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Abstract: The fetal electrocardiogram (FECG) records changes in the graph of fetal cardiac action
potential during conduction, reflecting the developmental status of the fetus in utero and its physi-
ological cardiac activity. Morphological alterations in the FECG can indicate intrauterine hypoxia,
fetal distress, and neonatal asphyxia early on, enhancing maternal and fetal safety through prompt
clinical intervention, thereby reducing neonatal morbidity and mortality. To reconstruct FECG signals
with clear morphological information, this paper proposes a novel deep learning model, CBLS-
CycleGAN. The model’s generator combines spatial features extracted by the CNN with temporal
features extracted by the BiLSTM network, thus ensuring that the reconstructed signals possess
combined features with spatial and temporal dependencies. The model’s discriminator utilizes Patch-
GAN, employing small segments of the signal as discriminative inputs to concentrate the training
process on capturing signal details. Evaluating the model using two real FECG signal databases,
namely “Abdominal and Direct Fetal ECG Database” and “Fetal Electrocardiograms, Direct and
Abdominal with Reference Heartbeat Annotations”, resulted in a mean MSE and MAE of 0.019 and
0.006, respectively. It detects the FQRS compound wave with a sensitivity, positive predictive value,
and F1 of 99.51%, 99.57%, and 99.54%, respectively. This paper’s model effectively preserves the
morphological information of FECG signals, capturing not only the FQRS compound wave but also
the fetal P-wave, T-wave, P-R interval, and ST segment information, providing clinicians with crucial
diagnostic insights and a scientific foundation for developing rational treatment protocols.

Keywords: fetal electrocardiogram signal extraction; CycleGAN; convolutional neural networks;
bidirectional long short-term memory; PatchGAN

1. Introduction

Congenital heart disease (CHD) is the leading cause of stillbirths worldwide, and it
is the most common major congenital malformation [1,2]. The emergence of this defect
is typically noted in the early stages of fetal heart formation. Prenatal monitoring and
timely diagnosis are imperative for effectively addressing these conditions and minimizing
potential complications, thereby decreasing fetal morbidity and mortality [3]. Cardiotocog-
raphy (CTG) is currently the most widely used electronic fetal monitoring (EFM) device in
clinical practice [4]. This method involves the transmission of ultrasonic waves through
ultrasonic probes, followed by the reception of frequency-shift echo signals. Subsequently,
the fetal cardiac cycle and uterine artery pulse index are computed, enabling the derivation
of fetal heart rate and contraction curves. While this approach is robust and reliable, it
poses challenges in capturing the variation information on instantaneous fetal heart rate.
Additionally, the equipment’s size hinders its suitability for remote monitoring in a home
setting. The fetal electrocardiogram (FECG) signal records the variations in fetal heart
action potential during the conduction process. This enables the provision of beat-by-beat
information on fetal heart rate as well as minute potential changes in the fetal heart activity

Sensors 2024, 24, 2948. https://doi.org/10.3390/s24092948 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24092948
https://doi.org/10.3390/s24092948
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24092948
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24092948?type=check_update&version=2


Sensors 2024, 24, 2948 2 of 21

cycle. Consequently, it equips doctors with essential information about the fetal health
status, including indicators such as intrauterine hypoxia and fetal distress. This detailed
data from the FECG signals enhance the ability to monitor and assess the well-being of the
fetus during pregnancy [5,6]. In comparison with the traditional CTG method, the FECG
signals stands out for its capacity to more comprehensively depict the overall scenario of
fetal heart activity. This capability positions the FECG signals as the developmental trend
in fetal monitoring for the future [7].

However, FECG signals are not extensively utilized in clinical practice presently, and
this can be attributed to two main reasons. First, there is a shortage of experience in the
clinical application of fetal electrocardiogram signals, coupled with a lack of standardized
waveform recognition and databases. Second, the signal-to-noise ratio and amplitude
of fetal electrocardiogram signals are relatively low, presenting challenges in preserving
clear and comprehensive morphological information. There are two primary methods
for acquiring FECG signals: invasive FECG (I-FECG) signal acquisition and non-invasive
FECG (NI-FECG) signal acquisition [8]. The I-FECG signal acquisition method allows
for the direct retrieval of high-quality FECG signals from the fetal scalp. However, this
approach is limited to measurement during delivery, and its invasive nature introduces
the risk of infection [9]. Therefore, in order to achieve long-term monitoring of fetal
health status during the perinatal period, the NI-FECG signal acquisition method becomes
essential. In this approach, FECG signals can be extracted by capturing maternal abdominal
electrocardiograph (AECG) signals. The AECG signal is often contaminated by the maternal
electrocardiograph (MECG), baseline drift, powerline interference, and pulse artifacts
during acquisition [10,11]. The overlap of MECG signals and noise presents challenging
issues in detecting the fetal QRS (FQRS) compound wave and preserving morphological
information, such as P-waves, T-waves and ST segments [12].

In recent years, numerous advanced signal processing methods and noise filtering
techniques have been employed in the extraction of FECG signals. These primarily encom-
pass adaptive noise cancellation (ANC), singular-value decomposition (SVD), extended
state Kalman filters (EKF), and blind source separation (BSS).

ANC is a filtering method grounded in linear filtering principles. It distinguishes
itself from traditional signal processing methods by permitting spectral overlap between
the target signal and the noise signal [13]. This algorithm automatically adjusts the filter
parameters in real-time during the iteration process. It utilizes error signals based on
the parameter results obtained from the previous moment, following some predefined
criteria. This iterative adjustment aims to optimize the statistical characteristics of both the
target signal and noise signal, ultimately achieving optimal filtering [14]. Various types of
ANC algorithms exist, with the least mean square (LMS) and recursive least square (RLS)
standing out as the two most commonly utilized algorithms in FECG signal extraction [15].
However, both of the mentioned algorithms fail to effectively strike a balance between
convergence speed and steady-state error. Moreover, both ANC algorithms necessitate
MECG signals as a reference. The practicality of this algorithm in practical clinical and
remote monitoring is limited [16].

The EKF is an extension of the standard Kalman filter for nonlinear systems. It
depends on the local linearization of the nonlinear model achieved by employing the
Jacobian operator [17]. The EKF proves to be a robust method for the extraction of single-
channel FECG signals [18]. Indeed, the performance of the EKF algorithm is contingent
on local linearity. If the EKF encounters situations where the local linear assumption is
violated, particularly in strongly nonlinear conditions, and the neglected high-order terms
in the Taylor expansion result in significant errors, the EKF algorithm can lead to filtering
divergence. This limitation renders the algorithm highly dependent on the positioning of
the R-peak in the FECG signals during FECG signal extraction. When the maternal QRS
compound wave overlaps with the fetal R-peak, issues related to waveform loss may arise
in the extracted FECG signals.
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SVD is a spatial filtering and decomposition technique that creates the required basis
functions from the data itself and separates the statistics by maximizing the signal [19].
The algorithm is based on matrix transformation from one vector space to another, and
when it is applied to FECG signal extraction, the SVD algorithm can effectively separate
the components of the mixed signals, construct the vector matrix using the AECG signals,
and then obtain the estimation of the ECG signals corresponding to each singular value
via SVD. However, the SVD algorithm is only applicable in scenarios where the signal-to-
noise ratio (SNR) of the FECG signals is high. Otherwise, it may introduce considerable
noise into the separated FECG signals, leading to a significant decrease in the algorithm’s
extraction performance.

Most BSS technologies are developed based on the principles of principal component
analysis (PCA) and independent component analysis (ICA) [20,21]. Among them, the
PCA algorithm focuses on reducing dimensionality in variable value measurement. In the
process of simplifying statistical problems, PCA aims to retain the maximum amount of
information and minimize information loss. This method can also be employed to identify
linear combinations of discrete signals in statistics. It confirms data through bidirectional
operations in a new coordinate system, ensuring no information loss throughout the entire
process. However, when applying this algorithm to extract FECG signals, it may struggle
to preserve the morphological information of FECG signals. The ICA algorithm is used
to process the multichannel output data in order to estimate the optimal transmission
matrix and obtain statistically significant mutually independent source components from
it [22]. This algorithm has been successful in decomposing AECG signals into statistically
independent MECG and FECG signals, even without a priori knowledge of the signals
themselves. However, it is worth noting that the algorithm is sensitive to the initial weight
vectors and is not guaranteed to achieve convergence in all cases.

The conventional techniques mentioned earlier for extracting FECG signals necessitate
manual feature extraction, leading to incomplete noise removal in the extracted FECG
signals. In recent years, the advent of advanced hardware has facilitated the widespread
application of deep learning, yielding promising outcomes in FECG signal extraction. Com-
pared with traditional algorithms reliant on manually designed feature extractors, deep
learning models offer a significant advantage by autonomously learning and extracting
intricate features from FECG signals. Achieved through the construction of multilayer
neural network architectures, these models capture a wealth of detailed information inher-
ent in the signals. Moreover, deep learning models exhibit high adaptability, facilitating
self-optimization and adjustment to varying FECG signal characteristics [23]. The applica-
tion of deep learning hinges on ample training data, rendering them robust against noise
and interference. Notably, the features acquired during the training phase extend beyond
applicability solely to the training dataset; they demonstrate robust generalization to un-
seen data. Thus, deep learning models proficiently process novel FECG signals without
necessitating additional parameter adjustments or optimizations, even under conditions
with a low signal-to-noise ratio. In this paper, we use an innovative deep learning model to
extract FECG signals; the major contributions of the proposed work are depicted below:

• An unsupervised cycle generative adversarial network (CycleGAN) can effectively
preserve the morphological information of FECG signals. The extracted FECG signals
not only emphasize the FQRS compound wave but also capture the fetal P-wave and
T-wave, PR intervals, and ST segment information.

• An innovative generator, utilizing both convolutional neural networks (CNN) and
bidirectional long short-term memory (BiLSTM) during the feature extraction stage,
effectively preserves the spatial and temporal characteristics of data, respectively.

• An innovative three-dimensional trajectory image is employed to visually repre-
sent FECG signal waveforms, utilizing cyclic consistency for subjective visual result
evaluation.
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• Two different real-world databases, “Abdominal and Direct FECG (A&D FECG)” and
“NI-FECG PhysioNet2013”, demonstrated the effectiveness of the proposed BiLSTM–
CNN CycleGAN for FECG signal extraction.

2. Related Works

Encoding–decoding networks have found extensive applications in the field of FECG
signal extraction. In this approach, AECG signals undergo processing through an encoder,
gradually reducing spatial dimensions while extracting relevant features. Subsequently,
the FECG signal output is achieved by upsampling the features through a decoder.

Zhong et al. [24] developed a deep learning model for FECG signal extraction using a
residual convolutional encoder–decoder network (RCED-Net). This model comprises five
Conv–Deconv blocks, with shortcut connections employed between adjacent Conv–Deconv
blocks. Consequently, details of the feature map can be directly passed from the top layers
to the bottom layers, facilitating the flow of information and mitigating the vanishing
gradient problem. Finally, the FECG signal is output through a fully connected layer. This
method allows for the direct extraction of FECG signals from single-channel AECG signals
without the need to eliminate MECG signals, thus avoiding the alignment registration
problem associated with signal subtraction. However, it is worth noting that the complexity
of the network model is relatively low, and its ability to extract complex AECG signals is
considered insufficient.

The AECG-DecompNet framework, proposed by Rasti Meymandi-Arash et al. [25],
comprises two residual symmetric hopping convolutional autoencoders (Res-Unet). AECG-
DecompNet employs two distinct networks consecutively to decompose the AECG signal,
one dedicated to MECG estimation and the other to interference and noise cancellation.
Both networks employ an encoder–decoder architecture featuring internal and external
hopping connections to augment signal reconstruction. AECG-DecompNet demonstrates
the capability to extract both FECG and MECG signals from a single-channel AECG signal.
Notably, it retains the ability to extract FECG signals with high quality even when the
amplitude of FECG signals in the AECG signal is relatively low, enabling its application
in the first trimester. However, training the sub-networks poses a challenge, given the
necessity to train two separate network frameworks. In particular, there is a potential for
error leakage from the first network to the second network.

Haiping Huang [26] proposes the temporal convolutional coding and decoding net-
work (TCED-Net) to extract features of signals using 1D convolution. The network consists
of a six-layer convolutional module and a corresponding inverse convolutional module,
with residual and jump connections inside and outside, respectively, to enhance the end-to-
end mapping of maternal ECG signals from the chest to the abdominal wall, and to apply
the expansion convolution to perceive the signal features of longer historical moments.
TCED-Net has superior nonlinear mapping ability, which is not limited to fetal heart rate
estimation and QRS compound wave identification, but can effectively suppress the mater-
nal ECG component and retain the morphological features of the FECG signal. Because it is
difficult to collect the chest signals of pregnant women, this paper tries to use the maternal
ECG template to replace the real chest ECG signal, which achieves better results and greatly
reduces the discomfort of pregnant women and the difficulty of clinical examination.

Cycle generative adversarial network (CycleGAN) has received considerable interest
in the domain of fetal electrocardiogram (FECG) signal extraction. In this approach, The
generator is responsible for generating output data that align its features as closely as
possible with the characteristics of the FECG signal based on the input AEGC signal.
Meanwhile, the discriminator is responsible for determining whether the signal is a FECG
signal generated by the generator or an authentic FECG signal. The model is implemented
by alternately training the generator and the discriminator.

Mohebbian M R et al. [27] introduced an attention-based CycleGAN to map MECG
and FECG signals. The novelty of this algorithm lies in the utilization of the attention
mechanism as a filter mask to focus on the signal region of interest, the incorporation of a
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sinusoidal activation function, and log(cosh) loss, thereby preserving the morphological
details of the FECG signal. Evaluation was conducted in a two-fold process: firstly, for the
quality of FECG extracted from MECG, and secondly, for the detection of FQRS compound
wave. The results were favorable in both evaluation methods. Despite the attention-based
mechanism’s ability to obtain high-quality FECG signals, the model’s complexity is high,
the running time is prolonged, and the computational cost is elevated, potentially posing
challenges for embedded systems.

Wang X et al. [28] introduced a correlation-aware attention CycleGAN (CAA-CycleGAN)
for the extraction of FECG signals. They developed three key modules: the auto-correlation
attention encoder (ACAE) module, the cross-correlation attention residual (CCAR) module,
and the dual-cross-correlation attention decoder (DCCAD) module. These modules were
specifically designed for recovering FECG signals corrupted by noise, enhancing FECG
components, and extracting FECG signals masked by the MECG signal. The algorithm’s
innovation lies in incorporating a correlation attention network to enable the network
to focus on the FQRS compound wave, thereby improving the detection capability of
FQRS compound wave features. Nevertheless, the current implementation of the network
appears to neglect other morphological information within FECG signals and has yet to
address the computational overhead induced by the attention mechanism.

Basak P. et al. [29] utilized a 1D-CycleGAN to reconstruct FECG signals from MECG
signals while preserving the morphology of the MECG signals. In the preprocessing
stage, higher-order filters were chosen to enhance attenuation and narrow transition bands,
surpassing the capabilities of traditional bandpass and bandstop filters for effective noise
signal removal. Following signal inversion, the higher-order filter was reapplied to address
any phase lag issues. For FECG signal extraction, weighted loss incorporating time, spectral,
and power losses was employed, leading to a substantial enhancement in the quality of the
generated FECG signals. This approach ensured the preservation of the complete signal
morphology information, facilitating the accurate determination of fetal heart rate and
heart rate variability indices. The performance of the 1D-CycleGAN in detecting FQRS
compound waves exhibited a high accuracy, precision, recall, and F1 of 92.6%, 97.6%,
94.8%, and 96.4%, respectively. Nevertheless, there is potential for further improvement,
particularly if the quality of the MECG signals is enhanced. Future enhancements could
involve screening MECG signals to eliminate those of low quality or incorporating a module
dedicated to improving MECG signal quality in the pre-processing stage.

Although the CycleGAN model achieves better results in extracting FECG signals,
simply reducing the two-dimensional model to one-dimensional use will overlook the
temporal features of the signal. In this paper, we propose a CycleGAN model that inte-
grates CNN and BiLSTM (CBLS-CycleGAN) to incorporate temporal feature extraction
alongside the original spatial feature extraction. This approach effectively preserves the
morphological information of FECG signals and offers more clinically relevant insights.

3. Methodology

In this section, we will begin by introducing the databases used in this study. Following
that, the methodology proposed in this study will be described in detail. Finally, the
extraction process of the FECG signals will be briefly described.

3.1. Data Preparation
3.1.1. Database Description

The data utilized in this study were sourced from three publicly available datasets.
The first database is the Abdominal and Direct Fetal Electrocardiogram Database

(ADFECGDB), accessible at https://physionet.org/physiobank/database/ADFECGDB
(accessed on 30 August 2022) [30]. The data were collected from five parturitions occurring
at 38–41 weeks of gestation. Specifically, subject 1’s record is denoted as r01, subject 2’s
record is denoted as r07, subject 3’s record is denoted as r10, subject 4’s record is denoted
as r04, and subject 5’s record is denoted as r08. Each record includes four signals from the

https://physionet.org/physiobank/database/ADFECGDB
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maternal abdomen and one signal directly from the fetal head. The sampling frequency is
1000 Hz, and the sampling time is 5 min.

The second database is the Fetal Electrocardiograms, Direct and Abdominal with Refer-
ence Heart Beats Annotations, accessible at https://springernature.figshare.com/articles/d
ataset/Fetal_electrocardiograms_direct_and_abdominal_with_reference_heart_beats_anno
tations/10311029?backTo=/collections/Fetal_electrocardiograms_direct_and_abdominal_w
ith_reference_heart_beats_annotations/4740794 (accessed on 30 August 2023) [31]. The
database comprises two datasets. The first dataset is the B1 Pregnancy dataset, denoted as
the B1 pregnancy signal dataset, containing 10 records labeled “B1_Pregnancy_X”, where X
represents the record number. Each record comprises 4 initially filtered AECG signals and
4 indirect FECG signals, acquired by suppressing the MECG signals through subtracting
the first-order derivatives of the maternal P-QRS-T composite waveform and the QRS
composite waveform. Each signal spans 20 min, with a sampling frequency of 500 Hz,
stored in the binary file “B1_abSignals_X.ecg” in LabView format. Additionally, the file
“B1_Maternal_R_X.txt” provides details regarding the maternal reference point, marking
the position of the MQRS complex wave in the AECG signal. The file “B1_Fetal_R_X.txt”
contains information on the fetal reference point, indicating the position of the FQRS
complex wave in the indirect FECG signal. The second dataset is the B2 Labour dataset, de-
noted as the B2 dataset, comprising 12 records labeled “B2_Labour_X”, where X represents
the record number. Each record includes 4 initially filtered AECG signals and 4 indirect
FECG signals obtained after suppressing the MECG signals. Each signal spans 20 min,
sampled at 500 Hz, and stored in LabView format in the binary file “B2_abSignals_X.ecg”.
Furthermore, each record contains raw and preliminarily filtered FSE signals, each lasting
5 min with a sampling frequency of 1 kHz, stored in LabView format in the binary file
“B2_dFECG_X.ecg”. Additionally, the file “B2_Maternal_R_X.txt” provides information
about the maternal reference point, marking the position of the MQRS complex wave in
the AECG signal. The file “B2_Fetal_R_X.txt” contains details regarding the fetal reference
point, indicating the position of the FQRS complex wave in the FSE signal. The benchmark
points in the B1B2 dataset underwent validation by clinical experts, resulting in each point
being assigned an associated reliability flag. A flag of 0 signifies that the R-peak position
could not be verified by the expert due to high signal interference, while a flag of 1 indicates
successful verification of the R-peak position. Utilizing the annotations of the benchmark
points within this dataset, both the fetal heart cycle (RR interval) and instantaneous heart
rate (FHR) were precisely determined from the FECG signal.

The third database is the PhysioNet Fetal ECG Synthetic Database (FECGSYN), acces-
sible at https://archive.physionet.org/physiobank/database/fecgsyndb/ (accessed on
30 August 2023) [30]. This database simulates adult and noninvasive fetal ECG signals
using an electrocardiographic generative model. The model replaces maternal and fetal
hearts with two point dipoles of varying spatial locations, shapes, and sizes on a spatial
coordinate system. It synthesizes the abdominal ECG signal by treating each component
in the abdominal ECG signal as independent. This approach allows for the provision of
waveforms for each signal component. The database comprises 1750 synthesized signals in
total, each sampled at a frequency of 250 Hz with a duration of 5 min.

3.1.2. Database Description

The research presented in this paper relied on the utilization of the three aforemen-
tioned databases. However, owing to inconsistencies in the sampling frequencies across
these databases, all the data were re-sampled to 500 Hz using fast Fourier transform. To
streamline the training process of the neural network, the dataset was segmented with
1024 sample points serving as benchmarks. To ensure signal continuity, a 24-sample point
overlap was introduced at the front and back of each pair of signals. The number of
segmented samples for each database is outlined in Table 1.

https://springernature.figshare.com/articles/dataset/Fetal_electrocardiograms_direct_and_abdominal_with_reference_heart_beats_annotations/10311029?backTo=/collections/Fetal_electrocardiograms_direct_and_abdominal_with_reference_heart_beats_annotations/4740794
https://springernature.figshare.com/articles/dataset/Fetal_electrocardiograms_direct_and_abdominal_with_reference_heart_beats_annotations/10311029?backTo=/collections/Fetal_electrocardiograms_direct_and_abdominal_with_reference_heart_beats_annotations/4740794
https://springernature.figshare.com/articles/dataset/Fetal_electrocardiograms_direct_and_abdominal_with_reference_heart_beats_annotations/10311029?backTo=/collections/Fetal_electrocardiograms_direct_and_abdominal_with_reference_heart_beats_annotations/4740794
https://springernature.figshare.com/articles/dataset/Fetal_electrocardiograms_direct_and_abdominal_with_reference_heart_beats_annotations/10311029?backTo=/collections/Fetal_electrocardiograms_direct_and_abdominal_with_reference_heart_beats_annotations/4740794
https://archive.physionet.org/physiobank/database/fecgsyndb/
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Table 1. The number of samples in each database after signal segmentation.

Database The Number of Samples

ADFECGDB 1480
B1_Pregnancy_dataset 5920

B2_Labour_dataset 3552
FECGSYN 20,000

To prevent data leakage, B2_Labour_dataset and 20% of ADFECGDB are allocated for
the test set, while the remaining data are designated for the training set. The division is
illustrated in Table 2.

Table 2. The division of the training and test sets.

Dataset The Number of Samples

training set 27,104
test set 3848

3.2. Proposed Method
3.2.1. Pre-Processing

The methods for acquiring NI-FECG signals involve notable sources of interference
and noise [32]. Accurately extracting the FECG signal necessitates obtaining an AECG
signal with a high signal-to-noise ratio. Consequently, the pre-processing of abdominal
wall signals is imperative to mitigate baseline drift, power frequency interference, and
pulse artifacts.

To eliminate the baseline drift, the signal is subjected to high-pass filtering. A low-pass
first-order Butterworth filter with a cutoff frequency of 5 Hz is applied to estimate a baseline
signal in the forward and backward directions. The baseline drift is then eliminated by
subtracting the low-pass filtered signal from the original signal. Conventional methods
typically employ high-order Butterworth bandpass filters to remove baseline drift and
pulse artifacts. However, this approach often leads to phase lag issues and the potential
emergence of challenging-to-eliminate ripple. In contrast, this paper presents an alternative
approach by subtracting a low-pass signal to derive a high-pass filtered signal. This method
effectively circumvents the phase lag problems associated with high-order Butterworth
bandpass filters.

Addressing industrial power frequency interference involves the application of a
trap filter. Initially, a forward–backward, zero-phase, and 1 Hz bandwidth trap filter is
employed at the peak frequency and subsequent third harmonics. Subsequently, power
frequency interference is assessed by comparing the peak power density near 50 Hz and
60 Hz with the average power density.

To mitigate the impulse artifacts, a moving median filter is applied to the signal.
Initially, a moving median filter with a 60 ms window filters the signal to remove noise
with impulse characteristics. Subsequently, the absolute difference between the original
signal and the median-filtered signal is calculated, determining a threshold value. If the
absolute difference exceeds this threshold, the signal is replaced with the average value of
the interval signal.

After removing the aforementioned sources of noise, the AECG signals were centered
and whitened to enhance the quality of the FECG signals. Initially, the AECG signals from
each channel were centered by subtracting the average value of the AECG signals, resulting
in zero-centered signals, per Equation (1), where x represents the mixing matrix of the
abdominal wall source signals and E{x} denotes the mean value of x:

xc = x − E{x} (1)
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Next, the signal undergoes a whitening process for decorrelation, as outlined in
Equation (2), achieved through the eigenvalue decomposition of the covariance matrix.
Here, V represents the orthogonal matrix of eigenvectors, and D denotes the diagonal matrix
of eigenvalues. Through whitening, the original signal is decorrelated and orthogonalized,
effectively reducing the number of parameters to be estimated.

E
{

xcxT
c

}
= VDVT (2)

Finally, a whitening vector is created as depicted in Equation (3):

xw = VD−1/2VTxc (3)

A comparison between the raw signal and pre-processed signal is shown in Figure 1.
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3.2.2. Model Architecture

Here, we first describe the architecture of the main framework, followed by providing
individual introductions to the architectures of the generator and discriminator.

Module Architecture

We employ an unsupervised learning approach using CycleGAN, as described in
Figure 2. The input is the pre-processed signal. CycleGAN is essentially a paired network
that learns two mappings using two generators: G1: AECG signal (x)→FECG signal (y)
and G2:FECG signal (y)→AECG signal (x). Also, there are discriminators, Dx and Dy, for
each signal domain, to compete with the generators. A generative adversarial network
(GAN) is trained for each mapping. For one mapping, generator G1 is trained to generate
an estimate of the FECG signal (ŷ = G1(x)), using the AECG signal (x) as input, which
closely approximates the authentic FECG signal (y). Discriminator Dy will classify the input
as either a genuine FECG signal (y) or a synthetic FECG signal (ŷ = G1(x)) generated by
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the generator. For the other mapping, generator G2 is trained to generate an estimate of the
AECG signal (x̂ = G2(y)), using the FECG signal (y) as input, which closely approximates
the authentic AECG signal (x). Discriminator Dx will classify the input as either a genuine
AECG signal (x) or a synthetic AECG signal (x̂ = G2(y)) generated by the generator.
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The training of CycleGAN is performed by solving the min–max problem for the
generators and discriminators. The generators aim to minimize the loss function, while the
discriminators aim to maximize it. This optimization problem can be expressed as follows:

• Add the cycle consistency loss (Lcycle) to maintain consistency between the two net-
works.

Lcycle(G1, G2) = Ex∼pdata(x)∥G2(G1(x))− x∥1 +

Ey∼pdata(y))
∥G1(G2(y))− y∥1

(4)

Here, ∥x∥1 denotes the L1 norm of x, G1 and G2 should be inverse functions of each
other, and G1(G2(x)) = x; G2(G1(y)) = y. This loss should be minimized in order to keep the
two functions mutually inverse.

• Add the adversarial loss (LGAN). Driven by the adversarial loss, the generator gener-
ates data with increasing fidelity and the discriminator with increasing discriminatory
power.

LGAN
(
G1, Dy, X, Y

)
= Ey∼pdata(y)

[
logDy(y)

]
+

Ex∼pdata(x)
[
log

(
1 − Dy(G1(x))

)] (5)

LGAN(G2, Dx, X, Y) = Ex∼pdata(x)[logDx(x)] +
Ey∼pdata(y))

[log(1 − Dx(G2(y)))]
(6)

Here, Ey∼pdata(y)
[
logDy(y)

]
and Ex∼pdata(x)[logDx(x)] represent the probability that

the discriminator will determine the true data as true; Ex∼pdata(x)
[
log

(
1 − Dy(G1(x))

)]
and Ey∼pdata(y))

[log(1 − Dx(G2(y)))] represent the probability that the discriminator will
determine the data generated by the generator as false. Therefore, the total loss of the
discriminator is the sum of the two, and that loss should be maximized.
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• Add the identity loss to ensure that the generated FECG signals do not have unwanted
distortions due to adversarial losses. The variation in the input signal is minimized by
providing immobility constraints through the generator. Maximize this loss in order
to ensure the morphological information of the FECG signal is available.

Lidentity(G1) =
2
N ∑N

i=1
1−ρ(P(yi),P(G1(xi)))

ρ(P(yi),P(xi))
+ 4

N ∑N
i=1 1 − ρ(yi, G1(xi)) +

1
N ∑N

i=1

∣∣∣∣p(xi)
−p(G1(xi))
p(xi)

∣∣∣∣ (7)

Lidentity(G2) =
2
N ∑N

i=1
1−ρ(P(xi),P(G2(yi)))

ρ(P(xi),P(yi))
+ 4

N ∑N
i=1 1 − ρ(xi, G2(yi)) +

1
N ∑N

i=1

∣∣∣∣p(yi)
−p(G2(yi))
p(yi)

∣∣∣∣ (8)

Here, P is the power spectral density, ρ is the Pearson correlation coefficient, ρ(x, y) =
∑N

i=1 (xi−x)(yi−y)√
∑N

i=1(xi−x)2
√

∑N
i=1(yi−y)2

, and p is the target signal power.

The total loss function is depicted in Equation (9):

L
(
G1, G2, Dx, Dy

)
= λLcycle(G1, G2) + LGAN

(
G1, Dy, X, Y

)
+ LGAN(G2, Dx, X, Y) + Lidentity(G1) + Lidentity(G2) (9)

λ regulates the relative significance of the three objectives, as illustrated in Equation (10):

G1
∗, G2

∗ = argmin
G1,G2

max
Dx ,Dy

L
(
G1, G2, Dx, Dy

)
(10)

Generator

The CNN–BiLSTM generator consists of four parts, the signal input module, con-
volutional neural network module, BiLSTM module, and output module, as described
in Figure 3. The last three parts correspond to the three functions of morphological fea-
ture extraction, feature enhancement, and fetal ECG signal reconstruction, respectively.
The input module takes the AECG signal as input, extracts combined features through
CNN and BiLSTM, and transforms the feature vectors in the output module to reconstruct
the FECG signal that is of equal length to the input signal. The generator extracts high-
dimensional features with the assistance of the CNN’s ability to abstract short-sequence
features. Subsequently, BiLSTM synthesizes the short-sequence high-dimensional features
to perform time series prediction, making it well suited for processing time series data
with local correlations. The network structure can efficiently capture deep combinatorial
features containing morphological features and temporal dependencies. Using this depth
feature, the CNN–BiLSTM generator can better separate the FECG signal from the rest and
complete FECG signal reconstruction with less information loss.

Morphological feature extraction: Although there are multiple similarities between
the FECG signal and other parts in the AECG signal, the diversity of morphological
features in the time domain can serve as a typical feature with which to distinguish
them. In this paper, a one-dimensional convolutional neural network is used to extract
the morphological features of FECG signals from AECG signals. When the signal passes
through the convolutional layer, one-dimensional convolution is employed to extract the
corresponding morphological features. The network is then expanded both horizontally
and vertically to acquire deeper and more abundant features. That is, the number of
convolution blocks is increased to 3, making 3 layers of convolution layers parallel. The
specific structures of each convolutional block and pooling block are described in Figure 4.
Finally, the dropout layer and fully Connected layer are added to prevent overfitting and
enhance feature depth, and the size is adjusted to serve as input for the BiLSTM module.
The number of convolution kernels in each convolutional block increases by a multiple of 2,
ranging from 64 to 256, progressively extracting features and enhancing feature dimensions.
The second part of the convolutional neural module is the pooling layer, which performs
feature dimensionality reduction, eliminates redundant features, and improves the fault



Sensors 2024, 24, 2948 11 of 21

tolerance of the CNN structure. After completing spatial feature extraction, the feature
vectors obtained from three CNN modules are input into the BiLSTM network.
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Feature enhancement: This study utilizes bidirectional long short-term memory
(BiLSTM) networks to learn signal timing information, reinforcing the feature differences
between FECG signals and other components of the AECG signal. The specific structures
of the BiLSTM and LSTM modules are described in Figures 5 and 6. The main hidden
layer structure of the BiLSTM network is composed of an LSTM network with forward
input operation and an LSTM network with reverse input operation based on the LSTM
network. While retaining the characteristics of the LSTM unit structure, it pays more
attention to the correlation between temporal data and ensures the extraction of time series
features by continuously adjusting the number of BiLSTM hidden layers to explore the
optimal time series feature extraction mode. The hidden layer includes three output nodes,
corresponding to the feature outputs of the P-wave, QRS compound wave, and ST segment
of the FECG signal. The feature vectors are transformed into combined features containing
signal properties and temporal dependencies after passing through the BiLSTM module.
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Fetal ECG signal reconstruction: The combined feature vectors are transformed into
segments of FECG signals with an equal length to that of the AECG signal through the
fully connected layer at the end.

Discriminator

Applying a 4 × 4 PatchGAN as the discriminator for the CycleGAN, in contrast to a
regular GAN discriminator, which maps the input to a single real number representing the
probability that the input signal is a genuine FECG signal, the PatchGAN discriminator
maps the input to a 4 × 4 matrix. The value Xij in the matrix represents the probability that
each patch is a genuine sample. The discriminator’s final output is obtained by averaging
the values of Xij. The PatchGAN discriminator discriminates each small segment of the
signal, directing the training model to focus more on the details of the signal. The discrimi-
nator structure is shown in Figure 7. In the discriminator, convolution layers with a kernel
size of 2 were used. Instead of ReLU being used as the activation function, LeakyReLU
with an α value of 0.2 was used. During training, the discriminator receives a patch and
reduces the size of the feature map by half using the convolution layer with strides of 2.
The number of channels starts from 64 and increases 2-fold. The last convolution layers use
strides of 1.
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3.3. Learning Process for FECG Signal Extraction Model

The process of extracting the FECG signal from the AECG signal can be regarded
as a reconstruction of the FECG signal. Let y ∈ RN×1 be the FECG signal following the
distribution F(y), and x ∈ RN×1 be the FECG signal to be reconstructed (AECG signal)
following another distribution F(x). Here, N represents the length of data segments. The
objective of the model is to build a function, G1(θ), that maps x to y:

G1(θ) : x → y (11)

The reconstruction model is completed when the parameter set θ minimizes the
difference between F(G1(x)) and F(y).

There is no explicit distribution mapping relationship between the AECG signal and
the FECG signal. GAN learns deep features that can describe the distributions of both AECG
and FECG signals. Using this information, it accomplishes the aforementioned distribution
mapping, achieving the reconstruction of FECG signals with lower non-linear information
loss. GAN takes AECG signals as input, and each layer of the network learns features from
the feature vectors generated by the input layer or the previous layer, generating deeper
features for subsequent network layers.

The pre-processed AECG signal and the real FECG signal are used to train and
optimize the model. The real FECG signal is used as a learning objective to approximate
the total model loss function, which is F(G1(x)) to F(y).Ltotal

(
G1, G2, Dx, Dy

)
= −LGAN +

αLcycle + βLidentity, where α and β denote the loss weights for the cycle loss and the identity
loss, respectively.

In addition, model optimization was performed using the Adam optimizer. Hyper-
parameters for training the network are described in Table 3.

Table 3. Hyperparameters for the training network in the proposed framework.

Hyperparameter Value

Optimizer Adam
Initial learning rate 10−4

β1 0.9
β2 0.999

Training rounds 80
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3.4. Evaluation Methods

In order to validate the model’s performance in extracting FECG signals, the mean
square error (MSE), the mean absolute error (MAE), the R-squared goodness of fit (R2), and
the signal-to-noise ratio (SNR) are exploited to evaluate the quality of the extracted FECG
signal, defined as follows:

MSE =
1
N

N

∑
n=1

[F(G1(n))− F(n)]2 (12)

MAE =
1
N

N

∑
n=1

[F(G1(n))− F(n)] (13)

R2 = 1 − ∑N
n=1[F(G1(n))− F(n)]2

∑N
n=1

[
F(n)− F(n)

]2 (14)

SNR = 10log10
∑N

n=1[F(G1(n))]
2

∑N
n=1[F(G1(n))− F(n)]2

(15)

where F(n) is the real FECG signal, F(G1(n)) is the FECG signal generated by the generator,
and F(n) is the average value of the real FECG signal. Smaller values of MSE and MAE
signify a better model fit, larger R2 values indicate higher correlation, and increased SNR
values reflect a higher quality of the extracted FECG signal.

The reference QRS compound wave annotation is usually used in fetal ECG signal
extraction to illustrate the model’s performance by comparing the position of the QRS com-
pound wave with the detected QRS compound wave position in the extracted FECG signals,
and the improved Pan–Tompkins detection algorithm [33] is used for FQRS compound
wave detection from the extracted FECG signals. If the position of the QRS compound
wave in the extracted FECG signal differs by no more than 50 ms from the reference po-
sition, it is considered to be extracted correctly. To validate the model’s performance in
extracting FQRS compound waves, the sensitivity (Se), the positive predictive value (PPV),
the accuracy (ACC), and F1 are exploited to evaluate the quality of the extracted FQRS
compound wave, defined as follows:

Se =
TP

TP + FN
× 100% (16)

PPV =
TP

TP + FP
× 100% (17)

ACC =
TP

TP + FN + FP
× 100% (18)

F1 = 2 × Se × PPV
Se + PPV

=
2TP

2TP + FN + FP
× 100% (19)

where TP, FP, and FN represent the quantities of true positives (a correctly detected FQRS
compound wave), false positives (an incorrectly detected FQRS compound wave), and false
negatives (missed detections of an FQRS compound wave), respectively. Higher values of
Se, PPV, ACC, and F1 metrics indicate better performance of the FECG signal extraction
algorithm.

4. Results

In this section, the model’s performance is comprehensively illustrated through the
evaluation of the quality of extracted FECG signals and the detection of FQRS compound
wave extraction accuracy. Finally, a model ablation study is conducted to demonstrate the
optimality of the model structure.
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4.1. FECG Signal Extraction Quality Assessment

Firstly, the FECG signal extraction performance of the CycleGAN combined CNN–
BiLSTM architecture (CBLS-CycleGAN) is assessed on B2_Labour_dataset. As outlined in
Table 4, CBLS-CycleGAN achieves an MSE of 0.027, MAE of 0.012, R2 of 98.53%, and SNR
of 7.45.

Table 4. Evaluating the quality of the extracted FECG signals based on B2_Labour_dataset.

Data MSE MAE R2 SNR

B2_Labour_01 0.024 0.018 97.64 7.48
B2_Labour_02 0.028 0.010 98.57 7.58
B2_Labour_03 0.027 0.012 98.62 7.61
B2_Labour_04 0.025 0.009 99.01 7.47
B2_Labour_05 0.030 0.009 97.96 7.32
B2_Labour_06 0.028 0.010 97.47 7.02
B2_Labour_07 0.027 0.012 99.57 7.77
B2_Labour_08 0.027 0.013 98.71 7.31
B2_Labour_09 0.029 0.011 98.65 7.44
B2_Labour_10 0.031 0.017 99.41 7.47
B2_Labour_11 0.024 0.007 98.01 7.49
B2_Labour_12 0.024 0.012 98.74 7.44
MEAN ± STD 0.027 ± 0.002 0.012 ± 0.003 98.53 ± 0.63 7.45 ± 0.18

Next, a comparison is made between the approach presented in this paper and six
other FECG signal extraction algorithms using the ADFECGDB dataset. As summarized in
Table 5, the CBLS-CycleGAN demonstrates superior performance with an MSE of 0.019,
MAE of 0.006, and R2 of 98.01%. Notably, models leveraging the CycleGAN as a founda-
tional framework outperform other models, underscoring the high-quality extraction of
FECG signals by the GAN.

Table 5. Comparison of FECG signal extraction quality with that of existing techniques based on
ADFECGDB. (MEAN ± STD).

Method MSE MAE R2

PA2NET [34] 0.146 ± 0.014 0.098 ± 0.007 79.87 ± 0.35
RCED-Net [24] 0.061 ± 0.006 0.019 ± 0.005 90.69 ± 0.17

AEDL [35] 0.059 ± 0.002 0.018 ± 0.003 92.09 ± 0.22
CSGSA-Net [36] 0.057 ± 0.003 0.016 ± 0.002 92.27 ± 0.33
CycleGAN [27] 0.042 ± 0.008 0.011 ± 0.004 92.71 ± 0.29

CAA-CycleGAN [28] 0.024 ± 0.003 0.007 ± 0.002 95.34 ± 0.12
this work 0.019 ± 0.004 0.006 ± 0.002 98.01 ± 0.26

Figure 8 illustrates the prediction of the two signals from ADFECGDB, and Figure 9
illustrates the prediction of the two signals from FECGSYN. Visual examination reveals that
the extracted FECG signals closely resemble the scalp FECG signals, exhibiting superior
recovery of detailed features associated with small amplitudes at low frequencies and
preserving the morphological information of FECG signals.

Finally, Figure 10 illustrates an image comprising a unit circle (depicted in red) along-
side a 3D trajectory (depicted in blue) generated based on data from ADFECGDB r01. As
the trajectory approaches one of the P-QRS-T waves, the 3D trajectory exhibits vertical
movement, with the limit ring oscillating up and down. The projection of this 3D trajectory
onto the Z axis corresponds to the FECG signal. A visualization of the 3D trajectories clearly
demonstrates that the FECG signal cycles extracted using the CBLS-CycleGAN model
exhibit the strongest cycle consistency and allow the complete preservation of P-QRS-T
morphological information, surpassing both the traditional CycleGAN model and the
1D-CycleGAN model.
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4.2. FQRS Compound Wave Detection Evaluation

Initially, using the improved Pan–Tompkins algorithm for the FQRS compound wave
detection of FECG signals extracted from the CBLS CycleGAN, the performance of FQRS
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compound wave detection by the CBLS-CycleGAN is evaluated on the ADFECGDB
database. As detailed in Table 6, the CBLS-CycleGAN achieves an Se of 99.34%, PPV
of 99.31%, and F1 of 99.33%. Despite significant noise pollution in this database, the CBLS-
CycleGAN model demonstrates robust FQRS compound wave extraction. The model
successfully captures a substantial number of FQRS compound waves with fewer instances
of both missed and falsely detected FQRS compound waves, providing further evidence of
the model’s validity in challenging conditions.

Table 6. Evaluating model FQRS compound wave detection performance with five datasets from the
ADFECGDB database.

Data TP FN FP Se (%) PPV (%) ACC (%) F1 (%)

r01 637 7 5 98.91 99.22 98.15 99.07
r07 626 1 2 99.84 99.68 99.52 99.76
r10 651 6 7 99.09 98.94 98.04 99.01
r04 628 4 3 99.37 99.52 98.90 99.45
r08 639 3 5 99.53 99.22 98.76 99.38

SUM 3181 21 22 99.34 99.31 98.67 99.33

Next, based on a variety of databases, the FQRS compound wave detection results
of the CBLS-CycleGAN are compared with the FQRS compound wave detection results
of the other eight deep learning models, as shown in Table 7. The CBLS-CycleGAN
exhibits the best FQRS compound wave detection performance on B2_Labour dataset; it
achieves an Se of 99.67%, PPV of 99.82%, and F1 of 99.74%. Compared with the traditional
single CycleGAN model, the model’s performance is highly improved because the present
model preserves both the spatial and temporal features of the signal. On the ADFECGDB
dataset, the performance parameters of the present model are slightly lower than those of
CAA-CycleGAN, but the model is based on the attention mechanism, which has higher
computational complexity and is time-consuming, which is not conducive to the real-time
monitoring of fetal health status.

Table 7. Comparison of FQRS compound wave detection quality with that of existing techniques.

Method Database Se (%) PPV (%) F1 (%)

RCED-Net [24]
ADFECGDB 96.06 92.25 94.10

PCDB 92.60 94.68 93.62

DPSS [37]
FECGSYNDB 98.55 99.52 99.03

ADFECGDB&NIFECGDB 95.75 97.29 96.50

PA2NET [34]
ADFECGDB 99.48 99.74 99.61

NIFECGDB 99.58 99.67 99.62

AEDL [35] NIFECGDB 97.36 98.68 98.02

CSGSA-Net [36]
ADFECGDB 99.61 99.44 99.56

B2_Labour 99.61 98.91 98.79

CycleGAN [27]
ADFECGDB 99.46 99.67 99.56

NIFECGDB 96.89 97.26 97.07

1D-CycleGAN [29] ADFECGDB&B2_Labour 97.69 94.87 96.26

CAA-CycleGAN [28]

FECGSYNDB 98.37 97.78 98.16

ADFECGDB 99.67 99.64 99.71

B2_Labour 99.54 99.43 99.47
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Table 7. Cont.

Method Database Se (%) PPV (%) F1 (%)

this work

FECGSYNDB 99.70 98.46 98.76

ADFECGDB 99.34 99.31 99.33

B2_Labour 99.67 99.82 99.74

Finally, Figure 11 illustrates an example of the proposed model’s visualization of
FQRS compound wave extraction performance when utilizing B2_Labour_dataset. Visual
inspection indicates that this model adeptly segregates FECG signals from MECG signals,
thereby retaining a greater degree of morphological information. Even in scenarios where
there is overlap between maternal fetal electrocardiogram signals (as denoted by the black
box), this model reliably yields clear FECG signals.
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The generator in this framework employs a combination of CNN and BiLSTM layers. 

An increased number of CNN layers signifies greater model depth, facilitating superior 
nonlinear representation and enabling the learning of more complex mappings. On the 
other hand, the discriminator utilizes a PatchGAN architecture, where additional 
PatchGAN layers enhance the discriminator’s focus on signal details. However, exces-
sively deep networks can escalate computational demands and potentially trigger over-
fitting issues, thereby compromising FECG signal extraction accuracy. To pinpoint the 
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Figure 11. Visualized example of the proposed model’s FQRS compound wave extraction perfor-
mance when using B2_Labour_dataset. Above is the AECG signal, and below is the extracted FECG
signal. The positions of the FECG signal, MECG signal, and MECG signal overlapping with the FECG
signal in the AECG signal are indicated by ‘F’, ‘M’, and ‘F + M’. The R peaks detected by the improved
Pan–Tompkins algorithms are marked with red circles. (a) B2_Labour_01; (b) B2_Labour_10.

4.3. Ablation Study

The generator in this framework employs a combination of CNN and BiLSTM layers.
An increased number of CNN layers signifies greater model depth, facilitating superior
nonlinear representation and enabling the learning of more complex mappings. On the
other hand, the discriminator utilizes a PatchGAN architecture, where additional Patch-
GAN layers enhance the discriminator’s focus on signal details. However, excessively deep
networks can escalate computational demands and potentially trigger overfitting issues,
thereby compromising FECG signal extraction accuracy. To pinpoint the optimal number
of generator and discriminator layers, FECG signal extraction experiments were conducted
on ADFECGDB data using models with varying layer configurations. As illustrated in
Figure 12, the Se, PPV, and F1 value indicate that the network attains optimal performance
when employing three CNN layers and four PatchGAN layers.

To assess the impact of different modules within the CBLS-CycleGAN on network
performance, this study incorporates two types of generators and two types of discrimi-
nators for combination. The results are summarized in Table 8. Notably, optimal network
performance is observed when employing the CNN–BiLSTM generator in conjunction with
the PatchGAN discriminator.
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PatchGAN discriminators with different layer depths.

Table 8. Ablation studies for the proposed modules in CBLS-CycleGAN tested on the ADFECGDB
database.

Generator Discriminator

CNN Bi-LSTM Basic PatchGAN MSE MAE R2 Se PPV F1
√ √

0.043 0.019 92.47 95.11 96.02 95.56
√ √

0.047 0.020 91.44 94.21 95.48 94.84
√ √ √

0.034 0.011 94.56 96.07 97.77 96.91
√ √

0.021 0.009 97.32 98.57 98.49 98.53
√ √

0.024 0.010 96.10 97.99 98.01 98.00
√ √ √

0.019 0.006 98.01 99.34 99.31 99.33

5. Conclusions

To address the issue of existing algorithms failing to preserve the morphological
features of fetal ECG signals, we have developed a novel CycleGAN architecture, the
generator of which combines the spatial features extracted by the convolutional neural
network and the temporal features extracted by the BiLSTM network, and designs three
hidden output nodes corresponding to the waveform features of the FECG signals. The
discriminator, known as PatchGAN, discriminates each small segment of the signal, enhanc-
ing the model’s focus on signal details during training. Ultimately, our implementation,
employing CBLS-CycleGAN, achieves the reconstitution of FECG and MECG from AECG
data with minimal information loss. The CBLS-CycleGAN model showcases exceptional
preservation of signal morphology while achieving performance on par with that of the
state-of-the-art methods. Moreover, it significantly enhances the accuracy of FQRS complex
wave extraction.

The validation of the proposed method in this study, using two publicly available real
databases, demonstrates that the model accurately acquires the FQRS compound wave
of the signal. With the Se, PPV and F1 of 99.51%, 99.57%, and 99.54%, respectively, based
on ADFECGDB and B2_Labour, the model showcases high performance. Moreover, it
efficiently preserves the morphological information of the FECG signal, as indicated by
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the MSE, MAE, and R2 of 0.019, 0.006, and 98.01, respectively, based on ADFECGDB.
Subsequent ablation experiments were conducted to validate the robustness and reliability
of the model by varying the model’s depth and removing key components.

The work presented in this paper offers valuable clinical insights for the early diagnosis
and intervention of fetal anomalies. Moving forward, it is essential to gather an extensive
amount of real clinical data under the supervision of physicians to evaluate the CBLS-
CycleGAN effectively, particularly in the context of remote home monitoring. In the future,
enhancements to the CBLS-CycleGAN model could involve incorporating an attention
layer before the random inactivation layer. The attention module aims to compute the
weighted average sum of the output vectors from the last layer of the LSTM. By integrating
this module, the model can amplify the impact of memory nodes with the highest weights
in the Bi-LSTM, thereby further minimizing model errors.
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33. Tanasković, I.; Miljković, N. A new algorithm for fetal heart rate detection: Fractional order calculus approach. Med. Eng. Phys.
2023, 118, 104007. [CrossRef]

34. Wang, X.; He, Z.; Lin, Z.; Han, Y.; Liu, T.; Lu, J.; Xie, S. PA2Net: Period-aware attention network for robust fetal ECG detection.
IEEE Trans. Instrum. Meas. 2022, 71, 2513812. [CrossRef]

35. Ghonchi, H.; Abolghasemi, V. A Dual Attention-Based Autoencoder Model for Fetal ECG Extraction from Abdominal Signals.
IEEE Sens. J. 2022, 22, 22908–22918. [CrossRef]

36. Wang, X.; Han, Y.; Deng, Y. CSGSA-Net: Canonical-structured graph sparse attention network for fetal ECG estimation. Biomed.
Signal Process. Control 2023, 82, 104556. [CrossRef]

37. Shokouhmand, A.; Tavassolian, N. Fetal electrocardiogram extraction using dual-path source separation of single-channel
non-invasive abdominal recordings. IEEE Trans. Biomed. Eng. 2022, 70, 283–295. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.bspc.2022.104175
https://doi.org/10.1109/CJECE.2020.2984602
https://doi.org/10.1371/journal.pone.0266807
https://doi.org/10.3390/s19194174
https://doi.org/10.3390/s22072788
https://doi.org/10.1109/ACCESS.2019.2917826
https://doi.org/10.1007/s11517-019-02087-7
https://doi.org/10.3390/s24020462
https://doi.org/10.1016/j.neuroimage.2015.02.064
https://doi.org/10.1007/s11042-023-17305-6
https://doi.org/10.1007/s13246-019-00805-x
https://doi.org/10.1007/s00246-023-03273-z
https://doi.org/10.1109/JBHI.2021.3111873
https://doi.org/10.1109/TIM.2023.3318668
https://doi.org/10.1016/j.eswa.2023.121196
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.1016/j.medengphy.2023.104007
https://doi.org/10.1109/TIM.2022.3189742
https://doi.org/10.1109/JSEN.2022.3213586
https://doi.org/10.1016/j.bspc.2022.104556
https://doi.org/10.1109/TBME.2022.3189617

	Introduction 
	Related Works 
	Methodology 
	Data Preparation 
	Database Description 
	Database Description 

	Proposed Method 
	Pre-Processing 
	Model Architecture 

	Learning Process for FECG Signal Extraction Model 
	Evaluation Methods 

	Results 
	FECG Signal Extraction Quality Assessment 
	FQRS Compound Wave Detection Evaluation 
	Ablation Study 

	Conclusions 
	References

