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Abstract: With the continuous advancement of autonomous driving and monitoring technologies,
there is increasing attention on non-intrusive target monitoring and recognition. This paper proposes
an ArcFace SE-attention model-agnostic meta-learning approach (AS-MAML) by integrating attention
mechanisms into residual networks for pedestrian gait recognition using frequency-modulated
continuous-wave (FMCW) millimeter-wave radar through meta-learning. We enhance the feature
extraction capability of the base network using channel attention mechanisms and integrate the
additive angular margin loss function (ArcFace loss) into the inner loop of MAML to constrain
inner loop optimization and improve radar discrimination. Then, this network is used to classify
small-sample micro-Doppler images obtained from millimeter-wave radar as the data source for pose
recognition. Experimental tests were conducted on pose estimation and image classification tasks.
The results demonstrate significant detection and recognition performance, with an accuracy of 94.5%,
accompanied by a 95% confidence interval. Additionally, on the open-source dataset DIAT-µRadHAR,
which is specially processed to increase classification difficulty, the network achieves a classification
accuracy of 85.9%.

Keywords: millimeter-wave radar; pose recognition; micro-Doppler; channel attention mechanism;
angular margin loss function; MAML

1. Introduction

Human activity recognition technology has received widespread attention recently,
with the growing demand for intelligent health monitoring, traffic safety, and traffic man-
agement. Different application scenarios have placed higher demands on the accuracy and
sensitivity of activity recognition. In short-distance human-monitoring environments, the
main sensors used are divided into two categories: wearable and non-wearable sensors.
Wearable sensors are typically attached to a specific part of the body through buttons,
straps, or placed in pockets, while some use pressure sensors placed inside shoes for hu-
man activity recognition. These sensors are capable of capturing high-resolution data from
human activities and representing them in forms such as acceleration, angular velocity,
speed, and displacement. However, these methods often have strong invasiveness, may
involve personal privacy concerns, are inconvenient to wear, and require cooperation
from pedestrians.

In the field of non-wearable sensors, video, radio frequency (RF), and radar technology
have become the hot spots for human activity recognition. The video-based scheme
is relatively mature, and video-based identification is a common measure at this stage.
However, the video-based method is objectively vulnerable to environmental interference;
for instance, light, rain, snow, and other conditions can affect the accuracy of video detection.

Sensors 2024, 24, 2932. https://doi.org/10.3390/s24092932 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24092932
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3609-0258
https://orcid.org/0000-0002-4153-8769
https://doi.org/10.3390/s24092932
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24092932?type=check_update&version=1


Sensors 2024, 24, 2932 2 of 19

Subjectively, video-based schemes invade the living environment of detection targets and
infringe on their privacy. Therefore, in the field of human body recognition, RF and radar-
based methods have become popular under the condition of privacy protection [1]. The
RF-based approach can obtain high recognition accuracy in an indoor environment. In [2], a
small sample experiment is conducted on the RF dataset collected indoors, and the accuracy
rate is 94.49%, indicating that the RF-based approach can effectively identify the behavior
of the target in an indoor environment. However, due to a number of factors, in outdoor
environments, the RF mode of performance is not as good as millimeter-wave radar. First,
Wi-Fi in the same frequency band is relatively crowded and easy to interfere with each
other. Second, the main purpose of Wi-Fi is to transmit data, which needs to transmit
a large amount of information to the carrier. Therefore, the detection performance and
anti-interference ability of the target are far lower than that of the radar specially used for
detection, and the detection accuracy is limited to the environment set by itself. Third,
Wi-Fi generally has omnidirectional antennas, while radar antennas are directional and
can detect targets in a specific area without interference from targets in other directions.
Therefore, to compare Wi-Fi and radar, radar’s performance is significantly better than
Wi-Fi in the outdoor environment.

Radar captures human activity features in complex environments through its Doppler
signals, enabling the acquisition of target information even under special weather con-
ditions or certain occlusion scenarios [3]. When a pedestrian moves, the relative motion
between the body parts and the radar sensor causes a Doppler effect. This effect causes
a change in the frequency of the reflected wave received by the radar, which contains
dynamic information about the pedestrian’s gait. The Doppler frequency is the specific
parameter that describes this frequency change. The frequency variation is closely related
to the pedestrian’s walking speed, step frequency, and gait characteristics. By analyzing
the Doppler frequency, the features related to pedestrian gait can be extracted. When
observing pedestrians on a finer scale, the movements of their body parts produce small
Doppler frequency changes, which are called micro-Doppler effects. Therefore, human
activities can be accurately represented by analyzing the micro-Doppler characteristics of
echo signals [4].

In recent years, neural networks have become a tool for pedestrian pose recognition.
Previous researchers have employed various machine learning techniques such as principal
component analysis, multilayer perceptron, and support vector machines [5]. However,
these methods primarily focus on classification algorithms with limited efficiency in fea-
ture extraction [6]. Consequently, deep learning has become the mainstream tool due
to its ability to automatically extract features, self-adjust, and self-regulate [7–9]. Ajay
Waghumbare et al. [10] utilized different pre-trained deep convolutional neural network
(DCNNs) models, such as VGG-16, VGG-19, and Inception V3, and fine-tuned these mod-
els to effectively perform recognition of human activity on the DIAT-µRadHAR human
activity dataset. Ibrahim Alnujaim et al. [11] trained a DCNN using micro-Doppler features
generated by generative adversarial networks (GANs) as well as raw data, resulting in
improved classification accuracy. Furthermore, with the recent popularity of attention
mechanisms, many methods have incorporated attention mechanisms to extract features
and have achieved corresponding successes. Fahad Jibrin Abdu et al. [12] designed an
elderly fall detection system using radar signal micro-Doppler features extracted by a
convolutional neural network (CNN) and by proposing a channel attention network using
canonical correlation analysis (CCA) algorithm, effectively fused the extracted features for
radar data recognition.

Considering the timeliness and generalization required for collecting data in real-
world environments, in this paper, we propose the use of meta-learning strategies to
achieve higher training accuracy with small sample sizes and improve the network’s
generalization ability. We focus on researching and optimizing the model-agnostic meta-
learning (MAML) framework in the context of human activity recognition to enhance
precision. Specifically, through attention mechanisms, we enhance the network’s ability to
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capture key information, making the inner loop of MAML more compact. Additionally, by
employing the ArcFace loss function to constrain the inner loop, we ensure the model has
good inter-class discrimination and intra-class cohesion.

The contribution of this paper is as follows:

(1) We propose a framework that integrates the attention mechanism into residual net-
works and optimizes the initialization parameters through MAML to recognize pedes-
trian movements captured by FMCW radar.

(2) In this article, we employ the ArcFace loss function to constrain the inner loop that
forms the AS-MAML network, aiming to enhance inter-class diversity and discrim-
inability towards intra-class variations.

(3) By validating open-source datasets such as DIAT-µRadHAR, we ensure the effective-
ness of our network.

The first section of this paper mainly describes the application of FMCW millimeter-
wave radar in the field of gait recognition, as well as the main contribution of the article.
Section 2 introduces relevant research in the field of millimeter-wave radar gait recognition,
as well as some current research status of small-sample gait learning. Section 3 describes the
relevant calculations of the FMCW radar, which mainly includes radar signal processing,
micro-Doppler effect calculation, and signal noise reduction processing. Section 4 intro-
duces the proposed network and the methods used to optimize the network through the
channel attention mechanism and ArcFace loss function. Section 5 is the experimental part,
which compares the performance of the proposed network with other networks through
various experimental analyses and verifies the methods used on open-source datasets.
Section 6 is the summary.

2. Related Work

In recent years, with the high integration of modern radar, i.e., the gradual minia-
turization of radar systems, civilian radar has entered all aspects of people’s lives. Over
the years, researchers have made significant progress in millimeter-wave radar human
behavior recognition. Papadopoulos, K et al. [13] conducted a comparative study on the
current research progress of radar human activity recognition based on machine learning.
He believes that the currently used machine learning methods mainly include support vec-
tor machines (SVMs), convolutional neural networks, recurrent neural networks (RNNs),
long short-term memory (LSTM) neural networks, stacked autoencoders, convolutional
autoencoders, and transformers.

Some traditional methods, such as SVMs and principal component analysis (PCA), are
used for the initial recognition of pedestrian gait data. In [14], SVMs were used to classify
seven different human activities measured by ultra-wideband radar: walking, running,
rotating, punching, crawling, standing still, and the transition between sitting and standing.
Classification was achieved using the time variations of the returned signals from human
objects. Features were captured by PCA. SVMs were proposed as the classifier. When
capturing features using principal component analysis, the most significant 30 component
coefficients were retained, reducing the overall data size by 98.7% while still retaining 95%
of the signature information. In the final SVM classification and recognition, due to the
existence of inherently similar actions, the average classification accuracy was only 89.88%.

In [15], researchers compared SVMs and CNNs on the Harth and Har70+ datasets,
weighing the model performance and resource consumption (i.e., hardware-optimized
model comparison) to provide information for FPGA implementation. After comparison,
the F1 score of the unoptimized CNN model was 7.7% higher than that of the unoptimized
SVM model, and the resource utilization was improved by two to three times. Currently,
CNNs, RNNs, and LSTM neural networks are commonly used classification algorithms.
Since its introduction by Yann LeCun in the 1980s, CNNs have received significant attention
in the scientific community and have become increasingly important in signal processing.

Because gait data are presented over time, networks designed for handling temporal
data, such as LSTM neural networks, are used for gait data classification. Often, LSTM
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can be combined with other networks. In [16], a combination of CNNs and LSTM neural
networks was used. After obtaining features through a one-dimensional CNN, the features
were integrated into an LSTM neural network with attention mechanisms as a time series to
achieve human activity recognition. The aim was to achieve a lighter network and achieved
a recognition accuracy of 96.9%.

Gait data can also be represented in the form of spectrograms, and micro-Doppler
images can vividly present the characteristics of gait data. Therefore, CNNs are also a
hot research topic in this field. In [17], continuous-wave (CW) K-24 GHz band radar
sensors were used to collect signals, and the collected radar motion data were classified
into three main behaviors: non-human motion, human walking, and human walking
without arm swinging. The collected signals were processed using STFT, Mel spectrograms,
and Mel-frequency cepstral coefficients. The latter two methods are commonly used in
audio processing but were used here to obtain the micro-Doppler spectrograms of all
motion data. The processed data were then input into a simplified 2D CNN architecture for
feature extraction and classification. The network trained on Mel-scale frequency cepstral
coefficients (MFCCs) features achieved a classification accuracy of 97.93% in the final
experimental results.

These neural networks can achieve relatively high classification accuracy, which is
achieved based on a large amount of data. Currently, there is a lot of research in this
area, and by using mature datasets or collecting more data, the networks can adapt to the
corresponding training results [18–21]. However, in practical application environments,
considering the difficulties in data collection, most of the available training data is relatively
limited. Therefore, we need to take corresponding measures to alleviate the impact of
insufficient data. Some researchers have also considered the situation of limited datasets
and used GANs to expand the dataset to improve accuracy. Alnujaim et al. [22] proposed
the generation of synthetic micro-Doppler features from different angles using conditional
generative adversarial networks. They believe that the synthesis of micro-Doppler signals
is an alternative to collecting a large amount of human activity data. By synthesizing micro-
Doppler features of human activities from different radar perspectives with input data from
a single perspective, they studied the feasibility of data augmentation by examining multi-
target micro-Doppler features with incremental angles of 45 degrees. Finally, conditional
generative adversarial networks (CGANs) were used to synthesize micro-Doppler features
at specific angles.

3. Micro-Doppler Signal Processing
3.1. Radar Signal Analysis

In the identification of human activities, FMCW radar is more suitable for human
perception than continuous wave radar, as it can measure speed and distance at the same
time with high sensitivity and high anti-interference ability. FMCW radar emits continuous
electromagnetic waves with constant amplitude and modulated frequencies and processes
the electromagnetic waves reflected by the targets. The FMCW radar system generates
sinusoidal amplified RF signals through high-frequency oscillation units, and the frequency
shows a sawtooth shape within the duration, as shown in Figure 1.

fmax − fmin =
∆ f
∆t
·T (1)

Radar emits a series of chirp signals with a period of T and a bandwidth of B. Each
chirp can be represented as:

st(t) = Aexp
(

j2π

(
f0t +

1
2

B
T

t2
))

(2)

where A is the amplitude of the transmitted signal, and f0 is the carrier frequency.
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When the transmitted signal detects the target, an echo signal is generated. The
received echo signal and the transmitted signal mix together to generate an intermediate
frequency (IF) signal:

sIF(t) = KAexp
(

jπ
(

f0td + 2
B
T

tdt− B
T

td
2
))

(3)

where K represents gain and td is the delay time for the target arrival.
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At this point, the Doppler frequency shift caused by target motion is given by
fD = − 2v fT

c , where fT is the frequency of the transmitted signal. When the target is a
human body, the movement of the human torso constitutes the main component of the
Doppler signal in the echo, while the limbs appear as micro-motion signals along the edges
of the main Doppler signal. This is a characteristic introduced by the human body in
the micro-Doppler signal. We need the micro-Doppler signal of human micro-motion to
conduct further identification research.

3.2. Micro-Motion Signal Processing

When the torso causes Doppler frequency shift to a certain extent, the limbs generate
oscillatory sidebands, which are known as micro-Doppler signals [23]. These micro-Doppler
signals appear in a resolvable form in the time–frequency plane, enabling the classification
and recognition tasks of micro-Doppler images in deep learning. Figure 2 shows a micro-
Doppler image of a walking person.

Micro-Doppler signals can be obtained through time-correlated frequency domain
transformations. First, the raw data of the signal is converted into a time-dependent
distance distribution through a fast Fourier transform. Then, the time-dependent spectral
distribution of the signal is calculated through the short-time Fourier transform. Window
function operations are performed on a joint time–frequency platform, defined as the sum
of signal values multiplied by a window function, which is typically a Gaussian function.
The Doppler sequence generated by each sliding window is arranged in slow time to form
a TF image. At this time, the spectrum can be expressed as:

X(τ, f ) =
∫ ∞

−∞
x(t)ω(t− τ)e−j2π f tdt (4)

where X(τ, f ) is the time–frequency domain representation at time m and frequency,
f ω(t− τ) is the time-shifted version of the window function at time, and τ. x(t) is a
continuous-time signal.



Sensors 2024, 24, 2932 6 of 19Sensors 2024, 24, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 2. Micro-Doppler image of a walking person. 

Micro-Doppler signals can be obtained through time-correlated frequency domain 
transformations. First, the raw data of the signal is converted into a time-dependent dis-
tance distribution through a fast Fourier transform. Then, the time-dependent spectral 
distribution of the signal is calculated through the short-time Fourier transform. Window 
function operations are performed on a joint time–frequency platform, defined as the sum 
of signal values multiplied by a window function, which is typically a Gaussian function. 
The Doppler sequence generated by each sliding window is arranged in slow time to form 
a TF image. At this time, the spectrum can be expressed as: 

𝑋 𝜏, 𝑓 = 𝑥 𝑡 𝜔 𝑡 − 𝜏 𝑒 𝑑𝑡 (4) 

where 𝑋 𝜏, 𝑓  is the time–frequency domain representation at time m and frequency, 
f𝜔 𝑡 − 𝜏  is the time-shifted version of the window function at time, and 𝜏. 𝑥 𝑡  is a con-
tinuous-time signal. 

Choose a window function with window length T and a time step between win-
dows D. In the time-discrete domain, the time-discrete STFT applied to the time-range 
distribution matrix can be obtained using the following formula: 𝑋 𝑛, 𝑘 = 𝑥 𝑚 𝜔 𝑚 − 𝑛𝐷 𝑒 /  (5) 

where 𝑋 𝑛, 𝑘  refers to the discrete time–frequency domain representation at time point 
n and frequency point k.𝑥 𝑛   represents the sample of signal 𝑥 𝑡   at time point nT. 𝜔 𝑚 − 𝑛𝐷  is the time-shifted version of the window function at time n. N is the length 
of the FFT. 

In practical applications and subsequent open-environment experimental collections, 
the micro-motion power introduced by human activities is very small and can be easily 
affected by strong static clutter. As shown in the middle red line in Figure 2, this is the 
interference of static targets on the image in the actual collection environment. When the 
micro-Doppler image is normalized, these clutters can affect the quality of the collected 
micro-Doppler image, making it inconvenient for subsequent research. Therefore, it is 
necessary to suppress the obtained micro-Doppler image using an MTI frequency filter to 
remove the effect of clutter. Additionally, a Butterworth high-pass filter is used to process 
the signal, preserving effective frequencies and making the micro-Doppler image more 
observable. The Butterworth high-pass filter can be represented as: 

Figure 2. Micro-Doppler image of a walking person.

Choose a window function with window length T and a time step between windows D.
In the time-discrete domain, the time-discrete STFT applied to the time-range distribution
matrix can be obtained using the following formula:

X[n, k] = ∑∞
n=−∞ x[m]ω(m− nD)e−j2πkm/N (5)

where X[n, k] refers to the discrete time–frequency domain representation at time point n
and frequency point k.x[n] represents the sample of signal x(t) at time point nT. ω(m− nD)
is the time-shifted version of the window function at time n. N is the length of the FFT.

In practical applications and subsequent open-environment experimental collections,
the micro-motion power introduced by human activities is very small and can be easily
affected by strong static clutter. As shown in the middle red line in Figure 2, this is the
interference of static targets on the image in the actual collection environment. When the
micro-Doppler image is normalized, these clutters can affect the quality of the collected
micro-Doppler image, making it inconvenient for subsequent research. Therefore, it is
necessary to suppress the obtained micro-Doppler image using an MTI frequency filter to
remove the effect of clutter. Additionally, a Butterworth high-pass filter is used to process
the signal, preserving effective frequencies and making the micro-Doppler image more
observable. The Butterworth high-pass filter can be represented as:

H(jω) =
1√

1 +
(

ω
ωc

)2n
(6)

where H(jω) is the transfer function of the filter, ω is the angular frequency, ωc is the cutoff
frequency, and n is the order of the filter. By solving the modulus of the transfer function,
the gain characteristics of the filter can be obtained. In practical use, we set n = 4 and
ωc = 0.0075. Figure 3 shows seven types of motion signals after clutter suppression.

When obtaining Doppler images, the first step is to employ window functions to apply
windowing to the collected data, reducing spectral leakage. Subsequently, the windowed
data is subjected to a short-time Fourier transform (STFT) to generate a spectrogram. By
analyzing the spectrogram, one can derive a time-velocity Doppler image that represents
the target’s velocity changes.

The Moving Target Indication (MTI) filter is primarily used in radar signal processing
for detecting and tracking moving targets. In the MTI filter, there is a time interval between
two consecutive radar pulses. By performing a time-domain differencing operation on
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the received signal between these two consecutive pulses, it is possible to eliminate the
signal components of stationary targets. Additionally, a low-pass filter is employed within
the filter to remove high-frequency components, further suppressing stationary or slow-
moving clutter.
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Then, anisotropic denoising will be applied to the micro-Doppler images. Anisotropic
filtering can effectively preserve characteristics such as gait outlines and motion details
while reducing noise.

Following data preprocessing, we simply compare the training datasets before and
after denoising. The accuracy of the training before denoising is 83.14%, whereas after
denoising, it improves to 94.3%. This indicates that the noise in the original image is still
quite noticeable.

4. Improved Meta-Learning

The AS-MAML network structure diagram is shown in Figure 4.
The main network we use is Resnet18, where the outputs of hidden layers in the

network are directly added to distant, hidden layers via residual and skip connections.
This approach alleviates the vanishing gradient problem and makes the network easier to
train and optimize.

When facing the problem of low feature extraction rate and low inter-class discrim-
ination, we adopt channel attention and additional angular margin loss to optimize the
network. This enhances the performance and inter-class discrimination of the network.
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4.1. Model-Agnostic Meta-Learning (MAML)

Meta-learning, also known as “learning to learn”, aims to acquire a “learning method”
by training on multiple related tasks, enabling this method to quickly learn and adapt to
new tasks [24]. Due to the inherent strong transferability and generalization ability of meta-
learning, its application scope includes but is not limited to small sample learning, transfer
learning, reinforcement learning, meta-reinforcement learning, and adaptive learning.

In the context of transfer learning, a meta-learning approach enables the model to
use the knowledge and experience gained in the source domain to accelerate the learning
process in the target domain. In reinforcement learning scenarios, meta-learning methods
help to design learning strategies and fine-tune algorithm parameters so that they can
adapt to different environments and tasks. Specifically, meta-reinforcement learning needs
to acquire learning strategies in various reinforcement learning tasks to improve the per-
formance of the learning algorithm on unknown tasks. The application of meta-learning
techniques in this field enables the design of meta-reinforcement learning algorithms to
facilitate knowledge transfer and generalization across different tasks. Finally, in the face
of a dynamic environment or changing data distribution, meta-learning methods promote
the adaptive adjustment of learning strategies and model parameters so that the model
can effectively adapt to new situations. Of course, meta-learning networks specially de-
signed for small samples have their advantages in small sample tasks, which can obtain the
highest possible generalization performance and recognition accuracy through the smallest
sample size.

While a substantial amount of suitable data can be obtained through sampling in in-
door environments, data collection can be more challenging in outdoor scenarios, resulting
in smaller datasets. In the context of small-sample multi-classification tasks, meta-learning
can enhance the performance of models in few-shot learning by learning shared feature
representations across tasks or acquiring adaptive optimization strategies.

MAML is a popular framework in meta-learning, aiming to discover an optimal
initialization of model parameters that enables the model to adapt to various tasks with only
a few gradient updates. MAML can also be defined as a two-level optimization problem:
inner loop optimization and outer loop optimization. In the inner loop optimization, each
task Tm

i =
{

Sm
i , Qm

i
}

in the support set Sm
i is used to fine-tune the initialization of model

parameters through a fixed number of gradient descent steps. As shown in Figure 5, MAML
usually uses an inner and outer loop update to obtain common parameters on the task,
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helping the model to better generalize. MAML typically employs the cross-entropy loss
function for update learning:

θi,j+1 = θi,j − βinner∇θL
(

fθi,j ; Sm
i

)
(7)

where j refers to the internal update steps, βinner is the internal learning rate of the weights,
fi,j represents a parameterized function with parameter ϑi,j, andL signifies the loss function;
the final weight of the base learner after J updates is θ′=ϑi,J . After M iterations of gradient
descent, the task of sampling from the query set Qm

i updates the meta-learner according to
the following rules:

θ ← θ − βmeta

B

∑
i=1
L( fθ′ ; Qm

i ) (8)

where B refers to a set of tasks encompassed within a batch, and βmeta signifies the learning
rate in outer loop optimization.
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4.2. Attention Mechanism

The mechanism of channel attention aims to enhance the model’s processing of specific
signals in the input data. By automatically focusing on the most important channels in
the input signal, SE-attention achieves better encoding and extraction of information. The
channel attention mechanism can be applied to various types of network structures and
tasks, including image classification, object detection, and segmentation, making it one of
the important tools commonly used in modern deep learning [25].

In the residual network, we introduced a channel attention mechanism in the final
stage of each network to capture the relationship between global features. During the train-
ing on the testing dataset, the network without attention mechanism exhibited overfitting.

Let the input feature map x f ∈ rh×w×c, where c is the number of channels in the input
feature map, h and w are the height and width of the feature map, respectively. The channel
attention mechanism calculates the weight of each channel and scales each channel in the
input feature map based on its weight.

First, we obtain the average value αc of the entire feature map through the global
average pooling layer, where c represents the channel dimension:

αc =
1

h× w

h

∑
i=1

w

∑
j=1

x f
ijc (9)
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Subsequently, we employ two fully connected layers to generate channel weights ωc
and sc, where ωc signifies the weight of channel c, and sc is a scalar serving as the bias term
that can be regarded as a learned parameter:

zc = f (w2 f (w1αc + b1) + b2) (10)

ωc =
ezc

∑c
c′=1 ezc′

, sc = (γ− 1)zc + 1 (11)

In this context, γ serves as a hyperparameter that governs the degree of scaling of
the generated weight wc ∈ concerningt to the input feature map and aids in expediting
convergence.

4.3. ArcFace Loss

In the classification task of single-person gait, where the differences in motion wave-
forms are not significant, the network needs to effectively differentiate these visually similar
images. While the cross-entropy loss function is commonly used in traditional classifica-
tion tasks, it may require a larger number of iterations to converge in this particular task.
Additive angular margin loss, also named ArcFace loss, offers a comparative advantage as
it enables faster convergence.

ArcFace loss is a loss function used to enhance the boundaries of the feature embed-
ding space, primarily used in tasks such as face recognition and feature representation
learning [26]. Through experiments, we have observed its potential in multi-classification
tasks, as it introduces angle margin parameters and cosine boundaries to compare the
cosine similarity between feature vectors and weight vectors with the angular differences
between labels. This results in a tighter clustering of feature vectors within the same
category and a more dispersed distribution of feature vectors across different categories.

The most widely used classification loss function, soft-max loss, is presented as L1.

L1 = −log
eWT

yi
xi+byi

∑N
j=1 eWT

j xi+bj
(12)

In this context, xi ∈ Rd represents the deep feature of the ith sample and yi represents
the category of that sample. The feature dimension is temporarily set to 512. Wj ∈ Rd

represents the weight of the jth column in W ∈ Rd×N , and bj is the bias term. However, this
soft-max loss does not explicitly optimize feature embeddings to enhance high similarity
among intra-class samples and differences among inter-class samples. This can lead to con-
fusion between similar behaviors, such as descending a slope and stepping down a staircase
when performing gait recognition. To address this, we consider WT

j xi =
∥∥Wj

∥∥∥xi∥cosθj,
where θj is the angle between the weight Wj and feature xi. By fixing the weights to 1 and
normalizing the features with ↕2 regularization and rescaling them to s, the prediction
result becomes dependent on the angle between the features and weights. Therefore, the
learned embedded features are distributed on a hypersphere with a radius of s. So, the loss
function can be represented by L2.

L2 = − 1
N

N

∑
i=1

log
es(cos θyi )

es(cos θyi ) + ∑n
j=1,j ̸=yi

escosθj
(13)

To simultaneously increase inter-class compactness and inter-class differences, an ad-
ditional angular margin penalty m is applied between features and weights. The calculation
formula for the AM loss function is L3.

L3 = − 1
N

N

∑
i=1

log
es(cos (θyi+m))

es(cos (θyi+m)) + ∑n
j=1,j ̸=yi

escosθj
(14)
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where L represents the loss function, s denotes the scaling factor, θyi represents the angle
between the feature vector and weights of sample i, yi represents the authentic category of
the sample, and m is the angular interval parameter.

The objective of angular margin loss during training is to minimize this loss function.
It achieves this by optimizing the boundaries of the feature embedding space, enhancing the
separability of feature vectors, and ultimately improving the performance of classification.

5. Experiments and Results
5.1. Experimental Environment

The experimental data were collected outdoors between buildings on the campus
of Nantong University in May 2023. The experiment utilized the AWR1642 radar and
DAC1000EVM for data acquisition, both produced by Texas Instruments. The AWR1642 is
a multi-channel radar sensor, while the DAC1000EVM is an acquisition card that interfaces
with the AWR1642, allowing users to transmit digital intermediate frequency data to a
computer via Ethernet. As shown in Figure 6, the experiment took place on a closed
driving path within a park, with the FMCW radar positioned facing the direction of the
target. In this study, we explored the optimal structure of the proposed network and
conducted ablation experiments using our own dataset, which includes seven types of
human behaviors. The experiment involved five participants, each with different heights,
weights, and ages. The self-built dataset adopted a relatively simple activity acquisition
mode, with the movement range for walking and running being approximately 10 m.
Considering actions such as descending stairs and slopes require a complete cycle, the
duration of each sample data was set to 4 s. During the experiment, to ensure the diversity
of the dataset, each participant acted according to their habits, resulting in a total of 700
Doppler sequence groups. In the experiment, we set the system parameters as shown in
Table 1.
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Table 1. System parameters.

Parameter Symbol Value

Number of ADC samples NTS 256
Number of Chirps Nc 128

Chirps Time Tc 32 µs
Number of Transmit Antennas NTX 2
Number of Receive Antennas NRX 4

Total Bandwidth B 1.8 GHz
Frame Time Tf 40 ms



Sensors 2024, 24, 2932 12 of 19

The model was trained and tested on a computer equipped with a 2.9GHz Intel Core
i5-10500F processor, NVIDIA GeForce RTX3060ti GPU, and the Windows 10 operating
system. The program is designed using open source software Python 3.7 and PyTorch 12.1.

5.2. Network Comparison

In each training session, we randomly selected 16 instances for each task. Within the
inner loop, the step size for updates was set to 5, and the inner learning rate, p, was set
to 0.01. In the outer loop, we utilized the Adam optimizer with a learning rate λ of 0.0001
and a meta-batch size of 3. The collected dataset was divided into training, validation, and
testing sets for evaluation purposes.

Due to positive feedback between layers, the ability to represent features can be ampli-
fied during training. Deepening the network can enhance nonlinear expression capabilities,
enabling more complex feature fitting. The width of each layer, that is, the number of
convolution kernels, determines the richness of captured features in each layer, which is
related to the difficulty of network optimization. However, blindly deepening the network
can lead to optimization difficulties, performance saturation, and degradation of shallow
learning abilities. Similarly, exceeding the appropriate width can reduce network efficiency
due to redundant feature extraction. Therefore, a ResNet18 network with relatively few
layers was chosen for the inner network. The smaller number of network layers and the
stable residual structure helped the MAML network better constrain the inner loop.

In the MAML network framework, due to insufficient constraints within meta-learning,
its stability was poor during runtime. Therefore, when optimizing the MAML network, the
main consideration was the constraint problem of inner loop optimization. At this time, a
stricter inner loop loss helped the network better obtain generalizable parameters during
the inner loop and better adapt to gait datasets in small sample scenarios.

AS shown in Table 2, the optimized AS-MAML model performs better on the data
set. Compared to other base networks, AS-MAML showed significant improvements in
both accuracy at the 95% confidence interval and MAP95 accuracy. With the method
proposed in this paper, a significant improvement in the MAP95 accuracy of the model can
be observed. Furthermore, by optimizing the internal loss function using the ArcFace loss
function, our 95% confidence interval (CI) improved by 3.2%. Because training the network
under the MAML framework is to train better parameters for the network, rather than
expanding or modifying the structure of the network, the parameter amount and inference
time of AS-MAML were not greatly affected. These results show that our proposed MAML
loss optimization effectively reduced model overfitting to small samples of FMCW radar
micro-Doppler images and enhanced the generalization performance of query samples.

Table 2. The classification results of different models.

Model 95% CI MAP95 Parameters Inference Time/Sample
(ms)

Resnet18 [27] 91.3 65.7 4,728,774 4.10
PCA [14] 76.6 43.7 53,191 5.13

AlexNet [28] 71.4 47.0 57,017,031 4.46
VGG16 [29] 87.1 64.3 134,292,422 16.01
AS-MAML 94.5 93.7 4,730,311 4.11

5.3. Ablation Experiment

Furthermore, we conducted a thermolysis experiment to examine the effects of the
loss function and attention mechanism. We classified the results into the following four
categories and compared them based on 95% confidence accuracy and MAP95:

(a) MAML: where the internal training utilized cross-entropy loss through pure MAML
training.

(b) MAML and ArcFace loss: inner loop optimization only, without employing attention
mechanism.
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(c) MAML and SE: utilizing both cross-entropy loss and the SE-attention mechanism.
(d) AS-MAML: our proposed optimized network.

In terms of the ablation experiment, our comparative findings are illustrated in Table 3.
In contrast to MAML, the optimized MAML showcased notably superior performance
on the Res18 network. This observation signifies that the ArcFace loss, along with the
SE-attention mechanism, effectively addressed the issue of overfitting during the internal
optimization of the model. Moreover, the MAML that incorporates both optimizations
concurrently achieved the most exceptional classification outcomes. Since the shot quantity
set for each iteration of the inner loop was 10, the accuracy in the training results was
relatively high. However, as shown in Figure 7, there was a significant difference with
regard to MAP95.

Table 3. Classification results for different positions of attention modules.

ArcFace Loss SE-Attention 95% CI MAP95

(a) 92.1 79.6
(b)

√
93.7 86.2

(c)
√

92.8 89.7
(d)

√ √
94.5 93.7
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5.4. T-SNE Visual Clustering Degree Analysis

Figure 8 shows the T-SNE visualization of different networks, where Figure 8a repre-
sents the original Res18 network, Figure 8b represents MAML, and Figure 8c represents
AS-MAML. We demonstrated the effectiveness of our method by visualizing the feature
distribution of the test. In the figure, we can see that compared with the basic network
Res18 and MAML, our method reduced the dispersion of features in each class and had
good intra-class aggregation and inter-class separability.
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than that of (a) Res18 and (b) MAML, as the distances between categories are too close, which are
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5.5. Comparison of Data Augmentation Methods

In small sample training, apart from the MAML method mentioned in this article, there
are also other approaches, the most common being data augmentation. There are various
methods of data augmentation, but cropping or adding noise in time-related spectrograms
are commonly used techniques. Specific methods can be seen in Figure 9. The data set is
expanded by data enhancement in (a), and the data is enhanced by Gaussian kernel with
mean 0 and variance 0.01 and mean 0.2 and variance 0.01 respectively in (b) and (c).
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By employing image enhancement techniques, the dataset can be expanded eightfold,
providing sufficient data for deep learning training. The internal network of the previous
AS-MAML was still used for the training of the network, but instead of using the MAML
framework, only conventional network training was performed. During training, the
learning rate was set to 0.01, the optimizer was Adam, and the model was trained for
50 epochs. The training environment remained consistent with that described earlier.

The training loss function and accuracy curves are presented in Figure 10.
It can be observed that after training the network 15 times, the accuracy on the

training set reached 100%, and both the loss and accuracy remained relatively stable during
subsequent training sessions. This indicates that commonly used data augmentation
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methods can also achieve high classification accuracy. When validating the network on the
test set, the obtained accuracy was 92.3%, but the MAP95 result was only 51.2%, indicating
that overfitting occurred during network training. During the process of training with a
limited number of samples, overfitting is a common and easily occurring problem. It can
lead to the algorithm’s inability to adapt to unseen datasets and decrease its generalization
ability, resulting in the inability to accurately identify the poses of pedestrians outside the
dataset during practical use. Therefore, it is crucial to avoid the occurrence of overfitting
during the training process.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 10. The training loss function and accuracy curves. 

5.6. Open-source Dataset Comparison 
To validate our network, an open-source dataset, DIAT-𝜇RadHAR [30], was selected, 

which contained samples of six human activities: army crawling, army jogging, jumping 
while holding a gun, army marching, boxing, and stone-pelting/grenades-throwing. 
When configuring the network, the optimizer was set to Adam with a learning rate of 
0.0001, and a total of 100 epochs were trained. Due to the significant inter-class differences 
in this dataset, employing basic convolutional neural networks such as VGG16 or Res-
Net18 yielded excellent training results. After 100 training iterations, the model was al-
ready well-fitted, maintaining an accuracy of over 99%. To further enhance the validation 
of our network, we designed the dataset by compressing images and sampling data 
through random cropping in the temporal dimension. Such approaches make the image 
dataset features less distinct and more challenging to validate. 

From Figure 11, it can be observed that our network outperformed some basic con-
volutional neural networks in terms of training results. Not only did it achieve the highest 
accuracy, but also the MAP95 parameters were the most outstanding among the afore-
mentioned networks. This fully validates the effectiveness of our network. 

0 5 10 15 20 25 30 35 40 45 50
Epoch

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Loss
Accuracy

Figure 10. The training loss function and accuracy curves.

5.6. Open-Source Dataset Comparison

To validate our network, an open-source dataset, DIAT-µRadHAR [30], was selected,
which contained samples of six human activities: army crawling, army jogging, jumping
while holding a gun, army marching, boxing, and stone-pelting/grenades-throwing. When
configuring the network, the optimizer was set to Adam with a learning rate of 0.0001,
and a total of 100 epochs were trained. Due to the significant inter-class differences in
this dataset, employing basic convolutional neural networks such as VGG16 or ResNet18
yielded excellent training results. After 100 training iterations, the model was already
well-fitted, maintaining an accuracy of over 99%. To further enhance the validation of
our network, we designed the dataset by compressing images and sampling data through
random cropping in the temporal dimension. Such approaches make the image dataset
features less distinct and more challenging to validate.

From Figure 11, it can be observed that our network outperformed some basic convo-
lutional neural networks in terms of training results. Not only did it achieve the highest
accuracy, but also the MAP95 parameters were the most outstanding among the aforemen-
tioned networks. This fully validates the effectiveness of our network.

5.7. Classification of Different Walking Modes

Taking into account different walking habits and each person’s special circumstances,
the walking speed may be different. There are differences in the walking speed of young,
middle-aged, and old people, which leads to differences in the spectral map generated by
FMCW radar. Therefore, it is also important to classify and identify pedestrians at different
speeds. As shown in Figure 12, we collected data at three different traveling speeds. The
first group is normal walking with a speed of about 1 m/s, the second group is fast walking
with a speed of 1.2 m/s, and the third group is slow walking with a speed of about 0.5 m/s.
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The classification results are shown in Figure 13. At different walking speeds, the
pedestrian’s main speed and the swing speed of the limbs change, resulting in different
spectrum diagrams, which can be used to classify. In this group of classifications, the
classification accuracy reached 98.3%, which also reflects the effectiveness of classification
under different walking speeds.

We also conducted experiments on the discrimination between the two-person walking
and single-person walking situations. We compared the difference between a single-person
walking and two-person walking in two ways, that is, walking in the same directions
and opposite directions: (1) when two people are walking in the same direction, their
stride frequencies will overlap, causing the signal intensity of the spectrum within the
same category to increase, which is easily consistent with the spectrum of a single person
walking. In this situation, multiple targets can be distinguished based on characteristics
such as the target azimuth angle and distance. (2) When two people walk in opposite
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directions, people can be identified by Doppler frequency shift without acquiring the target
azimuth angle or distance. This is because the spectrograms of two people opposite on
walks are quite different, which can realize the classification. The Doppler spectrogram of
one example of the two-person and single-person walks is shown in Figure 14. Where (a)
is the spectral diagram of two people walking opposite each other, and (b) is the spectral
diagram of one person walking.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 20 
 

 

classification accuracy reached 98.3%, which also reflects the effectiveness of classification 
under different walking speeds. 

 
Figure 13. Confusion matrix for classes with three walking speeds. 

We also conducted experiments on the discrimination between the two-person walk-
ing and single-person walking situations. We compared the difference between a single-
person walking and two-person walking in two ways, that is, walking in the same direc-
tions and opposite directions: (1) when two people are walking in the same direction, their 
stride frequencies will overlap, causing the signal intensity of the spectrum within the 
same category to increase, which is easily consistent with the spectrum of a single person 
walking. In this situation, multiple targets can be distinguished based on characteristics 
such as the target azimuth angle and distance. (2) When two people walk in opposite di-
rections, people can be identified by Doppler frequency shift without acquiring the target 
azimuth angle or distance. This is because the spectrograms of two people opposite on 
walks are quite different, which can realize the classification. The Doppler spectrogram of 
one example of the two-person and single-person walks is shown in Figure 14. Where (a) 
is the spectral diagram of two people walking opposite each other, and (b) is the spectral 
diagram of one person walking 

(b) single-person walking(a) two-person walking  
Figure 14. Micro-Doppler images of two-person walking and single-person walking. 

From Figure 15, we can observe that when two people walk in opposite directions, 
the two-person walking and single-person walking situations can be clearly distin-
guished. This is because there is a big difference between the spectrogram of two-person 
walking in opposite directions and the spectrogram of single-person walking. The classi-
fication results perform well, and the two different walking modes can be accurately iden-
tified in the binary classification task. 

Figure 13. Confusion matrix for classes with three walking speeds.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 20 
 

 

classification accuracy reached 98.3%, which also reflects the effectiveness of classification 
under different walking speeds. 

 
Figure 13. Confusion matrix for classes with three walking speeds. 

We also conducted experiments on the discrimination between the two-person walk-
ing and single-person walking situations. We compared the difference between a single-
person walking and two-person walking in two ways, that is, walking in the same direc-
tions and opposite directions: (1) when two people are walking in the same direction, their 
stride frequencies will overlap, causing the signal intensity of the spectrum within the 
same category to increase, which is easily consistent with the spectrum of a single person 
walking. In this situation, multiple targets can be distinguished based on characteristics 
such as the target azimuth angle and distance. (2) When two people walk in opposite di-
rections, people can be identified by Doppler frequency shift without acquiring the target 
azimuth angle or distance. This is because the spectrograms of two people opposite on 
walks are quite different, which can realize the classification. The Doppler spectrogram of 
one example of the two-person and single-person walks is shown in Figure 14. Where (a) 
is the spectral diagram of two people walking opposite each other, and (b) is the spectral 
diagram of one person walking 

(b) single-person walking(a) two-person walking  
Figure 14. Micro-Doppler images of two-person walking and single-person walking. 

From Figure 15, we can observe that when two people walk in opposite directions, 
the two-person walking and single-person walking situations can be clearly distin-
guished. This is because there is a big difference between the spectrogram of two-person 
walking in opposite directions and the spectrogram of single-person walking. The classi-
fication results perform well, and the two different walking modes can be accurately iden-
tified in the binary classification task. 
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From Figure 15, we can observe that when two people walk in opposite directions,
the two-person walking and single-person walking situations can be clearly distinguished.
This is because there is a big difference between the spectrogram of two-person walking
in opposite directions and the spectrogram of single-person walking. The classification
results perform well, and the two different walking modes can be accurately identified in
the binary classification task.
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6. Conclusions

We propose an AS-MAML method for pedestrian pose detection using FMCW radar.
By utilizing micro-Doppler images of FMCW radar, pedestrian gait recognition is achieved.
By using the channel attention mechanism in the inner loop network to constrain the inner
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loop and by adding an angle margin loss function to expand the gap between classes and
reduce the distance within the class, it ensures that similar samples can be more effectively
restricted when updating parameters. Finally, the AS-MAML network with the constrained
inner loop was used for training on the self-sampling dataset and verified on the open-
source dataset DIAT-µRadHAR. According to the experimental results, compared with the
traditional CNN network, our network performed better in small samples. It can show a
greater advantage on the dataset, reaching 94.3%, and it also has a classification accuracy
of 85.9% on the randomly sampled open-source dataset. However, it is worth noting that
this method is currently in the experimental stage, and our plans include integrating it
with outdoor autonomous driving or surveillance functions and continuing to develop
multi-sensor pedestrian recognition.
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