.49 times, to the quick propa-
gation algorithm—by 2.25. . .2.61 times, to the quasi-Newton algorithm—by 2.65. . .3.12 times,
to the Levenberg–Marquardt algorithm—by 2.43. . .3.28 times, which indicates a more accu-
rate and efficient operation of the developed neural network approximation method.

It was experimentally confirmed that the use of the proposed modified SCG algorithm,
used in training feedforward neural networks, in the task of neural network approximation
of helicopter TE parameters, improves quality metrics, namely, efficiency coefficient, quality
coefficient, determination coefficient, correlation coefficient, accuracy, precision, recall,
F-score, compared to traditional SCG algorithm, backpropagation algorithm, fast error
propagation algorithm, quasi-Newton algorithm, Levenberg-Marquardt algorithm, from
1.008 to 1.168 times.
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