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Abstract: In this paper, we present an unprecedented method based on Kohonen networks that is
able to automatically recognize partial discharge (PD) classes from phase-resolved partial discharge
(PRPD) diagrams with features of various simultaneous PD patterns. The PRPD diagrams were
obtained from the stator windings of a real-world hydro-generator rotating machine. The proposed
approach integrates classification probabilities into the Kohonen method, producing self-organizing
probability maps (SOPMs). For building SOPMs, a group of PRPD diagrams, each containing a single
PD pattern for training the Kohonen networks and single- and multiple-class-featured samples for
obtaining final SOPMs, is used to calculate the probabilities of each Kohonen neuron to be associated
with the various PD classes considered. At the end of this process, a self-organizing probability map
is produced. Probabilities are calculated using distances, obtained in the space of features, between
neurons and samples. The so-produced SOPM enables the effective classification of PRPD samples
and provides the probability that a given PD sample is associated with a PD class. In this work,
amplitude histograms are the features extracted from PRPDs maps. Our results demonstrate an
average classification accuracy rate of approximately 90% for test samples.

Keywords: self-organizing probability map; partial discharges; classification; phase-resolved partial
discharges; Kohonen networks

1. Introduction

Partial discharges (PDs) are localized electrical currents that occur within the insula-
tion system of high-voltage equipment without causing a complete failure of the insulation.
These discharges are typically caused by inhomogeneities in the insulation dielectric ma-
terial, leading to localized intensification of the electric field and subsequent breakdown.
PD activity is often characterized by the generation of electrical pulses, electromagnetic
radiation, acoustic emissions, and chemical byproducts like ozone [1–3]. Understanding the
type and location of PD is crucial for assessing the condition of the insulation and predicting
potential failures. PD monitoring is a crucial measure regarding predictive maintenance
procedures on rotating machines in the electric power industry [4]. PD-monitoring-driven
maintenance goals are mainly concerned with keeping the generators operating properly
and ultimately avoiding catastrophic events which could lead to machine loss. However,
PD diagnostic methods rely on human experts to analyze the data, which is time consum-
ing, costly, and limits the amount of data that can be inspected. While PD monitoring has
standard methods to assess insulation health, real-world voltage distortions can affect how
discharge responses appear [5]. Furthermore, multiple classes of discharges can emerge
simultaneously [6]. To overcome those challenges, machine learning algorithms have been
proposed for PD classification, which would enable automated and efficient diagnostics.

Traditional machine learning algorithms, like support vector machines and artificial
neural networks, have been used for PD classification. Table 1 provides a comparative
overview of various methods used for PD recognition in hydro-generators, including our
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proposed approach. Each row is associated with a different research paper, and the columns
highlight key aspects of the methods: algorithms employed, whether the probability of a
PRPD map being associated with a PD class is calculated (statistics), and the input features
used for PD recognition.

Krivda and Gulski implemented Kohonen neural networks for classifying PDs [7]. The
Kohonen networks demonstrated varying classification accuracies based on the number
of neurons in the Kohonen layer. The best obtained Kohonen network had 12 neurons
in the Kohonen layer, and it achieved a classification accuracy of 90% for two PD classes.
Araújo et al. [8] implemented a Multilayer Perceptron (MLP) algorithm, employing normal-
ized histograms as input features and achieving a single PD source classification accuracy
of 94.4%. Lopes et al. [9] utilized Convolutional Neural Networks (CNNs) with real-world
hydro-generator data with histograms as input, resulting in an accuracy of 89.44% for
single-source PD classification. Pardauil et al. [10] combined k-means and Random Forest
(RF) algorithms with data mining and clustering, using histograms as input, and achieved
an accuracy of 99% for classifying single PD sources. In [11], Zemouri et al. developed an
approach using a Generative Adversarial Network (GAN) and a Variational Autoencoder
(VAE) to enhance the representativeness of individual PD sources in the VAE latent space
with 2D Partial Discharge Analyzer (PDA) data as input. Zemouri et al. [12], introduced
a multifaceted approach, utilizing the U-Net model for source isolation, Deep Learning
models for PD recognition, and a novel decision-making technique for output classification.
Real-world hydro-generator data analysis yields a 87% gap source detection accuracy and
accuracy rates of 91%, 95%, 96%, and 94% for Internal, Corona, Slot, and Delamination
single-source PDs. In [13], a method for fault diagnosis in high-voltage equipment using
supervised contrastive learning (SCL) with data augmentation is proposed and applied to
PRPD data collected using UHF sensors. SCL achieves a classification accuracy over 96%
for single-class PRPDs. Note that in [8–13], PRPD maps with only one well-defined PD
pattern each were considered and, therefore, accuracy rates tended to be around 90%.

The complex nature of PD patterns necessitates sophisticated analysis techniques.
As noted in [5], real-world voltage distortions can significantly alter the appearance of
discharge responses, making interpretation challenging. Furthermore, the simultaneous
occurrence of multiple PD classes, as observed in [2,14–16], further increases the difficulty
of accurate classification. These complexities highlight the limitations of traditional PD
diagnostic methods relying on human expertise and underscore the need for automated
and robust solutions. Prior research has explored various machine learning algorithms
for PD classification, including Kohonen neural networks [7], Multilayer Perceptrons [8],
and Convolutional Neural Networks [9]. However, these methods predominantly focus on
single-class PD patterns, limiting their applicability in real-world scenarios where multiple
PD sources are often present. Therefore, in this work, we aim to overcome these limitations
by proposing the self-organizing probability map (SOPM) algorithm, a novel approach
combining Kohonen networks with statistical analysis to enable accurate classification
of PRPDs with concurrent features of several classes by mapping the input data into
a two-dimensional space where we assign classification probabilities to each neuron in
the map. The algorithm is trained on a set of PRPDs acquired from real-world hydro-
generator machines and it can accurately classify PRPD maps not contained in the training
set regardless of whether they contain single- or multiple-class features, providing a more
comprehensive diagnostic tool than traditional methods. The paper is structured as follows:
Section 2 presents a background on partial discharges, including their occurrence in hydro-
generators and signal processing; Section 3 has information about our PD data set obtained
from on-line hydro-generator; Section 4 contains a review of Kohonen Self-Organizing
Maps; In Sections 5 and 6, we describe the proposed SOPM method; In Section 7, SOM
and SOPM results are presented and discussed; and, finally, in Section 8, conclusions
are drawn.
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Table 1. Methods (and their characteristics) used for hydro-generator PD recognition in the literature
and the method proposed in this work.

Papers Algorithms Classification
Probabilities

Input Features and
Metrics

Krivda and Gulski [7] Kohonen No Pulse count and
amplitude distributions

Araújo et al. [8] MLP No Histograms
(Normalized)

Lopes et al. [9] CNN No Histograms

Pardauil et al. [10] K-means and RF No Histograms

Zemouri et al. [11] GAN No 2D PDA

Zemouri et al. [12] Deep Learning No Edge Detection Filter,
Statistical Features

Dang et al. [13] Supervised contrastive learning (SCL) No
t-distributed stochastic
neighbor embedding

(t-SNE)

This work SOPM (novel)
Yes

(concurrent PD
classification)

Amplitude Histograms,
sample-neuron distances
in the space of features

2. Background on Partial Discharges

Partial discharges are electrical events that occur in non-uniform regions within an
insulating material of high-voltage equipment. They happen when an electric field exceeds
the material’s dielectric strength without leading to a complete insulation breakdown [17].
In simpler terms, partial discharges can be thought of as localized electrical discharges that
do not fully bridge the gap between phase conductors and the ground. PDs are primarily
initiated by imperfections within the insulating material. These imperfections can manifest
as gas bubbles, voids, inclusions of foreign materials, or surface irregularities [1,17,18].
When the applied voltage reaches a certain threshold, these imperfections can act as
initiation sites for electrical discharges.

As significant markers of insulation degradation in electrical equipment, PDs are
particularly relevant to rotating machines such as motors and generators [1,10,17–20].
Specifically, in the context of synchronous generators, which are the focus of this work,
approximately 60% of the defects can be attributed to failures of electrical insulation of
stator windings [21]. Three common types of PD found in rotating electrical machines are
slot discharges, internal discharges and end-winding discharges, each with distinct charac-
teristics and implications [1,2]. Slot discharges occur in the air gap between the stator core
and the conductive slot portion of the winding, often arising from poor contact or damage
to the conductive coating. Internal discharges occur within the main insulation, typically
due to voids or delamination caused by manufacturing defects or aging. End-winding
discharges, on the other hand, occur on the surface of the insulation in the end-winding
region, often resulting from contamination, damaged field grading materials, or inadequate
installation procedures; while internal discharges and slot discharges pose a greater risk of
insulation failure due to their erosive nature, end-winding discharges are generally less crit-
ical but can accelerate aging under certain conditions [1]. Distinguishing between these PD
types is essential for accurate diagnosis and effective mitigation strategies [3]. According to
the IEC60034-27-2 standard [1], it is possible to derive characteristic patterns representing
specific defects from PD measurements. Consequently, tracking PDs is associated with
monitoring the progression of equipment defects. Accurate identification and classification
of PDs are crucial for preventive maintenance, allowing issues to be rectified before they
result in catastrophic equipment failures. Electromagnetic signals of PDs are typically
detected and monitored using specialized techniques that measure discharge currents,
propagating electromagnetic waves or visible light pulses generated by the discharges.

In order to correlate PD phenomenon and its causes, it is necessary to verify the
pattern(s) formed by the discharges [1]. After measuring the current pulses and reference
signals, a Phased Resolved Partial Discharge (PRPD) map is created to visualize the pattern
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formed by the discharges and then link it to a possible defect type. PRPD maps correlate
amplitude q of the PDs, their occurrence phase ϕ and the quantity n of PDs [1,17,22]. Thus,
PRPDs are a fundamental tool for distinguishing the phenomena among the various types
of defects that can give rise to PDs (see [1,23]).

Figure 1 shows PRPD maps for various PD classes of defect obtained from a real
hydro-generator: Slot Discharge (S), Internal Void (InV), Internal Delamination (InD),
Delamination Between Conductor and Insulation (DCI) and corona discharge (C). For the
same reasons given in [8], samples of the internal cavity (InV) and internal delamination
(InD) classes were merged into a new InV/InD class, and the samples of slot (S) and
corona (C) classes were combined into a new S/C class in the PRPD database. Furthermore,
Figure 1f,g show examples of PRPDs with simultaneous features of multiple patterns:
InD+DCI and InD+S, respectively, as one can see by comparing Figure 1f with Figure 1c,d
and by examining in detail Figure 1g along with Figure 1a,c.

Each pixel color within a PRPD map corresponds to a quantity of PD peaks sharing
the same amplitude and phase, i.e., it maps PD count. Prior to PRPD assembling, data
preprocessing is applied to filter out discharges with amplitudes near zero, leaving only
representative discharge peaks, resulting in a region devoid of discharges termed as the
gap.A collection of uninterrupted, connected discharges (non-white pixels) forms what is
referred to as a cloud of discharges in PRPD maps. Discrimination between different DP
patterns hinges on an examination of cloud shapes and their symmetry around the gap
zone. In this work, the measurements of electrical signals from hydro-generator PDs were
conducted using capacitive couplers, which were employed to separate the fast PD signals
from the 60 Hz signal. The electric current pulses were recorded over multiple cycles of the
60 Hz voltage signal, from which the phase is used for composing PRPDs.
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Figure 1. Examples of PRPD maps in the data set. Each sample is associated with a PD class: (a) Slot
Discharge (S), (b) Internal Void (InV), (c) Internal Delamination (InD), (d) Delamination Between
Conductor and Insulation (DCI), (e) Corona (C), (f) Inv/InD + DCI and (g) Inv/InD + S/C.

2.1. Partial Discharges in Hydro-Generators

In hydroelectric generators, partial discharges (PDs) are a common occurrence within
the stator bar insulation system. These discharges are categorized based on their specific
location within the bar and are typically classified as slot discharges, internal discharges,
and end-winding discharges.

Slot discharges (S) primarily arise as a result of the generator’s vibration, which, over
time, erodes the semi-conducting layer which should avoid high electric field gradients on
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the surfaces of stator bars [17]. Once the semi-conducting layer is sufficiently damaged,
PDs emerge. Slot PDs generate a characteristic PRPD pattern, as is seen in Figure 1a. The
PD pattern in Figure 1a is distinguished from other PD types by its positive- and negative-
voltage discharge clouds with triangular shapes, with the positive-voltage cloud being
more prominent than the negative one. This kind of voltage-level asymmetry has been
referred to as positive-voltage asymmetry in [24].

Internal discharges, which occur within the insulation layers of stator bars, can be
further classified into three distinct categories: internal void (InV), internal delamination
(InD), and delamination between conductor and insulator (DCI).

InV discharges primarily result from the formation of air bubbles during the manufac-
turing process of the bars [10]. These discharges exhibit a unique Phase-Resolved Partial
Discharge (PRPD) pattern characterized by rounded and symmetrical discharge clouds, as
illustrated by Figure 1b.

On the other hand, InD discharges are manifested as detachments or elongated cavi-
ties located between the insulation layers. The PRPD pattern of InD discharges features
symmetrically arranged triangular clouds around the gap zone (refer to Figure 1c).

As the name suggests, DCI discharges occur in proximity to the copper conductor of
the bars. These faults are typically initiated by overheating, which subsequently leads to
the detachment of the insulation layers. The PRPD pattern associated with DCI discharges
is distinguished by a negative-voltage cloud that surpasses the positive-voltage cloud in
amplitude, thereby resulting in a negative-voltage asymmetry, as is seen in Figure 1d.

Finally, corona discharges (C) occur when the electric field between end-winding
and nearby surfaces becomes stronger than the surrounding air’s dielectric strength, thus
ionizing the air. An arc between stator bar and the air is formed, which is responsible for
the bright glow and buzzing noises characterizing typical corona discharges. Preventing
corona discharges requires careful design of end-winding and adjacent surfaces, primarily
by avoiding high electric fields near conductors, which are usually mitigated by using
anti-corona sleeves. Once corona sleeves are damaged, corona PDs emerge. A typical PRPD
pattern of corona discharges is characterized by positive-voltage cloud asymmetry. PRPD
corona clouds tend to have rounded shapes, as seen in Figure 1e.

2.2. PRPD Denoising and Feature Extraction

In the process of PD class recognition, filtering of PRPD maps is a critical step [25].
When PD measurements are conducted in an operating generator, its stator is subjected
electrical, mechanical, and thermal stresses, which account to noise addition to signal
measurements [8,24]. Therefore, the filtering step is essential for attenuating noise and
interference, thereby increasing recognition rates.

In this study, we utilize the PRPD image-based PD denoising algorithm proposed
in [8]. This filtering algorithm treats PRPD maps as images and it is capable of eliminating
low-density PD clouds or PD peaks not linked to large clouds (usually associated with
noise) and, furthermore, it is able to remove non-dominant PD clouds present due to
cross-talk. Those noise sources are commonly observed in online hydro-generators. As
illustrated in Figure 2a,b, the application of the denoising algorithm significantly increases
the possibility of automatic recognition of PD cloud shapes in PRPD patterns and, therefore,
improves the overall PD recognition process.

In order to increase the DP classification rates, in addition to filtering, it is crucial to
minimize the number of dimensions of the inputs by providing the network exclusively
indispensable attributes (features) to properly group PD samples by classes in the space of
features while keeping classes properly separated. The feature extraction method described
in [8] was adopted in this paper. As PRPDs contain positive- and negative-voltage PDs, for
each polarity, two sets of histograms are generated [8] resulting in four distinct normalized
histograms: two phase histograms (one for positive voltage and the other for negative
voltage) and two voltage histograms (also each one for positive and negative PD polarity).
Therefore, amplitude histograms are used as classification features in this work.
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Figure 2. PRPD map as seen (a) before filtering and (b) after filtering.

3. The Data Set Obtained from the On-Line Hydro-Generators

The data set used in this study consists of online-measured PDs from hydro-generators
at the Tucuruí and Coaracy Nunes hydroelectric power plants, both situated in north region
of Brazil. The employed electrical measurement procedures are based on traditional
capacitive sensing systems. The capacitors are distributed over the stator bars of each
hydro-generator.

PD patterns were manually labeled by an expert professional following the PD classes
outlined in IEC 60034-27-2 [1] (internal void (InV), internal delamination (InD), delam-
ination between conductor and insulation (DCI), slot (S), corona (C), surface and gap
discharges). This study does not encompass samples of surface PDs or gap PDs classes.
Figure 3 displays the quantities of samples in the database for each class.
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Figure 3. Quantity of PRPDs in each class of the data set.

4. Review of Kohonen Self-Organizing Maps (SOMs)

Kohonen self-organizing maps or networks, originally proposed by T. Kohonen [26],
consist of a type of unsupervised neural network trained via competitive learning that
produce lower-dimensional discrete representations of the training samples, i.e., maps.
Therefore, Kohonen networks consist of an arrangement of neurons with weights. The
neural arrangements typically have one, two, or three dimensions mapping the higher-
dimensional space of features defining the input samples [27]. While preserving the data’s
topographic structure [28], Kohonen maps are particularly useful for tasks like clustering,
data visualization, and dimensionality reduction.
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Since sample groups are usually complex to visualize and analyze in the original
high-dimensional space of features, the input samples are grouped on the maps based on
their topographic similarities [29]. Therefore, Kohonen SOMs are commonly assembled in
two dimensions. In a Kohonen SOM, each neural node i = 1, 2, . . . , zy in the network has
assigned a weight vector wi = [wi1, wi2, . . . , wim] with the same number of dimensions m
as input sample x = [x1, x2, . . . , xm]. Quantities z and y are the total numbers of lines and
columns of the neural map. During the training procedure, weight vectors are progressively
adjusted to properly clustering samples with similar features set. The Euclidean distances
from x to all weight wi vectors are computed. The neuron with a weight vector closer to
the input vector is called the Best Matching Unit (BMU).

In Figure 4a, the arrangement of samples and neurons in the a didactic two-dimensional
space of features is shown (note that, frequently, m > 3). It can be observed that BMU (red
neuron) is the closest neuron to x and, therefore, it has the highest similarity level with the
input sample x. Figure 4b,c show, respectively, BMU on the SOM map (with neural weights
and input sample) and the SOM map with each neuron labeled as the class of its exciting
samples with foregrounded BMU.

i

Neurons

Input sample

-

-
-

Neurons

Figure 4. Illustrations of (a) neurons, BMU and samples distributed in a didactic 2D space of features
(m = 2), (b) A 2D SOM network with input layer, output layer (the two-dimensional map itself),
input sample, neural weights, and BMU and (c) SOM map with each neuron labeled as the class of its
exciting samples (BMU is also highlighted).

Once the BMU is identified, its weight vector and its neighboring nodes are updated
to be closer to the input vector, as Figure 5 illustrates in the didactic two-dimensional space
of features. Over a sufficient number of iterations, the map will organize itself in such a
way that sub-areas will be formed and associated with a specific characteristic (i.e., a set of
features) of the training samples.
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Neuron Updated neuronBMUNeuron

Sample

x

Figure 5. Illustration of an update step of the best-matching unit and its neighbor neurons towards
the input sample X in the didactic two-dimensional space of features.

4.1. Training SOM Networks

SOM networks can be trained using a sequential algorithm [27]. A single input sample
is used to update the weights of the neurons per training epoch t (iteration). Training SOMs
involves initialization, sampling, similarity matching, update of weights of neurons, and
repetition of the process while the map changes. As mentioned earlier, the goal of training
is to update the weights of neurons to approximate the feature vectors representing N
samples in such a way that each region of the map is able to gather similar samples.

The first key step towards achieving this goal is to find the neuron wc(t) closest to
the current input sample xj(t). The neuron wc(t) is referred to as the BMU (Best Matching
Unit) to xj(t). The index c of the neuron wc is defined by using

c(x(t)) = argmini ∥ x(t)− wi(t) ∥, (1)

where ∥ . ∥ is the norm operator, and the function argmin returns the index of the neuron
that minimizes the norm [30]. Then, weights of all neurons are updated by using

wi(t + 1) = wi(t) + α(t)hi,c(x(t))(x(t)− wi(t)), (2)

where α(t) is the learning rate at iteration t, and hi,c(t) is the neighborhood function regard-
ing neurons with indices i and c (BMU) at iteration t.

In (2), both α(t) and hi,c(t) are functions that decay over epochs. This is necessary
for achieving convergence of the training process. In this work, the learning rate α(t) is
calculated using

α(t) = α0 e−t/τ , (3)

where τ is a constant used to adjust the decay level of the learning rate and α0 is the initial
value of α(t). The neighborhood function is computed in this work employing

hi,c(x(t)) = exp

(
−

d2
i,c(x(t))

2σ2

)
, (4)

in which di,c(x(t)) is the distance between the winning neuron c and the excited neuron i,
and σ is the neighborhood radius function, given by

σ(t) = σ0 exp(−t/τ), (5)

where σ0 defines the initial neighborhood radius [27]. The neighborhood range (or radius)
determines the number of neurons that will be updated along with the BMU. Therefore, we
may say that Kohonen self-organizing maps employ a neighborhood function to facilitate
the formation of topologically ordered representations of high-dimensional data. This
function, often modeled using a Gaussian distribution as given in (4), determines the extent
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to which the weight update of the winning neuron influences neighboring neurons during
the learning process. The distance between neurons di,c(x(t)) dictates the strength of this
influence, with closer neurons experiencing a greater impact. Furthermore, Equation (5)
introduces an exponential decay of the neighborhood radius σ(t) over iteration index t. This
decay ensures that the initial broad influence of the winning neuron is gradually reduced,
eventually encompassing only the winning neuron itself. The combined effect of these
mechanisms balances global order and local specialization within the SOM. During the
early stages of learning, the large neighborhood radius promotes the formation of ordered
clusters of neurons with similar properties in each cluster. As the learning progresses and
the radius shrinks, fine-tuning of individual neuron weights allows for a more precise
representation of the input data distribution. This kind of interplay between global and local
updates contributes to the ability of SOM to effectively cluster complex high-dimensional
data [27]. Finally, in Figure 6, we present a flowchart illustrating the employed training
process of the SOM networks in this work.

Update neuron weight verctors of all best 
matching units and neighbor neurons 
using (2)

Figure 6. Flowchart illustrating the employed SOM training algorithm. N is the total number
of samples.

4.2. Metrics for SOM Evaluation

In this work, we used two well-known metrics to evaluate SOM networks: the quanti-
zation error QE and the topographic error TE, which are derived in [27]. The quantization
error QE corresponds to the average of the Euclidean distances obtained between each
input sample and its corresponding BMU. Thus, QE is given by

QE =
1
N

N

∑
j=1

∥ xj − wj ∥, (6)

where N is the total number of samples and wj is the BMU of sample xj. The smaller the
quantization error is, the closer the BMUs are to the input samples.

Topographic error TE is an important measure because it directly assesses how well
the SOM preserves the topology of the input space. A low topographic error indicates that
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similar data points in the high-dimensional space are mapped to adjacent units on the map,
thus suggesting appropriate topographic preservation. It is calculated by

TE =
∑N

j=1 u(xj)

N
, (7)

where u(xj) = 0 if the BMU and the second closer neuron to the sample are adjacent and
u(xj) = 1 otherwise.

In this work, all training processes have been executed until convergence, i.e., until
minimization of QE and TE have been achieved. This ensures that the resulting self-
organizing maps are optimally tuned to accurately reflect the underlying structure and
distribution of the input data, maximizing the efficacy of the model for subsequent analysis,
interpretation, and novel developments.

5. The Novel Self-Organizing Probability Maps (SOPMs)

In this section, we present a new method for automatic classification of simultaneous
PDs based on Kohonen networks, which has been named the self-organizing probability
map (SOPM). For each class with index k, the classification probability labels of a neuron
with index i are determined by the average Euclidean distance Dk

i , calculated in the space
of features between wi and the n samples from class k that are closer to that neuron. Thus,
the closer a neuron is to a given class in the space of features, the higher is the probability
of that neuron to be associated with that class.

5.1. Calculation of Dk
i

Thinking of a class as a group of points, i.e., samples, that are geometrically close to
each other in the space of features, we can define the distance between wi and a class k as
the average of the distances between the neuron wi the n samples nearest to it. Therefore,
mathematically one has

Dk
i =

1
n

n

∑
j=1

dk
i,j, (8)

in which dk
i,j corresponds to the Euclidean distance between neuron wi and the j-th sample

of class k, which is given by
dk

i,j =∥ wi − xk
j ∥ . (9)

For each class k and neuron wi, distances dk
i,j given by (9) are previously sorted in

ascending order and in that way accessed as j is increased from 1 to n when calculating Di
k

by employing (8).
A visual representation of the process of obtaining Dk

i is illustrated in Figure 7a, which
shows samples of three distinct classes and neurons in a didactic two-dimensional space
of features (x1 and x2 are the features). With n = 2, distances dk

i,j measured from neuron
wi (the red hexagon) to samples j of each class k are being calculated. It is notable that,
although wi is not positioned in a specific group of samples of any class, that neuron is
very close to the edge of the group of samples of class 1, indicating that wi is more likely to
be associated with that specific class. This can also be seen in Figure 7b, which shows lines
connecting wi to positions in space of features at averaged coordinates calculated using the
n = 2 closer samples to wi from each class k. The so-defined connecting lines measure Dk

i .
Finally, Figure 7c shows distances Dk

i on a distance d-axis for k ranging between 1 and 3.
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(a) (b) (c)

Neuron Neuron Sample of class 1 Sample of class 2 Sample of class 3

d
dd

d d
d

Figure 7. Calculation of Dk
i using n = 2: (a) neurons and samples in the didactic space of features

x1-x2, where the black lines defining dk
i,j cross neuron wi and the two closer samples from each class

k, (b) neuron wi and points to which distance Dk
i is calculated in the space of features for each class k

and (c) distances Dk
i on a distance d-axis for k ranging between 1 and 3.

5.2. Calculation of Classification Probabilities Pk
i

Classification probabilities Pk
i are calculated and assigned to each neuron wi. Pk

i is the
probability of a neuron with the index i being associated a class indexed by k. The smaller
Dk

i , the higher Pk
i .

The calculation of classification probabilities is performed by defining neuronal neigh-
bor regions, as Figure 8a illustrates. The first neuronal neighborhood comprises distances
Dk

i from zero to r1 (the first neighbor threshold which measured from neuron wi). This
first neuronal neighborhood region can be understood as the space contained within a
hypersphere of radius r1 in an m-dimensional space of features. If there is at least one class k
with Dk

i ≤ r1, all other classes will be assigned a zero classification probability at neuron wi.
The second neighbor threshold r2 > r1 is also measured from neuron wi. Thus, the second
neuronal neighborhood lies between the hypersphere of radius r1 and the hypersphere
of radius r2, as Figure 8b illustrates. The second neighborhood region has influence on
neuronal probabilities if Di

k > r1, ∀k. Finally, the third neuronal region encompasses the
entire hypervolume outside the hypersphere with radius r2. Classes with average distances
greater than r2, such as in Figure 8c for the class with k = 2, have their association with
neuron wi disregarded, i.e., P2

i = 0. The numeric values of r1 and r2 are obtained by using
the optimization algorithm Cuckoo-GRN [31], applied to maximize average accuracy rate
of the SOPM system.

(a) (b) (c)

Neurons Neuron Samples of class 1      Samples of class 2      Samples of class 3

1st neighborhood region      2nd neighborhood region          3rd neighborhood region.

Figure 8. Representation of neuronal neighborhood regions in the didactic space of features regard-
ing neuron wi with (a) samples and thresholds r1 and r2 and (b) distances Dk

i . (c) The neuronal
neighborhood regions, distances Di

k, and thresholds r1 and r2 in the distance space.
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In Figures 9–11, we present detailed illustrations of the neural positions on the distance
axis, accompanied by thresholds r1 and r2, and the resulting proposed probability neural
representation. In Figure 9, the neuron wi is showcased in instances where P1

i = 100%.
Figure 9a–c depict scenarios where D1

i ≤ r1, ensuring a classification probability of 100%
for class 1. In the case of Figure 9d, the neuron remains associated with class 1, with
D2

i > r2 and D3
i > r2 but specially because r1 < D1

i ≤ r2. The blue color represents
neurons associated with class 1, and the classification probabilities are proportional to the
areas covered by each color in the probability neural representation.

In Figure 10, the neuron wi is presented in scenarios where it is associated with
multiple classes. Figure 10a,b illustrate situations where the neuron is linked to classes 1
and 3 due to D1

i ≤ r1 and D3
i ≤ r1, and in Figure 10c, it is associated with classes 1, 2, and 3

since Dk
i < r1 for all k. The colors blue and cyan in Figure 10a,b represent the classes 1 and

3, while in Figure 10c, the colors blue, green, and cyan signify associations with classes 1, 2,
and 3. The classification probabilities are indicated by the respective colored areas in the
probability neural representation, providing a comprehensive visualization of the neuron’s
associations with multiple classes under different distance conditions.

Class 1Neuron

First neighborhood Second neighborhood Third neighborhood

(a) (b) (c)

(d)

Figure 9. Cases in which P1
i = 100% because: (a–c) exclusively D1

i ≤ r1; and (d) D2
i > r2 and D3

i > r2

with r1 < D1
i ≤ r2. Note that the neuron is represented by the blue color (associated with class

1). Classification probabilities are proportional to the areas covered by each color in the probability
neural representation.

In Figure 11, the neuron wi is depicted in three distinct scenarios, each illustrating
cases where it is associated with more than one class or to no class. In Figure 11a, the
neuron is linked to classes 1 and 2 because its distance to class 1, i.e., D1

i , falls within the
range [r1, r2], the distance D2

i also falls within the same range, while the distance to class 3
D3

i exceeds r2. Figure 11b portrays a scenario where the neuron is associated with classes
1, 2, and 3. This occurs because the distances to all three classes, D1

i , D2
i , and D3

i , are all
within the range [r1, r2]. In contrast, Figure 11c represents a case where the neuron is not
linked to any class, as its distances Dk

i for all classes exceed the threshold r2. The black
color has been used for representing neuron wi in that case.



Energies 2024, 17, 2208 13 of 24

Class 3Class 1 Class 2 Neuron

First neighborhood Second neighborhood Third neighborhood

(a) (b) (c)

Figure 10. Examples in which wi is associated with more than one class. The related classes are
(a,b) classes 1 and 3 because D1

i ≤ r1 and D3
i ≤ r1; and (c) classes 1, 2 and 3, since D1

i ≤ r1, D2
i ≤ r1

and D3
i ≤ r1. Note that the neuron is represented with the colors blue and cyan in (a,b), which are

associated with classes 1 and 3, and by the colors blue, green, and cyan in (c), which are associated
with classes 1, 2, and 3. Classification probabilities are proportional to the areas covered by each color
in the probability neural representation.

Class 3Class 1 Class 2  No class Neuron

First neighborhood Second neighborhood Third neighborhood

(a) (b) (c)

Figure 11. Illustrative scenarios depicting the associations of wi with multiple classes or no class,
in which it is (a) linked to classes 1 and 2 because r1 < D1

i ≤ r2, r1 < D2
i ≤ r2, and D3

i > r2;
(b) associated with classes 1, 2, and 3, since r1 < Dk

i ≤ r2 for all k and (c) not linked to any class, as
Dk

i > r2 for all k.

Once visual representations of wi in various scenarios have been shown and discussed,
along with illustrations of its associated classification probability cases, mathematical defi-
nitions can be given. For cases where there is only one class k within the first neighborhood
region of wi, or when all classes have distances greater than r1 and only a class k has its
distance to wi smaller than r2, the probability Pk

i = 100% for that class. Otherwise, we
might have smaller classification probabilities. We may thus write

Pk
i = δk

i × 100%, if
s

∑
k′=1

δk′
i = 1 or

s

∑
k′=1

δk′
i = 0 (10)

and

Pk
i =

1 −
δk

i
s
∑

k′=1
δk′

i

× 100%, otherwise. (11)
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For cases in which multiple classification probabilities are associated with wi, one
employs (11). In (10) and (11), δk

i is an auxiliary parameter used for probability calculation,
which is obtained from the analysis of the cases illustrated in Figures 9–11 and it is given by

δk
i = 1, if f (Dk

i , r1) = 1 and
s

∑
a=1

f (Da
i , r1) = 1 or f (Dk

i , r2) = 1 and

s

∑
a=1

[ f (Da
i , r1) + f (Da

i , r2)] = 1, (12)

δk
i =

Dk
i

r1
, if f (Dk

i , r1) = 1 and
s

∑
a=1

f (Da
i , r1) > 1, (13)

δk
i =

Dk
i − r1

r2 − r1
, if f (Dk

i , r2) = 1 and
s

∑
a=1

f (Da
i , r1) = 0 and

s

∑
a=1

f (Da
i , r2) > 1 (14)

and
δk

i = 0, otherwise. (15)

In (12)−(14), f (D, r) is defined as

f (D, r) =

{
1, if D ⩽ r
0, if D > r.

(16)

The parameter δk
i is computed based on the values of Dk

i for each class considering
the neighborhood thresholds r1 and r2. In the case where class k is within the second
neighborhood region, i.e., f (Dk

i , r2) = 1, and all other classes are in the third neighborhood

region, i.e.,
s
∑

a=1
[ f (Da

i , r1) + f (Da
i , r2)] = 1, δk

i is set to 1 for class k and 0 for other classes.

Figure 9d illustrates such a case where only class 1 is in the second neighborhood region.
Another scenario arises when the neuron is associated with multiple classes, indicating
multiple class features may be present. For cases with more than one distance within the first
neighborhood region, δk

i is set to Dk
i /r1 for all classes within this region, i.e., Dk

i is normalized
by the first neighborhood radius r1, and δk

i is set to 0 for other classes. Figure 10a–c
exemplifies instances of such cases. For scenarios with multiple distances within the
second neighborhood region and no class in the first region, δk

i is set to (Dk
i − r1)/(r2 − r1)

for relevant classes, i.e., r1 is used as the zero distance and Dk
i − r1 is normalized by

r2 − r1 (the effective distance threshold for this case) and δk
i is set to 0 for other classes.

Figure 11a,b depict such cases, with Figure 11a showing a case with features of classes 1
and 3, and Figure 11b exhibiting a case with features of all classes. Note that r1 is used as a
referential distance value. Finally, neurons far enough from all classes, i.e., Di

k > r2 for all k,
present a 0% probability, as shown in Figure 11c and they are represented using the color
black. Importantly, Pk

i is determined by Dk
i , enabling the assignment of probabilities for

neurons at class intersections, visually represented on the map by colored neurons with
percentages indicated by the degree of color filling. Figure 12 illustrates an instance of the
SOPM. Neurons are depicted as hexagons, with each color corresponding to a specific class.
Notably, the inset highlighted neuron demonstrates probabilities for multiple classes, with
a 75% likelihood of association with class 2 and a 25% probability for class 1.



Energies 2024, 17, 2208 15 of 24

Class 1
Class 2
Class 3

25%

75%

Figure 12. An illustrative example of a self-organizing probability map (SOPM).

6. The SOPM Algorithm

In this study, we employ the proposed SOPM method for the classification of partial
discharge patterns obtained from online hydro-generator. The developed method is de-
picted in the flowchart presented in Figure 13. The flowchart delineates the SOPM processes
into three distinct phases: training, optimization of r1 and r2, and testing of the SOPM.

SOM 
training

Start

Acquisition of 
samples

Calculation of
distances     

Optimization of 
distances       and     

SOPM testing and accuracy
rate calculation

Calculation of     Definition of 
database subsets

Database optimization subset

Database training subset
SOPM

Database testing subset

Figure 13. Flowchart with the algorithm developed for building and testing SOPM statistical classification.

In each phase of the algorithm, a specific sub-database is used to prevent the SOPM
from over-specializing on the given samples. Thus, the database samples were distributed
into three disjoint sub-bases: (1) the SOM network training sub-base, (2) the sub-base used
for performing optimization of distances r1 and r2, and (3) SOPM testing sub-base.

The training sub-base, as the name suggests, is used to train the SOM network. In
this sub-base, the chosen samples must be the most representative of each class, thus
avoiding samples that may present dubious characteristics, i.e., features of more than
one class. Exclusively samples with features of a single class each are used. The SOM
training is an iterative process that aims to find the training parameters that best suit the
input data (the training sub-base). The network is trained to simultaneously minimize
the quantization error QE and the topographic error TE of the Kohonen map, respectively,
given by (6) and (7). In this process, different configurations of map size and τ values
are tested. According to [32], the number of neurons should be from two to seven times
the number of samples used in the training process. In this work, we have used the SOM
neural network size 10 × 10 and τ = 2000. The initial neighborhood parameter σ0 was
chosen in accordance to the SOM dimensions y and z, and it is given by σ0 =

√
y2 + z2.

The maximum number of epochs was set to 60,000 for all networks trained. This maximum
number of epochs ensures the training convergence, i.e., the minimization of QE and TE is
assured.
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After the SOM training stage, the optimization process of the distances r1 and r2 begins,
aiming at maximizing the correct classification rates of the system, i.e., maximizing its
accuracy. In this process, a great diversity of inputs is used, including multiple-class-feature
samples, since it is in this stage that the probabilities Pk

i will be defined. For performing
optimization of the parameters r1 and r2, the algorithm Cuckoo-GRN [31] has been used
with the goal of maximizing average accuracy of the SOPM system.

The calculation of the accuracy rate Ācc is performed in a manner similar to what
is performed in a conventional supervised network, that is, by comparing the network’s
output with the targets of the samples. In the context of this study, the samples can be
classified as associated with one or to multiple classes. The target is represented by a vector
Tj = [t1

j , t2
j , . . . , ts

j ] of zeros and ones, corresponding to the class(es) associated with the
sample j. For instance, for a given sample labeled as class 1 in a problem with only three
classes, we have a target vector Tj = [1, 0, 0]. Therefore, if sample j is associated with
classes 1 and 2, we would have Tj = [1, 1, 0].

Unlike conventional networks, which for classification problems always return a single
possible class as a classification response, SOPMs can output probabilities for more than
one class possibly associated with a given sample. Therefore, the calculation of the accuracy
rate is performed differently depending on whether the neuron is associated with multiple
classification probabilities or not. When a neuron excited by a given sample j has Pk

i = 100%
for a given class 1 ≤ k ≤ s, the accuracy rate for the referred sample is calculated by

Acc(j) =

s
∑

a=1
[Pa

c(j)t
a
j ]

s
∑

a=1
ta

j

, (17)

where c(j) is the BMU index for sample j. When the neuron excited by a given sample
j presents probabilities associated with multiple classes, the classification accuracy for
sample j is

Acc(j) =
s

∑
a=1

[Pa
c(j)t

a
j ]. (18)

Thus, the accuracy rate of the network is considered to be the average

Ācc =
1
N

N

∑
j=1

Acc(j), (19)

in which the sub-database of test samples are considered. Note that (19) is maximized
while using Cuckoo-GRN for optimizing r1 and r2 with the optimization subset of samples.

7. Results and Discussion

In this section, the obtained results regarding application of SOM and of the proposed
SOPM method for performing classification of PDs are shown and discussed. Single- and
multiple-class-featured PRPDs are classified using the new SOPM method. For performing
tests on the proposed method, we have trained a SOM network with neural dimensions of
10 × 10, with τ = 2000,using single-class-featured PRPDs. Then, cuckoo-GRN optimization
of thresholds r1 and r2 and calculation of SOPM classification probabilities Pk

j have been
conducted as previously described in this work.

7.1. SOM Classification Results

For the sake of comparison with the proposed SOPM method, we develop a simple
sample classification method using the SOM network. In Figure 14a, our obtained 10 × 10-
SOM is shown, in which yellowish tones represent small distances among neurons, and
orangish colors are associated with intermediate distances and red and darker colors
indicate the greater distances among neurons. By observing Figure 14b,c, one notices that
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regions can be boundaried according to the samples classes exciting neurons, as specifically
depicted in Figure 14c, thus forming discernible classification clusters. Class assignments
to the so-formed clusters are made based on predominant sample classes within each
neuron group [33], as shown in Figure 14c. Boundaries established among the classification
regions are highlighted by the white lines in Figure 14b,c. Although it is possible to
delineate clusters after the completion of the training phase, definition of boundaries
remain ambiguous since the partitioning of the SOM network based on inter-neuronal
distances depends on threshold values, which are subjected to human interpretation.

S/C

InV/InD

DCI

InV
InD

S
C
InV/InD + DCI
InV/InD + S/C

DCI

Region with no clear separation among class clusters

(a)

(b) (c)

Figure 14. The obtained 10 × 10-SOM Map, with τ = 2000: (a) the Kohonen Map, in which regions
with no clear separation among class clusters are observed, (b) SOM with white lines defining
borders of class clusters, and (c) classes are assigned to each cluster according to labels of samples
exciting neurons.

In Table 2, the classification rates obtained to the training samples are shown. Accuracy
assessment of the training data showcases rates ranging from 80.00% to 86.67%, slightly
below the desirable threshold of 90%.

Table 2. SOM confusion matrix obtained using training samples, where bold values highlight correct
classification rates.

True Class
Predicted Class

Inv/InD DCI S/C

Inv/InD 80.00% 20.00% 0.00%

DCI 13.33% 86.67% 0.00%

S/C 13.33% 0.00% 86.67%

In order to classify multi-class-featured samples effectively, it is imperative that the net-
work’s output comprises a combination of multiple classes. Nonetheless, the conventional
self-organizing map architecture yields outputs corresponding to the predominant class of
the activated neuron’s cluster. Consequently, it is unfeasible to classify multi-class-featured-
samples solely relying on the SOM network. Consequently, to assess the efficacy and
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precision of the SOM map, exclusively single-feature samples from the test dataset were
utilized. It should be noted that, as depicted in Figure 14c, multiple-class-featured samples
are classified as one of the classes composing its multi-class features array. However, it is
crucial to highlight that the multi-class samples were not included in the confusion matrix
obtained for the test samples, which is seen in Table 3. As one can see, the SOM network
yielded inadequate accuracy rate, registering 46.15% for the PD class DCI.

Table 3. SOM confusion matrix obtained using single-class-featured test samples, where bold values
highlight correct classification rates.

True Class
Predicted Class

Inv/Ind DCI S/C

Inv/Ind 92.59% 7.41% 0.00%

DCI 53.85% 46.15% 0.00%

S/C 14.17% 0.00% 85.83%

7.2. SOPM Classification Results

The obtained SOPM is shown in Figure 15b. We observe not just a clear neural division
among the different classes, as shown by the single-colored neurons, but also transition
regions among the areas associated with single-class samples. The transition regions,
formed by neurons associated with multiple classes, are used for performing classification
of multiple-class-featured samples, which tend to excite such neurons, and to estimate the
respective classification probabilities of each sample exciting a given transition neuron. As
previously described, classification probabilities are proportional to the areas filled with
colors associated with each class.

In contrast to the SOPM, in obtained SOM map (Figure 15a), there is no obvious
information on the classes of the samples that have excited each neuron, and much less
on which class they are associated with. Those characteristics are intrinsic to SOM maps,
even though it uses different shades of colors to delimit groups formed by neurons, where
lighter colors represent small distances among neurons and darker colors represent larger
distances in the space of features.

Classes

(a) (b)

InV/InD
DCI
S/C
None

Figure 15. 10 × 10- SOM-network with τ = 2000 and its (a) Kohonen map and (b) the probability
map (SOPM) obtained using the proposed method.

Furthermore, for a clearer illustration of how SOPM operates, the labels of the samples
that excited the neurons were plotted on the probability map, as shown in Figure 16. It can
be seen in Figure 16 that most of the samples were classified according to their respective
classes, for single- or multi-class-featured cases.
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Classes
InV/InD
DCI
S/C
None

+
+

Figure 16. SOPM with the exciting samples on their respective map neurons.

Table 4 shows the obtained confusion matrix for training stage. The obtained accuracy
varies from 97% to 100%. The observed high levels of accuracy are expected for the training
procedures. Furthermore, for the threshold optimization stage, in which r1 and r2 are
optimized for maximizing classification accuracy on the so-called optimization subset of
samples, accuracy ranges from 93.50% to 100%, as seen in Table 5, which shows the success
of the optimization process.

Table 4. SOPM confusion matrix obtained using training samples, where bold values highlight correct
classification rates.

True Class
Predicted Class

Inv/InD DCI S/C

Inv/InD 97.00% 2.93% 0.07%

DCI 2.60% 97.40% 0.00%

S/C 0.00% 0.00% 100%

Table 5. SOPM confusion matrix obtained using optimization samples, where bold values highlight
correct classification rates.

True Class
Predicted Class

Inv/InD DCI S/C

Inv/InD 93.50% 4.11% 2.39%

DCI 2.17% 97.83% 0.00%

S/C 0.00% 0.00% 100%

Finally, Table 6 shows the confusion matrix obtained for test samples by using our
SOPM method. Test samples are PRPDs not used on previous stages. It can be seen
that SOPM has good performance, presenting accuracy rates from 75.77% for DCI class
(minimum obtained accuracy rate) to 100% for InV/InD+DCI, which is a multiple-class
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featured group. The obtained results indicates that the developed method is working as
expected when classifying single- or multiple-class samples. Note that when test samples
are used, an average accuracy rate of 88.21% was achieved, which is comparable to what is
seen in the literature for single-class sample classifiers [8–12].

Table 6. SOPM confusion matrix obtained using test samples, where bold values highlight correct
classification rates.

True Class

Predicted Class

Inv/InD DCI S/C Inv/InD +
DCI

Inv/InD +
S/C

Inv/InD 86.75% 8.88% 4.37% 0.00% 0.00%

DCI 24.23% 75.77% 0.00% 0.00% 0.00%

S/C 6.84% 0.00% 91.37% 1.79% 0.00%

Inv/InD+DCI 0.00% 0.00% 0.00% 100% 0.00%

Inv/InD +
S/C 0.00% 3.44% 9.69% 0.00% 86.87%

7.3. Discussion on Features of Samples Mapped on SOPM

In this Section, we provide a detailed examination of PRPDs and their respective
histograms for selected samples on our SOPM map. Figure 17a illustrates the SOPM
map with three highlighted and numbered neurons of interest, each one associated with
a distinctly specific class: InV/InD (neuron 1), DCI (neuron 2) and S/C (neuron 3). The
neurons of interest were chosen because of their single-class associations and due to their
positioning relative to class transition zones. Figure 17b–d show the PRPDs and histograms
of samples activating the neurons of interest (neurons 1, 2, and 3, respectively).

In PRPDs graphs, reddish colors represent high PD count levels, while grayish tones
are associated with low PD repetition rates. On the other hand, the blue lines in histograms’
plots represent normalized PD counts of PRPD clouds with positive voltage levels, whereas
red lines are associated with normalized PD counts of PRPD clouds with negative voltage
levels. Positive-voltage and negative-voltage PD count histograms have been obtained
using sixteen voltage windows each [8].

In Figure 17b, the PRPD and PD-count amplitude histograms of the InV/InD-class
sample are depicted. Notably, the PD-count amplitude histograms reveal comparable
PD counts for positive- and negative-voltage clouds over amplitude windows, i.e., there
is symmetry between the positive and negative clouds. This is a characteristic trait of
the InV/InD class. Conversely, for the DCI sample, its histograms portray higher PD-
count values for the negative-voltage cloud, as seen in Figure 17c, which is a characteristic
attribute of the DCI class. Finally, regarding the S/C sample, Figure 17d showcases positive
asymmetry, i.e., its histograms show higher PD-count values for the positive-voltage cloud,
which is the main property characterizing the S/C class.

In contrast to single-class samples, multi-class samples lack a distinct symmetry or
asymmetry between positive- and negative-voltage clouds in amplitude histograms. In
order to better illustrate this aspect, two neurons, A and B, situated in class transition zones
of SOPM, separating regions associated with InV/InD and S/C classes and regions linked
to InV/InD and DCI classes, were chosen for visualizing and analyzing multi-class samples
PRPD and histograms, as shown by Figure 18. Figure 18b illustrates PRPD and amplitude
histograms of a multi-class sample with simultaneous features of the classes InV/InD
and S/C, which excited transition neuron A. It is notable that the positive- and negative-
voltage histograms exhibit close values (specially for amplitude window indexes under
11), a feature associated with the class InV/InD. However, the negative-voltage histogram
displays a slightly steeper decline as amplitude window index increases, reaching zero at
the index numbered as 13. This tendency suggests a potential classification of the sample
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as S/C, as previously discussed. Upon closer examination, when comparing the sample
depicted in Figure 18b with those presented in Figure 17b,d, it becomes evident that the
sample under analysis occupies a middle ground between the two mentioned classes, which
shows proper classification of the sample by SOPM, as one can see in class probabilities
distribution of neuron A in Figure 18a, which indicates a classification probability slightly
higher for the class InV/InD than for the class S/C.
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Figure 17. Single-class SOPM analysis of samples: (a) SOPM with highlighted and numbered single-
class neurons associated with InV/InD (neuron 1), DCI (neuron 2), and S/C (neuron 3); and PRPDs
and PD-count amplitude histograms of single-class samples identified as (b) InV/InD, (c) DCI, and
(d) S/C. In histogram plots, the blue lines represent normalized PD counts of PRPD clouds with
positive voltage levels and red lines are similarly associated with negative voltage levels.
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Figure 18. Multi-class SOPM analysis of samples: (a) SOPM with two highlighted multi-class neurons
associated with InV/InD+S/C and InV/InD+DCI; and PRPDs and amplitude histograms of multi-
class samples classified as (b) InV/InD+S/C and (c) InV/InD+DCI. In histogram plots, the blue
lines represent normalized PD counts of PRPD clouds with positive voltage levels and red lines are
similarly associated with negative voltage levels.
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Finally, Figure 18c illustrates the PRPD and amplitude histograms for a multi-class
sample, exciting neuron B, with simultaneous features of the classes InV/InD and DCI.
Notably, while both positive- and negative-voltage histograms display comparable val-
ues across the amplitude window index, particularly for indexes under 12, indicating a
possible classification as InV/InD, the positive-voltage histogram demonstrates a more
pronounced decline than its negative-voltage counterpart. Despite this subtle asymmetry,
upon comparing Figure 18c with Figure 17c, it becomes apparent that the sample also has
DCI features, since the positive-voltage histogram exhibits a sharper decay, eventually
reaching zero at the amplitude index 16 for the multi-class sample, which is not seen for the
negative-voltage histogram. Consequently, this sample exhibits characteristics indicative of
both of the classes InV/InD and DCI. As one can see in neuron B of Figure 18a, this is what
SOPM is indicating, with a modestly superior probability in favor of InV/InD.

8. Conclusions

In this study, we proposed a self-organized probability map (SOPM) method for
detecting and classifying partial discharges (PDs) in hydro-generators. The system was
tested with samples obtained from online hydro-generator, and the results shows that it
is capable of accurately classifying PRPDs with simultaneous features of several classes
with classification accuracy comparable to previously published classifications methods
designed to perform single-class sample classification (around 90% with test samples).

As the energy landscape evolves towards increased reliance on renewable sources and
distributed generation, ensuring the reliability and longevity of critical power infrastructure
becomes increasingly important. The SOPM method proposed in this work contributes
to this goal by offering a robust and efficient tool for PD diagnostics in hydro-generators,
key components of many renewable energy systems. By enabling accurate classification of
complex, multi-class PD patterns, the SOPM method facilitates early detection of insulation
degradation, allowing for timely maintenance interventions and preventing catastrophic
failures. This not only enhances the reliability of hydro-power generation but also con-
tributes to the overall stability and sustainability of the power grid. Moreover, the SOPM
method’s potential applicability to other diagnostic and classification problems apart from
PDs suggests broader implications for the future of energy, including applications in the
monitoring and maintenance of wind turbines, solar panels and other renewable energy
technologies. As the energy sector embraces digitalization and data-driven approaches,
the SOPM method represents a pioneering step towards intelligent and automated fault
diagnosis, paving the way for more stable energy systems in the future.

In contrast to previously published PD classification methods, which primarily focus
on single-class PD patterns and achieve accuracy rates around 90%, the proposed SOPM
method demonstrates the capability to accurately classify PRPDs containing simultaneous
features of multiple PD classes. This advantage stems from the unique combination of a
Kohonen network with statistical analysis, allowing the SOPM to map input data into a two-
dimensional space and assign classification probabilities to each neuron. By incorporating
a feature space with average distances between each neuron to n samples nearest to it,
regarding each class, the SOPM gains a deeper understanding of the complex relationships
between different PD classes and their manifestations in PRPDs. This, in turn, enables the
SOPM to effectively disentangle overlapping features and provide reliable classifications
even when dealing with the real-world complexities of multiple concurrent PD phenomena.
As a result, the SOPM offers a more comprehensive and robust diagnostic tool compared
to traditional methods, particularly in scenarios where multiple PD sources are present.
Further research is suggested to evaluate the SOPM method’s applicability to other types
of classification problems, not only related to partial discharges, potentially extending its
benefits beyond the realm of PD diagnostics to many other areas of science.
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