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Abstract: Object detection is one of the core technologies for autonomous driving. Current road object
detection mainly relies on visible light, which is prone to missed detections and false alarms in rainy,
night-time, and foggy scenes. Multispectral object detection based on the fusion of RGB and infrared
images can effectively address the challenges of complex and changing road scenes, improving the
detection performance of current algorithms in complex scenarios. However, previous multispectral
detection algorithms suffer from issues such as poor fusion of dual-mode information, poor detection
performance for multi-scale objects, and inadequate utilization of semantic information. To address
these challenges and enhance the detection performance in complex road scenes, this paper proposes
a novel multispectral object detection algorithm called MRD-YOLO. In MRD-YOLO, we utilize
interaction-based feature extraction to effectively fuse information and introduce the BIC-Fusion
module with attention guidance to fuse different modal information. We also incorporate the SAConv
module to improve the model’s detection performance for multi-scale objects and utilize the AIFI
structure to enhance the utilization of semantic information. Finally, we conduct experiments on
two major public datasets, FLIR_Aligned and M3FD. The experimental results demonstrate that
compared to other algorithms, the proposed algorithm achieves superior detection performance in
complex road scenes.

Keywords: autonomous vehicle; computer vision; object detection; multi-modality fusion

1. Introduction

With the gradual maturation and widespread application of autonomous driving tech-
nology, safety has become a major concern. Object detection is one of the core technologies
in autonomous driving [1]. Autonomous driving relies on detection algorithms to perceive
the surrounding environment based on images captured by visual sensors and to make
decisions and plans for vehicle behavior. Currently, autonomous driving mainly relies on
visible light images, which perform well in bright and clear scenes but poorly in scenarios
with limited visibility, such as night-time, rainy, or foggy conditions [2]. This can lead to
missed or false detections of road objects, posing a threat to the safety of road users. Some
researchers consider using infrared images for road object detection tasks. Infrared images
are rich in semantic information, less affected by environmental interference, and perform
better than visible light images in scenes with limited visibility. However, infrared images
lack detailed information, resulting in inferior detection performance compared to visible
light images in scenes with relatively high visibility. Infrared images are rich in object
semantic information and less affected by environmental interference, while visible light
images are rich in detailed information but susceptible to environmental interference. These
two types of images inherently complement each other [3]. Effectively integrating and
utilizing the information from both types of images, allowing each to leverage its strengths,
can significantly improve the detection performance of current models in complex and
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dynamic road scenes [4]. Therefore, object detection based on multispectral images has
become one of the current research hotspots [5,6].

In previous research, researchers have proposed various approaches to effectively
utilize multispectral information, which can be broadly categorized into three types. The
first type is pixel-level fusion, which focuses on fusing images at the pixel level and then
inputting the fused images into the detector for detection [7]. The second type is feature-
level fusion, where fusion occurs during the feature extraction process of the two modal
images [8,9]. The third type is decision-level fusion, where detectors are used separately
to detect the two modal images, and their detection results are fused using a certain
strategy [10]. Pixel-level fusion tends to have suboptimal performance due to difficulties in
perfect image registration, while decision-level fusion requires the simultaneous use of two
detectors, leading to excessively large parameter sizes. Feature-level fusion has gradually
become the primary focus of current researchers [11].

In the context of feature-level fusion, researchers mainly focus on two key issues:
fusion timing and fusion strategy. Exploration of fusion timing has been sufficiently
deep [12,13] in current research, but further research is still needed on fusion strategies.
Traditional methods [14,15] employ proportional cascading, serial connection, and other
methods for fusion, which are effective to some extent but have limitations in fully leverag-
ing the advantages of multi-modal data and suffer from information redundancy and poor
reliability. Some scholars have proposed illumination-aware weighted fusion methods [16],
which effectively address illumination changes but still have limitations in scenarios such
as foggy or rainy weather. Additionally, some researchers have proposed guiding fusion
using attention mechanisms to better integrate multi-modal information [17]. While these
approaches have achieved certain results, they overlook the fact that irrelevant information
from both modalities is also fused during the process, which negatively impacts detection
performance. Therefore, there is a need to explore more effective methods to better integrate
multi-modal information. Furthermore, previous studies on multispectral detection algo-
rithms often focus solely on improving the fusion of multi-modal information, neglecting
inherent issues in detection networks for road detection, such as poor performance in
detecting multi-scale objects and underutilization of semantic information.

This paper proposes a dual-modal object detection algorithm, MRD-YOLO, based
on YOLOv8, to address the issues of insufficient fusion of multi-modal information and
poor performance in road object detection encountered by previous multispectral detection
algorithms. To tackle the problem of underutilization of multi-modal information, we
design a dual-modal feature fusion module based on high-frequency information and
attention guidance. To address the issues of poor detection performance on multi-scale
road objects and inadequate utilization of semantic information, we replace the convolution
layers and SPPF layer of the original backbone network with SAConv [18] and AIFI [19]
structures. We select YOLOv8s as our baseline model. Furthermore, to validate the effec-
tiveness of our proposed algorithm, conduct experiments on two widely used dual-modal
road detection datasets, FLIR_Aligned [20] and M3FD [21], and compare it with current
state-of-the-art dual-modal detection algorithms. The experimental results demonstrate
the excellent detection performance of our proposed algorithm in complex scenarios. The
main contributions of this paper can be summarized as follows:

• To address the issue of insufficient fusion and effective utilization of multi-modal
information by traditional fusion methods, we propose the BIC-Fusion module based
on high-frequency information and attention guidance.

• To tackle the problems of poor detection performance on multi-scale road objects and
the inadequate utilization of semantic information overlooked by traditional multi-
spectral detection algorithms, corresponding improvement measures are proposed.

• Based on the proposed fusion method and improvement strategies, we developed
a novel multispectral object detection algorithm called MRD-YOLO. Experimental
tests were conducted on public datasets to successfully validate the superiority of the
algorithm proposed in this paper.
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2. Related Works
2.1. Object Detection Models

Current object detection algorithms can be broadly categorized into two main types:
Two-stage and One-stage. Two-stage algorithms typically consist of two steps: first, deter-
mining the region where the object is located, and second, classifying the objects within
that region. Although this approach yields better detection accuracy, it tends to be slower.
Representative examples include R-CNN [22] and Faster R-CNN [23]. On the other hand,
One-stage algorithms combine object localization and classification into a single regression
problem, completing both tasks in one step. These algorithms are known for their faster
detection speed but may have relatively lower detection accuracy compared to Two-stage
algorithms. The most representative example of One-stage algorithms is the YOLO (You
Only Look Once) algorithm. Considering the real-time detection requirements of certain
applications, we chose the YOLO series algorithm, which is the most representative and
performs well in terms of efficiency, to complete the detection task.

In 2016, the YOLOv1 [24] algorithm was introduced, and it transformed the detection
task into a regression problem, significantly improving the efficiency of object detection.
Subsequently, in 2017 and 2018, YOLOv2 [25] and YOLOv3 [26] were successively released.
Among them, YOLOv3 greatly enhanced the detection performance of the YOLO algorithm
by using excellent backbone networks, feature pyramids, anchor-based strategies, and other
outstanding techniques. This advancement enabled the YOLO algorithm to achieve excel-
lent detection results while maintaining high real-time performance, attracting widespread
attention at the time. In 2020, the YOLOv4 [27] and YOLOv5 [28] algorithms were intro-
duced. YOLOv5 extensively adopted state-of-the-art detection strategies, including data
augmentation, replacing the original PAN structure with the FPN-PAN structure and using
advanced loss functions. These strategies not only ensured real-time performance but
also further improved the detection effectiveness of the YOLO series algorithms. YOLOv5
became one of the most favored algorithms in the field of object detection in the following
years. Subsequently, researchers continued to refine and improve the YOLO algorithm,
leading to the introduction of subsequent versions such as YOLOX [29], YOLOv6 [30],
YOLOv7 [31], and so on. These algorithms iteratively enhanced the detection performance
of object detection algorithms in general-purpose object detection tasks.

In 2023, YOLOv8 [32] was introduced by the Ultralytics team, who previously devel-
oped YOLOv5. Compared to YOLOv5, YOLOv8 incorporates several significant improve-
ments. In the backbone network, YOLOv8 replaces the original c3 structure with a c2f
structure, enhancing the design efficiency. Additionally, in the Head layer, YOLOv8 adopts
more efficient decoupled heads instead of coupled heads used in YOLOv5. It also transi-
tions from the anchor-based concept to the anchor-free approach and replaces the original
BCE_Loss in the loss function with DFL and CIOU as regression losses. These enhance-
ments result in YOLOv8 achieving higher accuracy and faster speed in object detection.
Notably, YOLOv8 surpasses YOLOv7 on the classic CCOO public dataset, establishing itself
as one of the most advanced object detection algorithms to date. Furthermore, YOLOv8 in-
troduces five versions (n, s, m, l, x) tailored for different detection tasks in various scenarios,
with model parameters gradually increasing from n (the smallest) to x (the largest), corre-
sponding to variations in detection performance, with n offering the lowest performance
and x offering the highest.

However, the aforementioned detection algorithms are limited to detecting single-
modal data. This reliance on single-modal detection inevitably faces constraints inherent to
each modality. For instance, RGB-based object detection struggles in adverse conditions
such as rain, fog, and night-time, where environmental factors and lighting severely impact
imaging quality, resulting in poor detection performance. On the other hand, infrared-
based object detection, while relatively stronger in limited visibility scenarios compared to
RGB images, lacks detailed information and performs poorly in typical scenes compared
to visible light. Therefore, single-modal object detection algorithms struggle to effectively
address the complexities and variations in road scenes.
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2.2. Multispectral Object Detection

To address the issue of poor detection performance in complex scenarios due to the
limitations of individual modalities in single-modal detection, multispectral object detection
has emerged. Multispectral object detection algorithms integrate both RGB and infrared
modalities, utilizing the salient information from infrared images to mitigate the negative
impact of environmental conditions on detection while leveraging the detailed information
from RGB images to further enhance performance in various complex scenarios. The core of
multispectral detection lies in effectively fusing different modalities of information, which
can be categorized into pixel-level fusion, feature-level fusion, and decision-level fusion
based on fusion timing [33]. Pixel-level fusion requires high registration accuracy between
different modal images, limiting its effectiveness in improving detection performance,
especially in real-time scenarios [34]. Decision-level fusion involves using two separate
algorithm networks and then combining the results, resulting in excessive parameters and
impracticality in real-time applications. Therefore, feature-level fusion has become the
primary focus of current researchers. Wagner et al. [13] initially proposed early fusion and
late fusion frameworks. Afterwards, Hong et al. [35] discussed three fusion timings: early,
middle, and late fusion, concluding that middle and late fusion methods are more effective.
Subsequent researchers have mostly adopted middle fusion methods. In addition to
studying fusion timing, researchers have also focused on fusion methods. In the early stages,
some researchers [14,15] adopted relatively simple fusion methods such as proportional
cascading, element-wise addition, and element-wise multiplication, which yielded initial
results in some scenarios, demonstrating the effectiveness of multi-modal information in
enhancing detection performance to some extent. However, these simple fusion methods
have a limited utilization of both modalities. Zheng et al. [36] proposed GFD-SSD, a
multispectral detection algorithm based on the SSD algorithm, using two different gating
fusion units to learn the detection effects of different modalities in different scenarios.
Zhang et al. [17] introduced GAFF, a method based on attention-guided feature fusion.
Yun et al. [37] proposed Infusion-Net based on high-frequency information acquisition and
YOLOv7 algorithm. Xie et al. [38] designed a multispectral detection algorithm, YOLO-MS,
based on the YOLOv5 framework and attention-guided fusion.

However, most of the above methods overlook the fact that features irrelevant to the
target are also fused during fusion, leading to negative effects on the detection performance
after fusion, indicating that fusion strategies still need improvement. Additionally, the
aforementioned researchers only focused on fusion itself, simply embedding the fusion
module into the established object detection algorithm, overlooking issues inherent in
the detection algorithm itself, such as poor performance in detecting multi-scale targets
and insufficient utilization of semantic information in road detection tasks. To address
these issues and enhance the detection performance in complex road scenarios, this paper
proposes and designs the MRD-YOLO algorithm. The algorithm utilizes the BIC-fusion
module to interactively fuse effective feature information and employs attention mech-
anisms to guide the fusion of multi-modal information, enabling the full utilization of
multi-modal information. Furthermore, corresponding improvements are proposed to ad-
dress the inherent issues of the YOLOv8 algorithm, such as poor performance in detecting
multi-scale targets and insufficient utilization of semantic information. Compared to other
multispectral algorithms, MRD-YOLO demonstrates superior detection performance in
road detection tasks in complex scenarios.

3. Methods

This section will provide a detailed explanation of the network architecture and its
key components of MRD-YOLO. MRD-YOLO is designed based on the YOLOv8 network
architecture, consisting of three main parts: backbone, neck, and head. The overall structure
is illustrated in Figure 1.
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In the backbone part, we have modified the original single-modal backbone used
for processing single-modal data into a dual-backbone structure to extract both RGB and
infrared (IR) dual-modal information. We introduce the BIC-Fusion fusion module to
facilitate information interaction and feature fusion between the dual-modal information,
effectively filtering out redundant information. This approach maximizes the utilization of
dual-modal information, thereby enhancing the detection performance of the algorithm in
complex scenarios. Additionally, to address the issues of poor detection performance for
multi-scale targets and underutilization of semantic information inherent in the detection
algorithm, we replace some Conv structures in the backbone network with SAConv. This
strengthens the algorithm’s ability to extract features for multi-scale targets. Furthermore,
we replace the SPPF structure with the AIFI structure to enhance the utilization of semantic
information in deep feature maps, effectively improving the detection performance of
the algorithm for scale-variable road targets. It s important to note that in the last BIC-
Fusion of the Backbone part, we only output the final fused feature map without separately
outputting RGB and IR branches. In the neck part, we employ the FPN-PAN structure
to perform multi-scale fusion of the fused dual-modal features at three different scales,
enhancing the detection performance for targets of various scales. In the head part, we
utilize the original detection head of the YOLOv8 network to predict target positions,
categories, and other information. Next, we provide detailed explanations of the BIC-
Fusion module, SAConv, and AIFI, which are the main modules used in the network.
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3.1. BIC-Fusion Module

To better integrate the information from two modalities of images, we designed the
BIC-fusion module in this paper. The module consists of three parts: the HFIE module, the
IEIM module, and the AGFF module. The HFIE module is responsible for extracting high-
frequency effective information, the IEIM module enhances and interacts with features, and
the AGFF module outputs the final fused feature map. The overall structure is illustrated
in Figure 2.
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HFIE Module (High-Frequency Information Extraction Module): High-frequency
information in images refers to areas where the grayscale values change dramatically in
2D images. Compared to low-frequency information, high-frequency information contains
more edge and texture details, such as the contour information of targets in infrared
images and the contour and detail information of targets in RGB images. These pieces of
information are crucial for detection, as high-frequency information contains a significant
amount of valuable data. By interacting the high-frequency information of each modality,
we can reduce the negative impact of irrelevant information fusion on detection, thus better
leveraging the advantages of each modality in dual-mode images. From this perspective,
this paper designs an information purification module to help extract high-frequency
information from both modalities. Specifically, by first using two-dimensional discrete
cosine transformation (2D_DCT) to process the input feature map to obtain its frequency-
domain representation, the low-frequency information in the frequency-domain image is
concentrated in the upper-left corner after 2D_DCT conversion. To remove low-frequency
information and retain high-frequency information, we chose to use a mask G to process
the frequency-domain image to discard the low-frequency information located in the
upper-left part of the frequency-domain image. The amount of information discarded
is determined by the parameter α, and the size of the α parameter affects the amount of
discarded information. If α is too large, valuable information may be discarded, while if α
is too small, it may not effectively filter out useless information. Finally, through inverse
transformation (2D_IDCT), the frequency-domain image is converted back to the feature
map, resulting in a new feature map rich in high-frequency useful information. The specific
formulas for the mask G, 2D_DCT, and 2D_IDCT are as follows:

G(u, v) =
{

0, v < −u + 2αw
1, otherwise

(1)

2D−DCT(u, v) = 2√
MN

c(u)c(v)
N−1
∑

i=0

M−1
∑

j=0
f (i, j)cos

(
(2i + 1)uπ

2M

)
cos

(
(2j + 1)vπ

2N

)
(2)
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2D− IDCT(i, j) = 2√
MN

N−1
∑

u=0

M−1
∑

v=0
c(u)c(v)F(u, v)cos

(
(2u + 1)iπ

2M

)
cos

(
(2v + 1)jπ

2N

)
(3)

c(u) =

{
1/

√
2 u = 0

1 otherwise
(4)

where Equation (1) represents the mask G, with w in Equation (1) denoting the width of
the input feature map. Equations (2) and (3) represent 2D_DCT and 2D_IDCT, respec-
tively, with F(u, v) denoting the frequency obtained after 2D_DCT conversion, and f (i, j)
representing the pixel value of the pixel located at (i, j). Equation (4) is the orthogonal
normalization coefficient.

IEIM Module (Information Enhancement and Interaction Module): Isolated branches
hinder the network from learning the correlation information between modalities. Strength-
ening the exchange of information between branches is crucial for learning effective com-
plementary features. Therefore, this paper specifically designs an information interaction
module for interacting effective information. This module consists of RCBAM and Add
structures. CBAM [39] combines channel attention with spatial attention, allowing the
network to focus on the target and its surrounding information more effectively. The
specific structure of CBAM is shown in Figure 3. We combine it with the residual structure
to form the RCBAM module, as shown in Figure 2. RCBAM not only enhances the net-
work’s attention to effective features but also deepens the model to improve its learning
performance. Finally, through the Add structure, the enhanced high-frequency information
feature map is fused with the original feature map of the other modality, allowing the
effective information of each modality to be fully interactively learned.
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AGFF Module (Attention-Guided Feature Fusion Module): The AGFF Module consists
of the ADDCB module, which is responsible for integrating the fused dual-modal feature
maps for subsequent detection. Firstly, CBAM is applied to guide attention allocation for
the two input feature maps, enabling the model to better focus on the target regions of each
modality. After attention allocation, the final fusion is achieved through addition.

3.2. Replace Conv with SAConv

Dilated convolution, by introducing additional spacing (i.e., dilation) in the convolu-
tional kernel, can enlarge the receptive field without increasing the number of parameters
or computational cost. SAConv, on the other hand, improves feature extraction at different
scales by applying dilated convolutions with different dilation rates. Additionally, it in-
corporates a switch function to control the fusion weights of these different convolutional
results. Through SAConv, the network can flexibly extract features at various scales, aiding
in more accurate object recognition. The overall structure is illustrated in Figure 4.
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To address the issue of varying object scales in road scenes, we replaced some of the
original convolutional layers in the backbone network with SAConv. This replacement
effectively enhanced the model’s capability to extract features from road objects with
diverse scales, thereby improving the overall performance of the model in road scenarios.

3.3. Replace SPPF with AIFI

AIFI applies a self-attention mechanism to high-level features with rich semantic
concepts, coordinating internal scale interactions among these features. This allows the
network to better capture the relationships between conceptual entities in the image, thereby
assisting subsequent modules in more effectively detecting and recognizing objects in the
image. The overall structure of AIFI is illustrated in Figure 5.
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First, AIFI transforms the input 2D image into a 1D vector for subsequent processing.
Then, it employs multi-head attention to process the input, allowing the model to perform
multiple sets of self-attention on the input sequence, helping the model better capture
information from different positions in the sequence and improving its ability to handle
long-range dependencies. Next, the processed sequence is passed through a feed-forward
network (FFN) after residual connection and normalization with the serialized original
input. The FFN introduces non-linear learning, enabling the network to learn complex
relationships between different elements in the input sequence. Finally, the 1D vector
is transformed back into a 2D form for subsequent network processing. The overall
mathematical process is illustrated in Equations (5) and (6).

Q = K = V = Flatten (Input) (5)

Output = Reshape (FFN(MultiHead (Q, K, V))) (6)

By leveraging the multi-head attention mechanism and FFN structure, AIFI can facilitate
intra-scale interactions among high-level features, enabling the network to better capture
relationships between conceptual entities in the image. This enhances the model’s ability to
handle complex semantic features, thereby improving the network’s detection performance.
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4. Experiments
4.1. Dataset

The FLIR dataset [40] is a freely available thermal sensing dataset released by Teledyne
FLIR to support research in autonomous driving. The dataset comprises 14,000 annotated
pairs of infrared images and corresponding RGB images. All images were recorded using
regular cameras and thermal imaging cameras installed on vehicles, capturing both daytime
and night-time scenes. The target categories include people, cars, bicycles, dogs, etc.
However, some image pairs in the original FLIR dataset are not aligned, making them
unsuitable for use in bimodal detection tasks. To adapt the dataset for bimodal tasks,
Zhang et al. [20] removed the unaligned image pairs from the original FLIR dataset and
retained only the three common categories: people, bicycles, and cars. The processed
dataset, known as FLIR_Aligned, contains a total of 5142 well-aligned pairs of visible light
and infrared images, with 4129 pairs for training and 1013 pairs for evaluation.

The M3FD dataset, released by Liu et al. [21] in 2022, consists of 4200 pairs of aligned
and annotated visible light and infrared images. It includes a total of six object categories:
“person”, “car”, “bus”, “motorcycle”, “truck”, and “traffic light”. The images were cap-
tured by optical and infrared cameras mounted on vehicles, covering various challenging
scenarios such as daytime, overcast, night-time, and foggy conditions. Since there is no
official split for training and validation sets, we followed the split provided by [41]. The
training set contained 3360 image pairs, while the validation set contained 840 image pairs.

4.2. Implementation Details

The experimental setup in this paper used Windows 11 as the operating system, an
NVIDIA RTX 4090 GPU device, and the experimental code was built using PyTorch. The
initial learning rate for training was set to 0.01, with a weight decay of 0.001. The batch size
was set to 10, and the number of epochs for training on the FLIR_Aligned dataset was 150,
while for the M3FD dataset, it was set to 400. The input image size was 640 × 640 pixels.

4.3. Evaluation Metrics

The experiment selected the comprehensive indicator mAP as the evaluation metric,
which represents the average precision. A higher mAP indicates stronger model detection
performance. The specific formula for the evaluation metric is as follows:

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

mAP =
∫ 1

0
P(R)dR (9)

In the formula, TP represents the number of correctly predicted samples, FP represents
the number of incorrectly predicted samples that are predicted as correct, and FN represents
the number of missed detections. mAP can be divided into mAP50 and mAP50:95 based
on IoU threshold criteria. mAP50 represents the mAP when the IoU threshold is 0.5, while
mAP50:95 represents the average mAP over IoU thresholds ranging from 0.5 to 0.95 with a
step size of 0.05.

4.4. Exploration Experiment of Hyperparameter α

The BIC-Fusion module relies on the parameter α of the mask G to determine how
much irrelevant information is excluded. Its value determines whether we can reasonably
retain effective high-frequency information and remove irrelevant information. The range
of α is between 0 and 0.5. To determine a more appropriate α to ensure the effective
extraction of high-frequency information, we conducted detailed experimental tests on α
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within the range of 0 to 0.5 using the FLIR_Aligned dataset. The experimental results are
shown in Table 1.

Table 1. Exploration experiments of hyperparameter α on FLIR_Aligned dataset.

Hyperparameter α mAP50 mAP50:95

0 75.1 40.5

0.1 75.0 40.2

0.2 75.6 40.4

0.3 75.7 40.6

0.4 74.3 39.9

0.5 73.7 39.6

The experimental results indicate that the model achieves optimal performance when
the value of α is set to 0.3. When the value of α exceeds 0.3, the performance of the model
begins to decline significantly. This is because too much information is excluded, leading
to the removal of essential information along with irrelevant information, resulting in a
substantial drop in detection performance. Therefore, to effectively filter out irrelevant
information and retain useful high-frequency information, we set the parameter α to 0.3
based on the experimental results.

4.5. Ablation Study

To validate the effectiveness of the proposed algorithm and its various improvement
modules, dissociation experiments were conducted on the FLIR_Aligned dataset. The
results are shown in Table 2.

Table 2. Ablation experiments on FLIR_Aligned dataset. The best-performing methods are high-
lighted in bold.

Method Data mAP50 mAP50:95

YOLOv8 RGB 61.6 28.8

YOLOv8 IR 74.2 39.2

YOLOv8+BIC-Fusion RGB + IR 75.7 40.6

YOLOv8+BIC-Fusion+AIFI RGB + IR 75.9 40.7

YOLOv8+BIC-Fusion+AIFI+SAConv RGB + IR 76.5 40.9

From Table 2, it can be observed that the model’s performance is poorest when relying
solely on the RGB modality, with an mAP50 of only 61.6%. When using only the infrared
modality for detection, the mAP50 improves to 74.2%. Incorporating the proposed BIC-
Fusion module for multi-modal fusion leads to further improvement, with the algorithm’s
performance surpassing all single-modal approaches and reaching an mAP50 of 75.7%.
With the addition of AIFI, the mAP50 increases to 75.9%. Furthermore, the performance
of the model improves to its best after adding SAConv, with the mAP50 reaching 76.5%.
Compared to the baseline model, the algorithm proposed in this paper demonstrates
significant improvements, with an increase of 14.9% in mAP50 for visible light and 2.3%
for infrared images. These experimental results effectively demonstrate the effectiveness of
the proposed improvement methods.

4.6. Comparison of Different Detectors

To validate the superiority of our proposed algorithm, we conducted experiments
on the FLIR_Aligned and M3FD datasets, two widely used datasets for dual-mode road
object detection. The performance of our algorithm, MRD-YOLO, was compared with
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that of state-of-the-art dual-mode algorithms, such as SuperYOLO [42] and YOLO-MS [38].
The experimental results presented in Tables 3 and 4 demonstrate that even when com-
pared with these advanced dual-mode detection algorithms, MRD-YOLO exhibits superior
performance. These results strongly affirm the superiority of the MRD-YOLO algorithm.

Table 3. Comparison of results on the FLIR_Aligned dataset with different algorithms. The best result
is indicated in bold.

Method Data map@0.5 map@0.5:0.95

IV-CRN [43] RGB + IR 72.3 -

CFR_3 [20] RGB + IR 72.4 -

GAFF [17] RGB + IR 72.9 37.5

CAPTM [44] RGB + IR 73.2 -

SuperYOLO [42] RGB + IR 74.6 39.4

YOLO-MS [38] RGB + IR 75.2 38.3

MRD-YOLO (Ours) RGB + IR 76.5 40.9

Table 4. Comparison of results on the M3FD dataset with different algorithms. The best result is
indicated in bold.

Method Data map@0.5 map@0.5:0.95

SLBAF [45] RGB + IR 78.9 44.3

EAEF [41] RGB + IR 80.1 -

DAMSDet [46] RGB + IR 80.2 52.9

RGB-X [47] RGB + IR 81.5 -

YOLO-MS [42] RGB + IR 85.7 55.2

MRD-YOLO (Ours) RGB + IR 86.6 59.3

To visually demonstrate the improvement in detection performance delivered by the
proposed algorithm, we present a comparison of the original model and the proposed
algorithm’s detection results in both modalities in Figure 6. The left panel shows the
Ground Truth, the middle panel shows the baseline model, and the right panel shows
the proposed algorithm. Missed targets are annotated with yellow ellipses, while false
detections are annotated with blue ellipses. From the figure, it can be observed that in scenes
with complex lighting variations, the original algorithm relying on a single modality missed
detections and false detections in both modalities. In contrast, the proposed algorithm,
which integrates the advantages of both modalities, effectively avoids missed detections and
false alarms on road targets, demonstrating superior detection performance. Additionally,
the targets detected by the proposed algorithm often have higher confidence scores. The
visualized results intuitively illustrate the improved detection performance of the proposed
algorithm in complex road scenes.
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5. Conclusions

This paper addresses the issue of the poor performance of current detection algorithms
in detecting road objects in complex scenarios by proposing an improved dual-mode
detection algorithm based on YOLOv8s, named MRD-YOLO. To address the problem of
poor fusion effects in traditional dual-mode algorithms, a fusion module named BIC-Fusion
is proposed to extract and fuse interactive dual-mode information. Additionally, to improve
the detection performance of multi-scale objects, the SAConv module is introduced to help
the model better extract multi-scale feature information. Furthermore, to address the
insufficient utilization of semantic information in traditional algorithms, the AIFI module
replaces SPPF to better assist the model in utilizing semantic information, effectively
improving the detection performance of road objects with varying scales. Finally, the
proposed algorithm is tested on the FLIR_Aligned and M3FD datasets for dual-mode road
detection and is compared with current state-of-the-art dual-mode algorithms. The results
demonstrate that the proposed algorithm exhibits excellent performance in road detection
tasks in complex scenarios, effectively addressing the issue of poor performance of current
models in complex road scenarios. However, the MRD-YOLO model proposed in this
paper only focuses on the fusion of infrared and visible light modalities. Future work
will explore the integration of more modal information to further enhance its detection
performance in complex road scenarios.

Author Contributions: Conceptualization, C.S. and Y.C.; methodology, C.S. and X.Q.; software, C.S.;
validation, C.S., X.Q., L.Y. and R.L.; formal analysis, C.S., X.Q., L.Y. and R.L.; investigation, C.S. and
R.L.; resources, Y.C.; data curation, C.S.; writing—original draft preparation, C.S.; writing—review
and editing, C.S.; visualization, C.S.; supervision, Y.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the China West Normal University Talent Fund (No. 463177).

Institutional Review Board Statement: Not applicable.



Sensors 2024, 24, 3222 13 of 14

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Navarro, P.J.; Fernández, C.; Borraz, R.; Alonso, D. A Machine Learning Approach to Pedestrian Detection for Autonomous

Vehicles Using High-Definition 3D Range Data. Sensors 2017, 17, 18. [CrossRef] [PubMed]
2. Zhao, D.; Chen, Y.; Lv, L. Deep reinforcement learning with visual attention for vehicle classification. IEEE Trans. Cogn. Devel.

Syst. 2017, 9, 356–367. [CrossRef]
3. Benli, E.; Motai, Y.; Rogers, J. Human behavior-based target tracking with an omni-directional thermal camera. IEEE Trans. Cogn.

Devel. Syst. 2019, 11, 36–50. [CrossRef]
4. Bao, C.; Cao, J.; Hao, Q.; Cheng, Y.; Ning, Y.; Zhao, T. Dual-YOLO Architecture from Infrared and Visible Images for Object

Detection. Sensors 2023, 23, 2934. [CrossRef] [PubMed]
5. Bavirisetti, D.P.; Dhuli, R. Two-scale image fusion of visible and infrared images using saliency detection. Infrared Phys. Technol.

2016, 76, 52–64. [CrossRef]
6. Huang, Z.; Yang, B.; Liu, C. RDCa-Net: Residual dense channel attention symmetric network for infrared and visible image

fusion. Infrared Phys. Technol. 2023, 130, 104589. [CrossRef]
7. Zhao, Z.; Bai, H.; Zhang, J.; Zhang, Y.; Xu, S.; Lin, Z.; Timofte, R.; Gool, L.V. CDDFuse: Correlation-Driven Dual-Branch Feature

Decomposition for Multi-Modality Image Fusion. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Vancouver, BC, Canada, 18–22 June 2023; pp. 5906–5916.

8. Zhang, Y.; Yin, Z.; Nie, L.; Huang, S. Attention based multi-layer fusion of multispectral images for pedestrian detection. IEEE
Access 2020, 8, 165071–165084. [CrossRef]

9. Cao, Z.; Yang, H.; Zhao, J.; Guo, S.; Li, L. Attention fusion for one-stage multispectral pedestrian detection. Sensors 2021, 21, 4184.
[CrossRef] [PubMed]

10. Han, J.; Cheng, G.; Li, Z.; Zhang, D. A unified metric learning-based for co-saliency detection framework. IEEE Trans. Circuits
Syst. Video Technol. 2018, 28, 2473–2483. [CrossRef]

11. Hou, Z.; Yang, C.; Sun, Y.; Ma, S.; Yang, X.; Fan, J. An object detection algorithm based on infrared-visible dual modal feature
fusion. Infrared Phys. Technol. 2024, 137, 105107. [CrossRef]

12. Liu, J.; Zhang, S.; Wang, S.; Metaxas, D.N. Multispectral deep neural networks for pedestrian detection. arXiv 2016,
arXiv:1611.02644.

13. Wagner, J.; Fischer, V.; Herman, M.; Behnke, S. Multispectral pedestrian detection using deep fusion convolutional neural
networks. In Proceedings of the ESANN 2016 Proceedings, European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning, Bruges, Belgium, 27–29 April 2016; Volume 587, pp. 509–514.

14. König, D.; Adam, M.; Jarvers, C.; Layher, G.; Neumann, H.; Teutsch, M. Fully convolutional region proposal networks for
multispectral person detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, Honolulu, HI, USA, 21–26 July 2017; pp. 243–250.

15. Park, K.; Kim, S.; Sohn, K. Unified multi-spectral pedestrian detection based on probabilistic fusion networks. Pattern Recognit
2018, 80, 143–155. [CrossRef]

16. Li, C.; Song, D.; Tong, R.; Tang, M. Illumination-aware faster R-CNN for robust multispectral pedestrian detection. Pattern
Recognit 2019, 85, 161–171. [CrossRef]

17. Zhang, H.; Fromont, E.; Lefèvre, S.; Avignon, B. Guided Attentive Feature Fusion for Multispectral Pedestrian Detection. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2021;
pp. 72–80.

18. Qiao, S.; Chen, L.C.; Yuille, A. Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 10213–10224.

19. Zhao, Y.; Lv, W.; Xu, S.; Wei, J.; Wang, G.; Dang, Q.; Liu, Y.; Chen, J. Detrs beat yolos on real-time object detection. arXiv 2023,
arXiv:2304.08069.

20. Zhang, H.; Fromont, E.; Lefevre, S.; Avignon, B. Multispectral fusion for object detection with cyclic fuse-and-refine blocks. In
Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Virtual, 25–28 October 2020; pp. 1016–1020.

21. Liu, J.; Fan, X.; Huang, Z.; Wu, G.; Liu, R.; Zhong, W.; Luo, Z. Target-Aware Dual Adversarial Learning and a Multi-Scenario
Multi-Modality Benchmark to Fuse Infrared and Visible for Object Detection. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5802–5811.

22. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014;
pp. 580–587.

23. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans.
Pattern Anal. Mach. Intell. 2016, 39, 1137–1149. [CrossRef] [PubMed]

https://doi.org/10.3390/s17010018
https://www.ncbi.nlm.nih.gov/pubmed/28025565
https://doi.org/10.1109/TCDS.2016.2614675
https://doi.org/10.1109/TCDS.2017.2726356
https://doi.org/10.3390/s23062934
https://www.ncbi.nlm.nih.gov/pubmed/36991645
https://doi.org/10.1016/j.infrared.2016.01.009
https://doi.org/10.1016/j.infrared.2023.104589
https://doi.org/10.1109/ACCESS.2020.3022623
https://doi.org/10.3390/s21124184
https://www.ncbi.nlm.nih.gov/pubmed/34207183
https://doi.org/10.1109/TCSVT.2017.2706264
https://doi.org/10.1016/j.infrared.2023.105107
https://doi.org/10.1016/j.patcog.2018.03.007
https://doi.org/10.1016/j.patcog.2018.08.005
https://doi.org/10.1109/TPAMI.2016.2577031
https://www.ncbi.nlm.nih.gov/pubmed/27295650


Sensors 2024, 24, 3222 14 of 14

24. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788.

25. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7263–7271.

26. Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
27. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934.
28. YOLOv5. 2021. Available online: https://github.com/ultralytics/yolov5 (accessed on 2 October 2022).
29. Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430.
30. Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection

framework for industrial applications. arXiv 2022, arXiv:2209.02976.
31. Wang, C.Y.; Bochkovskiy, A.; Liao HY, M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June
2023; pp. 7464–7475.

32. Jocher, G.; Chaurasia, A.; Qiu, J. YOLO by Ultralytics. 2023. Available online: https://github.com/ultralytics/ultralytics (accessed
on 10 May 2024).

33. Zhou, Y.; Omar, M. Pixel-level fusion for infrared and visible acquisitions. Int. J. Optomechatronics 2009, 3, 41–53. [CrossRef]
34. Nirmala, D.E.; Vaidehi, V. Comparison of Pixel-level and feature level image fusion methods. In Proceedings of the 2015 2nd

International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 11–13 March 2015;
pp. 743–748.

35. Hong, D.; Gao, L.; Yokoya, N.; Yao, J.; Chanussot, J.; Du, Q.; Zhang, B. More diverse means better: Multimodal deep learning
meets remote-sensing imagery classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4340–4354. [CrossRef]

36. Zheng, Y.; Izzat, I.H.; Ziaee, S. GFD-SSD: Gated fusion double SSD for multispectral pedestrian detection. arXiv 2019,
arXiv:1903.06999.

37. Yun, J.-S.; Park, S.-H.; Yoo, S.B. Infusion-Net: Inter- and Intra-Weighted Cross-Fusion Network for Multispectral Object Detection.
Mathematics 2022, 10, 3966. [CrossRef]

38. Xie, Y.; Zhang, L.; Yu, X.; Xie, W. YOLO-MS: Multispectral Object Detection via Feature Interaction and Self-Attention Guided
Fusion. IEEE Trans. Cogn. Dev. Syst. 2023, 15, 2132–2143. [CrossRef]

39. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference
on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19.

40. Team F. Free Flir Thermal Dataset for Algorithm Training. 2019. Available online: https://www.flir.com/oem/adas/adas-
dataset-form (accessed on 9 October 2023).

41. Liang, M.; Hu, J.; Bao, C.; Feng, H.; Deng, F.; Lam, T.L. Explicit attention-enhanced fusion for RGB-thermal perception tasks. IEEE
Robot. Autom. Lett. 2023, 8, 4060–4067. [CrossRef]

42. Zhang, J.; Lei, J.; Xie, W.; Fang, Z.; Li, Y.; Du, Q. SuperYOLO: Super Resolution Assisted Object Detection in Multimodal Remote
Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [CrossRef]

43. Yuyao, T.; Bo, J. The infrared-visible complementary recognition network based on context information. In Proceedings of the 2021
14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Shanghai,
China, 23–25 October 2021; pp. 1–6.

44. Zhou, H.; Sun, M.; Ren, X.; Wang, X. Visible-thermal image object detection via the combination of illumination conditions and
temperature information. Remote Sens. 2021, 13, 3656. [CrossRef]

45. Cheng, X.; Geng, K.; Wang, Z.; Wang, J.; Sun, Y.; Ding, P. SLBAF-Net: Super-Lightweight bimodal adaptive fusion network for
UAV detection in low recognition environment. Multimed. Tools Appl. 2023, 82, 47773–47792. [CrossRef]

46. Guo, J.; Gao, C.; Liu, F.; Meng, D.; Gao, X. DAMSDet: Dynamic Adaptive Multispectral Detection Transformer with Competitive
Query Selection and Adaptive Feature Fusion. arXiv 2024, arXiv:2403.00326.

47. Deevi, S.A.; Lee, C.; Gan, L.; Nagesh, S.; Pandey, G.; Chung, S.J. RGB-X Object Detection via Scene-Specific Fusion Modules. In
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 1–6 January 2024;
pp. 7366–7375.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/ultralytics/yolov5
https://github.com/ultralytics/ultralytics
https://doi.org/10.1080/15599610902717835
https://doi.org/10.1109/TGRS.2020.3016820
https://doi.org/10.3390/math10213966
https://doi.org/10.1109/TCDS.2023.3238181
https://www.flir.com/oem/adas/adas-dataset-form
https://www.flir.com/oem/adas/adas-dataset-form
https://doi.org/10.1109/LRA.2023.3272269
https://doi.org/10.1109/TGRS.2023.3258666
https://doi.org/10.3390/rs13183656
https://doi.org/10.1007/s11042-023-15333-w

	Introduction 
	Related Works 
	Object Detection Models 
	Multispectral Object Detection 

	Methods 
	BIC-Fusion Module 
	Replace Conv with SAConv 
	Replace SPPF with AIFI 

	Experiments 
	Dataset 
	Implementation Details 
	Evaluation Metrics 
	Exploration Experiment of Hyperparameter  
	Ablation Study 
	Comparison of Different Detectors 

	Conclusions 
	References

