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Abstract: The rapidly expanding Internet of Medical Things (IoMT) landscape fosters enormous
opportunities for personalized healthcare, yet it also exposes patients and healthcare systems to
diverse security threats. Heterogeneous IoMT devices present challenges that need comprehensive
risk assessment due to their varying functionality, protocols, and vulnerabilities. Hence, to achieve
the goal of having risk-free IoMT devices, the authors used a hybrid approach using fuzzy logic
and the Fuzzy Analytical Hierarchy Process (FAHP) to evaluate risks, providing effective and useful
results for developers and researchers. The presented approach specifies qualitative descriptors such
as the frequency of occurrence, consequence severity, weight factor, and risk level. A case study with
risk events in three different IoMT devices was carried out to illustrate the proposed method. We
performed a Bluetooth Low Energy (BLE) attack on an oximeter, smartwatch, and smart peak flow
meter to discover their vulnerabilities. Using the FAHP method, we calculated fuzzy weights and
risk levels, which helped us to prioritize criteria and alternatives in decision-making. Smartwatches
were found to have a risk level of 8.57 for injection attacks, which is of extreme importance and needs
immediate attention. Conversely, jamming attacks registered the lowest risk level of 1, with 9 being
the maximum risk level and 1 the minimum. Based on this risk assessment, appropriate security
measures can be implemented to address the severity of potential threats. The findings will assist
healthcare industry decision-makers in evaluating the relative importance of risk factors, aiding
informed decisions through weight comparison.

Keywords: analytical hierarchy process; IoMT; risk assessment; sniffing; jamming; injection

1. Introduction

Traditional medical scenarios involve healthcare professionals manually collecting
and managing the health data of patients using medical equipment such as stethoscopes,
thermometers, and blood pressure monitors. The health data are usually recorded on paper
or in the form of electronic health records (EHRs). Contrary to this, medical IoT scenarios
use connected devices, such as wearables and implantable devices, to collect and transmit
real-time patient health information [1].

With the emergence of the Internet of Things (IoT) in healthcare, a huge number
of devices need to be connected to the Internet, and such a system is referred to as the
Internet of Medical Things (IoMT) [2]. The IoMT is a network of medical devices connected
to the cloud for sending and receiving health data [3]. These devices generate massive
data, which need careful monitoring. Hence, to keep risks under control, continuous risk
assessment and management are becoming increasingly important [4]. According to Data
Bridge Market Research [5], it is estimated that the IoMT market will surge from USD
48.69 billion in 2021 to USD 270.4 billion in 2029 [6].

There is the possibility that a single flaw could cripple vital health infrastructure [7].
It is therefore crucial to perform a risk assessment in order to achieve a risk-free IoMT
device. This is evidenced by the fact that healthcare needs are expected to rise as the
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population ages. Even though the IoMT contributes to rapidly growing needs, it is also
highly vulnerable to cyber-attacks that pose various threats targeting sensitive health data
and systems [8].

Risk assessment helps to address all these security concerns associated with IoMT
devices. It involves evaluating potential risks, vulnerabilities, and their impact on the
security and privacy of medical IoT devices. The overall goal is to identify, analyse, and
prioritize possible risks to develop and implement effective mitigation strategies. This
paper introduces a risk assessment framework, which extends our previous work [9]. We
have introduced a hybrid risk assessment (HRA) approach involving fuzzy logic and
the Fuzzy Analytic Hierarchy Process (FAHP) for the risk assessment of heterogeneous
IoMT devices.

Lotfi Zadeh [10] originally introduced fuzzy logic in 1965 as an improved form of
Boolean logic based on mathematical fuzzy sets. In real-life problems, fuzzy logic can
be crucial, especially when we cannot determine whether a given solution is correct or
incorrect. By being similar to human thought, it resolves the ambiguity and inaccuracy that
may arise when making decisions [11]. On the other hand, the Fuzzy AHP is an effective
and useful method that provides crisp and valuable results in a pair-wise matrix [12]. In
the AHP, the complex problem is always broken down into small problems and arranged
hierarchically. Each level of the hierarchy represents a different set of criteria, sub-criteria,
or alternatives [13].

1.1. Fuzzy Logic

A fuzzy logic approach is based on mathematical principles to represent knowledge
in terms of degrees of membership and truth. It reflects the thinking skills and intellectual
abilities of people in devising approaches and different circumstances [14]. Using fuzzy
logic in risk assessment has been a successful strategy for dealing with risks, and it works
efficiently with hybrid data. It can handle the ambiguity and uncertainty inherent in many
risk assessments using linguistic variables and fuzzy sets [15].

Fuzzy logic has the advantage of modelling a complex problem using linguistic
variables to express specific logic rules. A fuzzy inference system consists of three processes:
fuzzification, inference engine, and defuzzification. Membership functions are defined as
input variables, which are applied to their actual values during fuzzification. As part of
the inference process, the truth value for the foundation of each rule is computed, which
will then be incorporated into the concluding part. These sets of rules are generated with
the IF–THEN statement. In the defuzzification process, a fuzzy quantity is converted to a
precise value.

1.2. FAHP

The Analytical Hierarchy Process (AHP) is a widely used technique to handle problems
with multiple conflicting criteria. It provides a valid decision-making process based on
hierarchical reasoning and a pair-wise comparison of the criteria [16].

By using the AHP, we can reduce the bias associated with multiple-criteria decision-
making (MCDM). An extension of fuzzy logic with the AHP called the FAHP can overcome
challenges associated with subjectivity and uncertainty. Considering the imprecise and
uncertain nature of human decision-making, the FAHP is often used to address problems
associated with MCDM [17].

1.3. Contributions

As a contribution, this paper aims to fulfil the following three objectives:

• First is the adaptation of fuzzy logic and the Fuzzy Analytic Hierarchy Process (FAHP)
in the context of everyday IoMT devices.

• Second, our research seeks to understand the causes of risk, raise risk awareness, and
assist engineers and/or operators in determining which risk should be taken into
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account first. Our hybrid risk assessment process enables an accurate representation
of the levels and risk scores with respect to risk events.

• Third, we have performed attacks on three different IoMT devices to prove the vulner-
abilities during the pairing process.

1.4. Organization of Paper

In Section 2, we discuss the literature review, including fuzzy logic, the FAHP, and the
hybrid method for the risk assessment of medical devices. Section 3 discusses the hybrid
risk assessment process (HRA), which is the main contribution of this paper, where we
utilize the HRA process with membership functions and the FAHP. Thereafter, a case study
on the risk assessment of three IoMT devices is presented in Section 4 to demonstrate the
application of the proposed risk assessment process. It presents attack scenarios along with
vulnerabilities. Finally, Section 5 gives the conclusion and a summary of the preliminary
benefits of using the proposed methodology in risk analysis, followed by future work
that could expand in the next paper. In Appendix A, we include detailed calculations for
weights and risk levels.

2. Literature Review

To summarize and collect research studies, we conducted a detailed analysis of the
existing research pursuits in medical devices. Our comprehensive analysis encompasses
a literature review pertaining to the IoMT, as outlined in our previous paper [9]. In the
current paper, we review the literature encompassing topics such as fuzzy logic, the Fuzzy
AHP, and the hybrid approach combining these two methods.

Fuzzy multi-criteria decision-making is widely used with incomplete or imprecise
data, such as in [18], and a fuzzy set is used as an alternative to conventional decision-
making. The goal of this paper is to summarize different types of fuzzy MCDM approaches
with respect to their areas.

A hybrid MCDM framework was proposed in [19], which includes the AHP and
Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), where the weights
of attributes are derived by the AHP method, and a security assessment is performed
based on the TOPSIS method. Using the proposed framework, future guidelines can be
formulated for selecting the best security solutions for IoMT-based systems, which can then
be used to develop more frameworks. A further study is required to extend the framework
by including more security requirements.

To identify security risks in medical devices, a Fuzzy AHP TOPSIS method was
developed in [20], allowing manufacturers to take security into account from the beginning
of the design process. The study proposed a security assessment of various medical devices
and investigated a conceptual model that includes the increased integration of security
principles into the design and implementation of medical instruments, as well as data
protection during handling. The suggested framework has the capability of checking the
security of different medical devices and can also enhance interoperability.

An overview of the present healthcare situation is presented in [21] using a layered
approach. The paper also evaluates security breaches in healthcare through a hybrid
fuzzy-based methodology, AHP-TOPSIS. However, due to the large scope of healthcare,
the research only focuses on basic information security scenarios. The approach presented
in [22] for mobile health applications was developed by adopting AHP and fuzzy TOPSIS,
which is further discussed through a numerical case example. The AHP method was
used to determine the weights of criteria and sub-criteria, and the fuzzy-TOPSIS method
was used to determine the final ranking of the application. However, future research is
recommended due to the limitations of both methods. A fuzzy inference system (FIS) was
designed and applied to develop a risk assessment process in [23]. The study shows that
the developed approach could be applied as a practical model for evaluating occupational
health risks. The weight for each risk criterion is used to calculate the risk level by using a
fuzzy approach. The above-mentioned studies show that none of them used the Hybrid
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FAHP method for the risk assessment of heterogeneous IoMT devices. Thus, in our study,
we used the hybrid risk assessment approach to overcome uncertainty challenges.

3. Hybrid Risk Assessment Process

Assessing the degree of risk in heterogeneous IoMT devices is more challenging when
considering the general problem of interpreting the unconstrained behaviour of these
devices. A detailed systematic literature review was conducted for the risk assessment, and
the methodology used by the authors was also determined. To address heterogeneity and
security, in this study, we selected a hybrid approach, which is the Fuzzy AHP methodology.
It has been proven by various researchers that the Hybrid AHP is better for providing
informed decisions along with their weights. A flowchart for hybrid risk assessment is
presented in Figure 1, which describes the combined process of fuzzy logic and the AHP.
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3.1. Applications of Fuzzy Logic

Fuzzy logic allows the modelling of uncertain information by using fuzzy sets to
represent concepts that have a degree of membership in a set, rather than being a true or
false value. Three risk parameters are used to assess the overall risk level of IoMT devices,
which are the frequency of occurrence (FO), the severity of consequences (SC), and the risk
level (RL).

Fuzzy logic provides calculated risk scores and levels according to occurrence and
consequences based on a membership function (MF). There are various forms of MFs:
trapezoidal, triangular, Gaussian, bell-shaped, etc.

In our paper, selecting an appropriate membership function (MF) holds paramount
importance for ensuring an accurate and efficient evaluation. As emphasized by the
authors in [24,25], the primary requirement for an MF is its ability to range between 0
and 1. Among the vast array of options, triangular MFs have captivated our attention
for their inherent simplicity and efficiency in handling uncertainty. Defined by just three
parameters, they offer an intuitive framework, facilitating transparent risk assessment
communication. Furthermore, their streamlined nature expedites computational processes,
ensuring that we can navigate vast data sets with agility and precision. Our chosen IoMT
devices involve factors like the severity of potential attacks and the likelihood of their
occurrence. Triangular MFs will help capture the gradual nature of risk factors in IoMT
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security, allowing for seamless transitions between linguistic terms. They also enhance the
interpretation of risk assessment outcomes, thereby increasing its reliability and precision
for evaluating security-related scenarios.

To understand in more detail, we use a triangular MF for both occurrence and conse-
quences, and the mathematical formulation is presented in Figure 2. Equation (1) is used to
formulate the fuzzy triangular MF, and for notation, we use l, m, and u.

0, x < l,
( x − l)/(m − l), l ≤ x ≤ m,
(u − x)/(u − m), m ≤ x ≤ u,

0, x > u.

(1)
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A triangular MF is defined by three parameters: a left base, a peak, and a right base.
Here, x is the input value, X is the degree of membership, and l, m, and u are the three
parameters, which denote the smallest possible value, the most promising value, and the
largest possible value. The degree of membership is a number between 0 and 1, which
represents how well the input value matches the fuzzy set. The value of x is shown on the
horizontal axis, and the degree of membership is shown on the vertical axis. The fuzzy
value is represented as µ∼

A
(x) = (l, m, u), where these three numbers together are known as

fuzzy numbers, which are associated with the membership function. The three numbers are
the lower, middle, and upper ends of the triangle on the x-axis. Assigning a single number
to any term is not justified, as we may have decimal values in between two numbers.

3.1.1. Risk Identification

Risk identification is performed in two steps. In the first step, fuzzy risk analysis is
carried out from the prospective harmful event level to the group level. In the second step,
FAHP information is aggregated at the group level in order to obtain an overall risk level
for the risk assessment of the IoMT devices. Here, in our study, three risks are identified
based on the literature study. After identifying risks, each risk is evaluated based on three
qualitative descriptors: FO, SC and RL.

3.1.2. Fuzzification

The second step here is fuzzification, which is the interface between the input and
the fuzzy inference engine [27]. It converts inputs into fuzzy qualitative descriptors and
determines the degree to which each fuzzy set belongs, facilitating decision-making. During
the process, the membership functions are defined as the input variables, which are applied
to their actual values to determine the degree of membership for each rule [14].

3.1.3. Fuzzy Inference Engine (FIS)

Once the values are converted, the next step is fuzzy inference, which is the process of
translating the equivalent of the input data into the rule base. It is the actual brain of the
fuzzy logic control system and defines the MF for each parameter [28]. The value of the
membership function derives the outcome of the system [29]. The fuzzy inference system
window “FIS Editor” is used in MATLAB for this process in the study. The fuzzy method is
designed to acquire the risk value.
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In our paper, the goal is to create MFs that reflect how security experts understand
risk factors in IoMT devices. For both FO and CS, the values use equal intervals, which
creates a relatively uniform distribution of membership degrees across the scale (0–5). The
parameters align with the intuitive notion of severity and consequences, becoming more
severe as the membership degree moves from low to high and very high. These triangles
slightly overlap, allowing for values to have partial membership in two categories, which
reflects the uncertainty in assigning a specific value, as clearly shown in Tables 1 and 2.

Table 1. Frequency of occurrence.

Qualitative
Expression Description Triangular

Parameters

Low Unlikely to occur due to strong
security measure [0 1.25 2.5]

Medium Expected to occur due to occasional
lapses in security [1 2.25 3.5]

High Highly expected to occur due to no
security in place [2.5 3.75 5]

Table 2. Severity of consequences.

Qualitative
Expression Description Triangular

Parameters

Negligible Minor disruption, minimal impact on device [0 0.75 1.5]

Mild Some disruption in functionality,
does not compromise patient safety [0.5 1.25 2]

Medium Moderate disruption, recovery may
require moderate effort [1.5 2.25 3]

High Severe disruption leading to compromised patient safety [2.5 3.25 4]

Very high Critical disruption posing a serious
risk to patient safety [3.5 4.25 5]

In this analysis, rule bases were created from the input data with Mamdani, and
the values in the risk analysis were calculated one by one. In the triangular membership
function for occurrence values, low [0 1.25 2.5], medium [1 2.25 3.5] and high [2.5 3.75
5] value parameters were assigned. Figure 3 shows the membership functions of the
frequency of occurrence shown in Table 1. Each qualitative descriptor of FO has a range to
describe, and a mid-point of the estimated frequency is used in each category to obtain an
approximate numerical value. For example, the qualitative expression “Low” is defined to
cover the range of FO between 0 and 2.5, and their approximate numerical value is 1.25.
The difference between 0 and 1.25 is equivalent to the difference between 1.25 and 2.5.
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The consequence values are also in the triangular membership function; for negligible
consequences, the value is [0 0.75 1.5]; for mild consequences, the value is [0.5 1.25 2];
for medium consequences, the value is [1.5 2.25 3]; for high consequences, the value is
[2.5 3.25 4]; and for very high consequences, the value parameter [3.5 4.25 5] is assigned.
Figure 4 shows the window of the MATLAB software program (r2023b) with the conse-
quence values shown in Table 2. In this study, three and five qualitative expressions are
used to describe FO and SC, respectively, but this is not necessary. There is flexibility in
these descriptors, and they depend on the particular case.
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Risk can be described by the degree to which it belongs to the qualitative expressions
“very low”, “low”, “medium”, “high”, and “very high”, which are referred to as risk
expressions. Table 3 shows the qualitative descriptor categories of risk level. A Gaussian
MF is used for RL representation, as shown in Figure 5.

Table 3. Risk levels.

Qualitative
Expression Description Gaussian

Parameters

Very low Acceptable risk [0.8847 2.776 × 10−17]
Low Tolerable risk [0.8847 2.5]

Medium Reduced risk with reasonable controls [0.8847 5]

High Unacceptable risk but may be reduced
with controls [0.8847 7.5]

Very high Unacceptably high risk [0.8847 10]
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3.2. Development of Fuzzy Rule Base

The step following decisions about fuzzy membership functions is to understand the
inference process to draw a conclusion from a set of fuzzy rules. Fuzzy rules can be achieved
using various approaches, including expert opinion, data collection, and engineering knowl-
edge, but they are not mutually exclusive, and a combination is usually the most effective
approach. In the fuzzy rule base, fuzzy rules are determined by the number of qualitative
descriptors rather than numerical values, making them a natural platform to deliver expert
judgements and engineering knowledge [30]. The fuzzy rule base should cover all matches
between inputs and outputs, and the rules should be chosen in a way that minimizes the
possibility of contradictions and unwanted interactions between the rules.

The number of fuzzy rules in the fuzzy rule base depends on the number of qualitative
descriptors used to represent the frequency of occurrence and the severity of consequences.
It consists of a set of fuzzy if–then rules and is the core of a fuzzy logic system. For
example, in the present study, there are three qualitative descriptors for the frequency of
occurrence and five for the severity of consequences; the fuzzy rule base, therefore, consists
of (3 × 5) = 15 fuzzy rules, which are listed in Table 4.

Table 4. Fuzzy Rules.

Rule Explanation

R1 If occurrence is low and consequences are negligible, then risk level is very low
R2 If occurrence is medium and consequences are negligible, then risk level is low
R3 If occurrence is high and consequences are negligible, then risk level is medium
R4 If occurrence is low and consequences are mild, then risk level is low
R5 If occurrence is medium and consequences are mild, then risk level is low
R6 If occurrence is high and consequences are mild, then risk level is medium
R7 If occurrence is low and consequences are medium, then risk level is medium
R8 If occurrence is medium and consequences are medium, then risk level is medium
R9 If occurrence is high and consequences are medium, then risk level is high

R10 If occurrence is low and consequences are high, then risk level is medium
R11 If occurrence is medium and consequences are high, then risk level is high
R12 If occurrence is high and consequences are high, then risk level is high
R13 If occurrence is low and consequences are very high, then risk level is high
R14 If occurrence is medium and consequences are very high, then risk level is very high
R15 If occurrence is high and consequences are very high, then risk level is very high

3.3. FAHP Analysis

The evaluated risk score of the events will feed the FAHP. It is a process for assessing
the significance of a range of processes in a problem in order to solve complicated decision-
making problems. The FAHP also has the advantage of being easy to integrate with a wide
variety of techniques. It is mostly used in crisp information judgement implementation and
is widely used for tackling multi-criteria decision-making problems in real situations [31].
To determine the relative contribution of each risk factor to the overall risk level, the weight
must be considered so that the risk assessment can progress. The process starts with pair-
wise comparison to derive the relative importance of the risk factors. Table 5 presents the
risk level representation for the FAHP.

Table 5. Risk level representation for FAHP.

Linguistic Term Crisp Numeric
Value

Triangular Fuzzy
Scale

Reciprocal Fuzzy
Scale

Equally important 1 (1,1,1) (1,1,1)
Intermediate value 2 (1,2,3) (1/3,1/2,1)

Moderately important 3 (2,3,4) (1/4,1/3,1/2)
Intermediate value 4 (3,4,5) (1/5,1/4,1/3)
Strongly important 5 (4,5,6) (1/6,1/5,1/4)
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Table 5. Cont.

Linguistic Term Crisp Numeric
Value

Triangular Fuzzy
Scale

Reciprocal Fuzzy
Scale

Intermediate value 6 (5,6,7) (1/7,1/6,1/5)
Very strongly important 7 (6,7,8) (1/8,1/7/1/6)

Intermediate value 8 (7,8,9) (1/9,1/8,1/7)
Extremely important 9 (8,9,9) (1/9,1/9,1/8)

3.3.1. Pair-Wise Comparison Matrix

A pair-wise comparison matrix is created with the help of the scale of relative im-
portance, which determines the relative importance of different attributes or criteria with
respect to the goal [17]. Based on an estimation scheme, each qualitative descriptor is paired
with a triangular fuzzy number, which is then used to convert experts’ judgements into
a comparison matrix. The arithmetic operations for two triangular fuzzy numbers,

∼
a p(tl

p,

tm
p , tu

p) and
∼
aq(tl

q, tm
q , tu

q ), are considered in the construction of the fuzzy pair-wise compari-
son matrix, where tl

p, tm
p , tu

p are numbers from 0 to 5 with the relationship tl
p ≤ tm

p ≤ tu
p. tl

p
and tu

p correspond to the lower and upper values of a range to describe the pth qualitative
descriptor. tm

p refers to the most likely value to represent the pth qualitative descriptor.
The arithmetic operations on fuzzy numbers are defined as follows:

∼
a p ⊗

∼
aq =

(
tl

p × tl
q, tm

p × tm
q , tu

p × tu
q

)
(2)

Here, ⊗ represents fuzzy logic multiplication. If there are m experts in the risk
assessment group, the element in a fuzzy pair-wise comparison matrix can be calculated
using the formula below:

∼
a i,j =

(
1
m

)
⊗
(

e1
i,j ⊕ e2

i,j ⊕ . . . ek
i,j. . . ⊕ em

i,j

)
∼
a j,i =

1
∼
a i,j

(3)

where
∼
a i,j is the relative importance of event i compared with event j, and ek

i,j stands for the
kth expert judgement in the triangular fuzzy number format.

Using Equation (4), we construct the pair-wise comparison matrix, which has compar-
isons in pairs, and select the appropriate linguistic value. An n x n pair-wise comparison
matrix can be obtained as follows:

∼
A =


∼
a1,1

∼
a1,2

∼
a2,1

∼
a2,2

· · · ∼
a1,n

· · · ∼
a2,n

...
...

∼
an,1

∼
an,2

. . . ∼a i,j
...

· · · ∼
an,n

 (4)

Here,
∼
A is the comparison matrix, and n represents the number of criteria or alterna-

tives. The value aji demonstrates the relative significance of criteria i (ci) in comparison with
criteria j (cj) on Saaty’s scale. The matrix represents the reciprocal relationships between the
elements above and below the diagonal of the matrix. The diagonal entries of the matrix
are all 1, as a criterion is always equally important to itself. The entries above the diagonal
indicate the relative importance of the criterion in the row compared to the one in the
column. The entries below the diagonal are the reciprocals of the entries above the diagonal.
The fuzzy numbers in the matrix represent the uncertainty inherent in the comparisons.
The fuzzy pair-wise comparison matrix is used to compute the weights of the criteria or
alternatives. These weights represent the relative importance of each criterion or alternative
in the overall decision.
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3.3.2. Weight Factor Calculation

Weight factors (WFs) can be calculated using the geometric mean method:

∼
fi = (

∼
a i,1 ⊗

∼
a i,2 ⊗ . . .

∼
a i,j . . . ⊗ ∼

a i,n)
1/n

= (
(

tl
i,1 × tl

i,2 × . . . tl
i,j . . . × tl

i,n

) 1
n ,(

tm
i,1 × tm

i,2 × . . . tm
i,j . . . × tm

i,n

) 1
n(

tu
i,1 × tu

i,2 × . . . tu
i,j . . . × tu

i,n

) 1
n
)

(5)

∼
wi =

∼
fi

∼
f1 ⊕

∼
f2 ⊕ . . .

∼
f j . . . ⊕

∼
fn

(6)

Here,
∼
fi is the geometric mean of the ith row in the fuzzy pair-wise comparison matrix,

and
∼
wi is the fuzzy WF of the ith event.

3.3.3. Defuzzification

Since the outputs of geometric mean methods are triangular fuzzy WFs, a defuzzifi-
cation approach is employed to convert a triangular fuzzy WF to the corresponding WF,
where the FAHP employs the proposed defuzzification approach [32]. The defuzzifica-
tion method used here is the Centre of Area (COA), the formula for which is given in
Equation (7):

DF∼
wi

=

(
tl
i + tm

i + tu
i

3

)
(7)

where DF∼
wi

is the defuzzified mean value of the fuzzy WF. wi can be calculated as follows:

wi =
DF∼

wi

ΣDF∼
wi

(8)

Based on the risk levels (RLs) of the factors and their corresponding WFs, the overall
risk level of heterogeneous IoMT devices can be calculated as in Equation (9), where RLi is
the RL of the ith risk category, wi stands for the weight factor of the ith risk category, and
RL is the overall risk level of an IoMT device.

RL = ∑n
i=1 RLiwi (9)

On the basis of the RLs of risk events and the corresponding WFs obtained, the overall
RL for IoMT devices discussed in the case study can be calculated.

To summarize, we have discussed the overall methodology, which focuses on deter-
mining the relative importance of assessing the risk levels of heterogeneous IoMT devices.
A pair-wise comparison matrix is constructed using triangular fuzzy numbers, representing
the uncertainty inherent in comparisons. The weight factor for each criterion is computed
using the geometric mean method, which includes the calculation of the geometric mean
of each row in the fuzzy pair-wise comparison matrix to obtain fuzzy WFs. These fuzzy
WFs are then defuzzified using the CoA approach to convert them into corresponding WF
values. Finally, the overall RL of heterogeneous IoMT devices is determined by combining
the RLs of each factor with their corresponding WFs.

4. Case Study

To validate the proposed approach, a case study on attacks on three IoMT devices
was performed. We considered three risk events or attacks named sniffing, jamming, and
injection attacks on an oximeter, smartwatch, and smart peak flow meter. The oximeter is
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sourced from Xuzhou Yongkang Electronic Science Technology Co., Ltd., Xuzhou, China,
and the application used is AiLink. The smartwatch is procured from Wgzixezn, Xuzhou,
China, and the application used is DeepFit. The smart peak flow meter is bought from the
Chongqing Moffy Innovation Technology Co., Ltd. of Chongqing City, China, and uses the
Sonmol PEF application.

An overview of the three devices is presented in Figure 6. Selecting these devices for
risk assessment involves considering their widespread usage, their criticality in healthcare,
potential risks associated with their operation, and the impact of those risks on patient safety.
In addition, more research needs to be conducted on the risk assessment of these devices.
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4.1. Selected Devices for Testing

An oximeter is a handheld clip device used to measure oxygen saturation. It is
portable, making it easy to use at rest and during exercise [35]. While oximeters are
generally user-friendly, they rely on accurate sensor readings and proper calibration to
provide reliable data. They can be used in critical care settings, like emergency rooms,
clinics, and hospitals, to monitor patients with respiratory conditions or at home. Saturation
levels of oxygen are vital indicators of respiratory function and oxygen delivery to tissues
and, if not addressed promptly, can lead to severe complications, including organ damage
or failure [36]. Oximeters are subject to regulatory standards and guidelines to ensure their
safety and effectiveness. By conducting a risk assessment on oximeters, compliance gaps
can be identified and improved to ensure adherence to regulatory requirements, such as
FDA guidelines for medical device cybersecurity.

The smart peak flow meter has been designed to monitor lung function and assess the
severity of airway obstruction [34]. It connects wirelessly to smartphones and is used by
asthma patients to monitor their clinical progress, track trends, and provide alerts, which
can facilitate early intervention and prevent serious complications. Regular monitoring
helps patients and healthcare providers manage these chronic conditions effectively.

The next device does not require an introduction, as it has become widely popular
among consumers due to its multifunctionality, including features for tracking health, such
as heart rate monitoring, activity tracking, sleep analysis, and even electrocardiography.
With smartwatches, users have the convenience of real-time access to their physiological
parameters throughout the day. Despite their benefits, smartwatches also pose risks due
to their privacy, security, and accuracy problems. Data breaches, unauthorized access to
sensitive health information, inaccurate readings, and device malfunctions can compromise
the reliability and safety of smartwatch data. Conducting thorough risk assessments
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helps identify and mitigate potential risks, ensuring the safety, accuracy, and privacy of
smartwatch data for users and healthcare providers.

4.2. Attacks and Their Impacts

Attacks pose serious risks to the operation, data integrity, and patient safety of these
devices. We selected sniffing, jamming, and injection attacks for testing on the above three
IoMT devices because they are directly related to the functionality and communication
protocols of these devices. By selecting these attacks, we can address potential security
vulnerabilities, which could have serious consequences for the user’s privacy.

4.2.1. Sniffing Attack

An oximeter sniffing attack involves intercepting and capturing data transmitted
between the oximeter and monitoring systems or devices used by healthcare providers. By
intercepting communication channels, attackers can gain unauthorized access to sensitive
patient data, such as oxygen saturation levels, heart rate readings, and patient identifiers,
leading to inaccuracies in patient monitoring and potentially incorrect clinical decisions. In
a smart peak flow meter, attackers gain access to confidential patient data, including peak
flow measurements and respiratory rates. Modifying peak flow readings could result in
misdiagnosis or inappropriate treatment. In smartwatches, sniffing attacks compromise
user privacy by exposing confidential health information, such as heart rate, sleep patterns,
and activity levels, to unauthorized parties. Privacy breaches, identity theft, and other ma-
licious activities can occur through unauthorized access to sensitive medical data obtained
through sniffing attacks, weakening patient trust in healthcare systems.

4.2.2. Jamming Attack

A jamming attack disrupts the wireless communication between these devices and
monitoring systems by interfering with radio frequency signals. It can result in a temporary
or prolonged loss of data connectivity, preventing real-time monitoring. It can also delay
timely medical interventions for critical care patients, which can cause healthcare providers
to miss significant changes in a patient’s condition, increasing the risk of adverse outcomes
or complications. It jeopardizes patient safety by impeding the delivery of timely medical
care and interventions. Surgical patients and those with respiratory conditions who use
oximeters and smart peak flow meters for continuous monitoring may be particularly
prone to jamming attacks, which may compromise their treatment and increase the risk of
adverse reactions.

4.2.3. Injection Attack

An injection attack involves inserting malicious or unauthorized data packets into the
communication stream between these IoMT devices and a monitoring system. The injection
of false or misleading information, such as fabricated oxygen saturation readings or alarm
signals, can lead to unnecessary clinical interventions. Similarly, injecting misleading
data of peak flow measurements can result in incorrect patient assessments. Sometimes,
injection attacks may be used to deliver malware payloads or malicious commands to these
devices or connected systems. As a result of malware infections, medical devices can be
compromised, resulting in system downtime, data breaches, or unauthorized access to
sensitive healthcare data. Users relying on smartwatches for health monitoring may be
vulnerable to the effects of jamming attacks.

4.3. Attack Analysis and Findings

To test the security features during the Bluetooth pairing process of these devices,
we implemented sniffing, jamming, and injection attacks where we captured the traffic
sent between devices. We conducted a BLE attack against the above three devices while
connecting them through their mobile applications. It allowed us to listen to only BLE
devices and capture their traffic.
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We used Btlejack and Mirage [37] as a tool for sniffing, jamming, and injecting BLE
devices. It is primarily used to test the security of devices that use Bluetooth as a commu-
nication protocol. Ble_hijack implements active attacks allowing the hijack of either the
slave or master role of a BLE connection. It can perform a jamming-based Btlejack attack,
allowing the hijacking of both master and slave roles and the hijacking of a new connection
or an established connection.

Test Bed

A test bed for analysing network traffic was created using Wireshark (version 3.6.18).
To carry out the sniffing attack, we captured the BLE communication between an Android
phone and an oximeter and a smartwatch. When Bluetooth devices are connected to each
other, they are called master–slave relationships, where one device is the master device,
and the other one is the slave. The master device sends information to the slave device, and
the slave device listens to the master information.

Figures 7 and 8 are divided into three parts: the packet list pane, packet detail pane,
and packet byte pane. They work together to provide a detailed view of a captured packet.
The packet detail pane offers a high-level, human-readable interpretation of the packet
structure and content, whereas the packet byte pane allows for a more granular, in-depth
examination of the raw data underlying the communication.
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In the packet list panes in Figures 7 and 8, the leftmost column shows numbered entries
representing individual data packets exchanged between the phone and the oximeter,
followed by the time each packet was captured. It shows BLE communication between
an oximeter (Slave_exaf9ab4dd) and an Android phone, which is the master device. The
protocol used here is BLE, which is useful for wearable medical devices and sensors
because it reduces power consumption and memory requirements. Basically, it is designed
to operate in sleep mode and wake up only when a connection is initiated. This improves
efficiency when discovering devices and during connection procedures and results in
packets with shorter lengths, while services and protocols are simpler. We can see it sends
out a huge number of empty PDUs to jam the communication in a short period of time.
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Data packets are sent from the master device to the oximeter, which replies with
an “Empty PDU” packet. In two instances, the oximeter sends a “Rcvd Handle Value
Notification” message after receiving a packet from the master device, highlighting the
successful attack.

Expanding the Bluetooth Attribute Protocol section of a package (as shown in the
image below) provides the following information:

• The type of operation performed (read/write/notify);
• The characteristic on which it was carried out;
• The transmitted data.

Packet number 3081 has been selected, where the packet bytes pane shows the data
of the current packet (selected in the “Packet List” pane) in a hex dump style. Each line
contains the data offset, sixteen hexadecimal bytes, and sixteen ASCII bytes. A “hex
dump” represents a binary data stream where the contents of that stream are displayed as
hexadecimal values. It divides the binary data into 8-bit bytes and displays the value of
each byte as a two-digit hexadecimal number. The packet bytes pane displays a hex dump
of the corresponding packet data. Opcode here specifies the action being performed in a
particular packet. Handles are used to identify specific data characteristics on a device.
Value refers to the actual data payload being exchanged between the devices.

Similarly, Figure 8 shows the data packets exchanged between the phone and smart-
watch, highlighting the attack as being successful.

Furthermore, a jamming attack was conducted using microbit and Mirage, as shown
in Figure 9. ble_jam allows the use of the jamming features implemented in BTLE-
Jack and allows the jamming of a new connection or an existing connection in JAM-
MING_MODE. Here, the value of the input parameter is set to “existing connection”.
Access address, CRCInit, and channel map are provided as additional parameters for
targeting a specific device.
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Here, we tried to exploit a risk in a program called “Mirage” by overflowing a buffer
with data. This overflow corrupts the program’s memory and allows us to inject and
execute malicious code. We initiated the attack by sending a specially crafted message to
the target program. The message overflows a buffer in the program’s memory, corrupting
it and allowing us to inject the code. The injected code reads the program’s memory to
recover various configuration parameters, including the channel map, hop interval, and
hop increment. Once all the parameters were recovered, we tried to establish a connection
using the stolen parameters where the connection was lost, but we successfully retrieved
all the configuration data.

This test bed setup enables the comprehensive testing and validation of IoMT solutions
to ensure their reliability and effectiveness in IoMT devices.

4.4. HRA Analysis

Using data from the case study conducted, the risk level is calculated. The input
parameters are the frequency of occurrence and consequence severity of the risk events.
Based on Table 5, we create a pair-wise comparison matrix with the help of the scale
of relative importance. We can replace the crisp numeric values with fuzzy numbers
and similarly convert their reciprocal values into fuzzy numbers. The reciprocal fuzzy

number
∼
A
−1

is computed using the equation
∼
A
−1

= (l, m, u)−1 =
(

1
u , 1

m , 1
l

)
. Here, the

crisp numeric value 5 for strongly important has the fuzzy number (4,5,6); therefore, its

reciprocal is
∼
A
−1

= (4, 5, 6)−1 =
(

1
6 , 1

5 , 1
4

)
.

Likewise, all the values are converted into fuzzy and reciprocal fuzzy values to obtain
the fuzzified pair-wise comparison matrix given in Table 6.

Next, we calculate the weight using the geometric mean method in Table 7, which
gives us the fuzzy weight for each criterion using Equation (3). These fuzzy weights are
then defuzzified to obtain crisp numeric values. The defuzzification method used here
is the Centre of Area (COA). The overall RL is calculated using Equation (6) for all three
IoMT devices. For example, it can be seen that the injection attack on the smartwatch has
the highest risk level of 8.57, which is of “Extreme importance” and must be treated first.
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Considering all the risk outcomes, the device should be treated where the risk level is
highest. The detailed calculations and explanations are provided in Appendix A.

Table 6. Fuzzified pair-wise comparison.

Device Attack Type Sniffing Jamming Injection

Oximeter

Sniffing (1,1,1) (4,5,6)
(

1
5 , 1

4 , 1
3

)
Jamming

(
1
6 , 1

5 , 1
4

)
(1,1,1)

(
1
4 , 1

3 , 1
2

)
Injection (3,4,5) (2,3,4) (1,1,1)

Smartwatch

Sniffing (1,1,1) (5,6,7)
(

1
8 , 1

7 , 1
6

)
Jamming

(
1
7 , 1

6 , 1
5

)
(1,1,1)

(
1
5 , 1

4 , 1
3

)
Injection (6,7,8) (3,4,5) (1,1,1)

Smart peak flow meter

Sniffing (1,1,1) (3,4,5) (2,3,4)
Jamming

(
1
5 , 1

4 , 1
3

)
(1,1,1) (5,6,7)

Injection
(

1
4 , 1

3 , 1
2

) (
1
7 , 1

6 , 1
5

)
(1,1,1)

Table 7. Overall weights and risk levels.

Device Attack Type Fuzzy Weight
∼
wi Weight = wi Risk Level

Oximeter
Sniffing (0.207, 0.2857, 0.4069) 0.2998 2.998

Jamming (0.0762, 0.10717, 0.1620) 0.11512 1.04
Injection (0.4065, 0.6071, 0.8794) 0.631 5.048

Smartwatch
Sniffing (0.1752, 0.2192, 0.2784) 0.2242 3.14

Jamming (0.0626, 0.08009, 0.1071) 0.0832 1
Injection (0.5372, 0.7008, 0.9044) 0.7141 8.57

Smart Peak
Flow Meter

Sniffing (0.4033, 0.60002, 0.8633) 0.6222 4.97
Jamming (0.2220, 0.30001, 0.4217) 0.3145 3.46
Injection (0.0726, 0.0999, 0.1476) 0.1067 1.07

Obtaining fuzzy weights helps prioritize criteria and alternatives in decision-making.
It allows us to evaluate the relative importance of different factors and make informed
decisions based on these comparisons.

Based on these insights, the case study supports that the suggested HRA approach
can be applied in everyday IoMT devices and can be applied for their risk assessment with
expert knowledge. It can provide insights into the potential uncertainties of the assessment
process. However, there are certain limitations of this paper, which will be considered in
future work:

• In this research, we considered only research papers for the literature review, excluding
conference papers, review papers, book chapters, and non-English papers.

• Our study is focused on the applicability of fuzzy logic and the FAHP-based approach,
while other approaches might be possible for risk assessment.

5. Conclusions and Future Work

IoMT devices have become increasingly popular for monitoring heart rate, lung
function, exercise, and sleep patterns. However, the increasing popularity of these devices
also raises concerns about data security. Manufacturers must ensure the confidentiality,
security, and accessibility of the data collected. This facilitates accurate health tracking,
fosters user trust, and prompts timely medical consultations. As these technologies evolve
and incorporate more sensors, the risk of attackers obtaining sensitive real-time data and
profiling potential victims increases.

We present an advancement in the field of risk assessment for IoMT devices. Our
proposed approach, utilizing fuzzy logic and the FAHP, offers a practical solution for deter-
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mining risk levels (RLs). This approach is demonstrated through a case study involving an
oximeter, smartwatch, and smart peak flow meter. The potential of our proposed method
for the risk assessment of IoMT devices is notably effective when risk data are incomplete
or a high level of uncertainty is involved. By incorporating fuzzy logic and the FAHP,
this approach can effectively leverage domain experts’ experience and risk management
knowledge. It can also transform information from various sources into a knowledge
base, including qualitative descriptors, MFs, and fuzzy rules used in the fuzzy inference
process. Our study demonstrates that risk analysis based on fuzzy logic and the FAHP
approach provides a reliable tool for risk analysis in diverse circumstances. The outcome
will be beneficial for demonstrating policy adherence to cybersecurity recommendations
for everyday-use IoMT devices.

Our study examines security concerns for three specific IoMT devices, providing some
insights into the risks. However, the broader IoMT ecosystem encompasses a diverse range
of devices with varying vulnerabilities, requiring further research. In order to address this,
future research will expand testing to include small to medium-sized IoMT devices (such
as portable vital monitor or home-based health monitoring system) and scale up to explore
security issues in medium to large devices (such as imaging systems).

Our analysis can be helpful for manufacturers who design these devices. Considering
the rapid and unstoppable integration of multiple technologies into the medical field, more
IoMT devices are expected to be adopted by people. We have not found much research
evaluating medical devices used by users on a daily basis, so our findings could be used
for experiments on medical IoT devices, like an oximeter, smartwatch, and smart peak
flow meter.
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Appendix A

We present the detailed calculations for the oximeter, smartwatch, and smart peak
flow meter.

Table A1. The crisp numeric values for oximeter, smartwatch, and smart peak flow meter.

Device Sniffing Jamming Injection

Oximeter
Sniffing 1 5 1/4

Jamming 1/5 1 1/3
Injection 4 3 1

Smartwatch
Sniffing 1 6 1/7

Jamming 1/6 1 1/4
Injection 7 4 1

Smart Peak Flow
Meter

Sniffing 1 4 3
Jamming 1/4 1 6
Injection 1/3 1/6 1
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Table A2. Fuzzified pair-wise comparison-detailed analysis.

Device Sniffing Jamming Injection

Oximeter

Sniffing (1,1,1) (4,5,6)
(

1
5 , 1

4 , 1
3

)
Jamming

(
1
6 , 1

5 , 1
4

)
(1,1,1)

(
1
4 , 1

3 , 1
2

)
Injection (3,4,5) (2,3,4) (1,1,1)

Smartwatch

Sniffing (1,1,1) (5,6,7)
(

1
8 , 1

7 , 1
6

)
Jamming

(
1
7 , 1

6 , 1
5

)
(1,1,1)

(
1
5 , 1

4 , 1
3

)
Injection (6,7,8) (3,4,5) (1,1,1)

Smart peak flow
meter

Sniffing (1,1,1) (3,4,5) (2,3,4)
Jamming

(
1
5 , 1

4 , 1
3

)
(1,1,1) (5,6,7)

Injection
(

1
4 , 1

3 , 1
2

) (
1
7 , 1

6 , 1
5

)
(1,1,1)

The geometric mean value is calculated using Equation (2). Two fuzzy numbers are
multiplied here by multiplying the lower with the lower, the middle with the middle, and
the upper with the upper. As the next step, we calculate the third root. A calculation for
oximeters is shown to help the reader understand the concept.

∼
r 1 = (1 ∗ 4 ∗ 0.2)

√
3, (1 ∗ 5 ∗ 0.25)

√
3, (1 ∗ 6 ∗ 0.33)

√
3 = (0.928, 1.0772, 1.2557)

∼
r 2 = (0.16 ∗ 1 ∗ 0.25)

√
3, (0.2 ∗ 1 ∗ 0.33)

√
3, (0.25 ∗ 1 ∗ 0.5)

√
3 = (0.341, 0.4041, 0.5)

∼
r 3 = (3 ∗ 2 ∗ 1)

√
3, (4 ∗ 3 ∗ 1)

√
3, (5 ∗ 4 ∗ 1)

√
3 = (1.817, 2.289, 2.714)

Table A3. The multiplied fuzzy number is shown in table below.

Device Sniffing Jamming Injection Fuzzy Geometric Mean Value
∼
r i

Oximeter
Sniffing (1,1,1) (4,5,6)

(
1
5 , 1

4 , 1
3

)
(0.928, 1.0772, 1.2557)

Jamming
(

1
6 , 1

5 , 1
4

)
(1,1,1)

(
1
4 , 1

3 , 1
2

)
(0.341, 0.4041, 0.5)

Injection (3,4,5) (2,3,4) (1,1,1) (1.817, 2.289, 2.714)

Smartwatch
Sniffing (1,1,1) (5,6,7)

(
1
8 , 1

7 , 1
6

)
(0.8549, 0.9498, 1.0527)

Jamming
(

1
7 , 1

6 , 1
5

)
(1,1,1)

(
1
5 , 1

4 , 1
3

)
(0.3054, 0.3462, 0.4053)

Injection (6,7,8) (3,4,5) (1,1,1) (2.6207, 3.0365, 3.4199)

Smart peak
flow meter

Sniffing (1,1,1) (3,4,5) (2,3,4) (1.8171, 2.2894, 2.7144)
Jamming

(
1
5 , 1

4 , 1
3

)
(1,1,1) (5,6,7) (1, 1.1447, 1.326)

Injection
(

1
4 , 1

3 , 1
2

) (
1
7 , 1

6 , 1
5

)
(1,1,1) (0.3271, 0.3814, 0.4641)

The fuzzy weight is calculated for each criterion using Equation (3). We add all
geometric mean values by applying the formula for adding two fuzzy numbers.

∼
A1⊕

∼
A2= (l1, m1, u1) ⊕ (l2, m2, u2) = (l1 + l2, m1 + m2, u1 + u2)

We then find the reciprocal of the fuzzy number and multiply each fuzzy geometric
mean value with the reciprocal of the geometric mean summation. The detailed calculation
for the oximeter is shown below.

(0.928 + 0.341 + 1.817, 1.0772 + 0.4041 + 2.289, 1.2557 + 0.5 + 2.714) = (3.086, 3.7703, 4.4697) = (3.086, 3.7703,
4.4697) ∗

(
1

4.4697 , 1
3.7703 , 1

3.086

)
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Table A4. Fuzzy weight calculation.

Device Fuzzy Geometric Mean Value Fuzzy Weight
∼
wi

Oximeter

(0.928, 1.0772, 1.2557) (0.928, 1.0772, 1.2557) ⊗
(

1
4.4697 , 1

3.7703 , 1
3.086

)
= (0.207, 0.2857, 0.4069)

(0.341, 0.4041, 0.5) (0.341, 0.4041, 0.5) ⊗
(

1
4.4697 , 1

3.7703 , 1
3.086

)
= (0.0762, 0.10717, 0.1620)

(1.817, 2.289, 2.714) (1.817, 2.289, 2.714)⊗
(

1
4.4697 , 1

3.7703 , 1
3.086

)
= (0.4065, 0.6071, 0.8794)

Smartwatch

(0.8549, 0.9498, 1.0527) (0.8549, 0.9498, 1.0527)⊗
(

1
4.8779 , 1

4.3325 , 1
3.781

)
= (0.1752, 0.2192, 0.2784)

(0.3054, 0.3462, 0.4053) (0.3054, 0.3462, 0.4053) ⊗
(

1
4.8779 , 1

4.3325 , 1
3.781

)
= (0.0626, 0.08009, 0.1071)

(2.6207, 3.0365, 3.4199) (2.6207, 3.0365, 3.4199)⊗
(

1
4.8779 , 1

4.3325 , 1
3.781

)
= (0.5372, 0.7008, 0.9044)

Smart peak
flow meter

(1.8171, 2.2894, 2.7144) (1.8171, 2.2894, 2.7144) ⊗
(

1
4.5045 , 1

3.8155 , 1
3.1442

)
= (0.4033, 0.60002, 0.8633)

(1, 1.1447, 1.326) (1, 1.1447, 1.326) ⊗
(

1
4.5045 , 1

3.8155 , 1
3.1442

)
= (0.2220, 0.30001, 0.4217)

(0.3271, 0.3814, 0.4641) (0.3271, 0.3814, 0.4641) ⊗
(

1
4.5045 , 1

3.8155 , 1
3.1442

)
= (0.0726, 0.0999, 0.1476)

These fuzzy weights can be used if needed, but in our case study, we need to defuzzify
these fuzzy numbers to obtain crisp numerical values using Equation (7). Following the
calculation, we obtain the weights presented in Table 7. Following that, we calculate the
total weight of the criteria. We normalize the weight if necessary, which comes to 1. Finally,
the risk level is calculated using Equation (9).
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