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Abstract: Most facial analysis methods perform well in standardized testing but not in real-world
testing. The main reason is that training models cannot easily learn various human features and
background noise, especially for facial landmark detection and head pose estimation tasks with
limited and noisy training datasets. To alleviate the gap between standardized and real-world testing,
we propose a pseudo-labeling technique using a face recognition dataset consisting of various people
and background noise. The use of our pseudo-labeled training dataset can help to overcome the
lack of diversity among the people in the dataset. Our integrated framework is constructed using
complementary multitask learning methods to extract robust features for each task. Furthermore,
introducing pseudo-labeling and multitask learning improves the face recognition performance by
enabling the learning of pose-invariant features. Our method achieves state-of-the-art (SOTA) or
near-SOTA performance on the AFLW2000-3D and BIWI datasets for facial landmark detection and
head pose estimation, with competitive face verification performance on the IJB-C test dataset for
face recognition. We demonstrate this through a novel testing methodology that categorizes cases
as soft, medium, and hard based on the pose values of IJB-C. The proposed method achieves stable
performance even when the dataset lacks diverse face identifications.

Keywords: multitask learning; face recognition; facial landmark detection; head pose estimation;
pseudo-labeling

1. Introduction

Face analysis has improved considerably in various tasks, including detection [1,2],
recognition [3–5], and estimation [6,7], with several models achieving remarkable accuracy
and efficiency. This progress is attributed to the development of various network structures
and the availability of a large number of face datasets for training. Although sufficient
datasets are available for major tasks such as face recognition and face detection, substantial
gaps exist in data availability for tasks requiring sensitive labeling, such as facial landmark
detection and head pose estimation. This difficulty is especially noticeable in datasets with
few face identifications (IDs) or a limited total amount of data, making it challenging to
create robust and generalized models for the above-mentioned tasks.

Various methods have been explored to address the issue of the scarcity of face IDs
within datasets. Typical single-task learning methods have been developed to overcome
this challenge by finding commonalities between datasets or using information from other
tasks. In tasks such as heterogeneous face recognition [8–10], style embedding features are
learned to extract only common features from datasets in different domains with the same
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face class, or real faces are generated in different domains via generative models and then
face recognition is performed to determine the identity. In studies of facial expression or
stress recognition [11,12], small changes in facial landmarks have been used to specify the
region to focus on, resulting in a more accurate estimate. Efforts towards domain adaptation
have been made to address the challenge of data imbalance, which has been a significant
problem regarding the effective functioning of facial landmark detection and head pose
estimation in real-world scenarios [13–18]. Multitask learning has also been used to solve
the problem of the lack of face IDs. A multitask cascaded convolutional neural network
(MTCNN) [19] combines face detection and facial landmark detection to provide more
accurate facial detection and alignment. To improve the facial recognition performance,
some studies [20,21] have implemented multitask learning using facial attributes such as
gender, hair color, and facial expressions.

However, these approaches assume label availability for multiple tasks within a
dataset. Consequently, they inherently suffer from challenges as a fundamental solution to
the lack of face IDs and overall volume in datasets. Alternative approaches exist, such as
improving the data quantity through research in pseudo-labeling methods [22–26]. Inspired
by multitask learning methods such as the all-in-one CNN [27] and SwinFace [21], as well
as pseudo-labeling methods [22,23], such as those proposed by Pan et al., we hypothesize
that the use of datasets that have numerous images with a variety of face IDs would be
feasible for a task with a small number of face IDs. When combining datasets with different
numbers of face IDs, we posit that the performance of precise pseudo-labeling can enable
robust and generalized usability for any integration task in real-world scenarios. Figure 1
shows the overall pseudo-labeling and multitask learning framework. We present pseudo-
labeling and multitask learning methods for face recognition, head pose estimation, and
facial landmark detection to validate our assumptions.

Figure 1. Overview of the integrated framework, beginning with pretraining on individual tasks,
followed by pseudo-labeling to generate the pseudo-training dataset, which is then used in our
multitask learning. The direction of all arrows indicates the order of application of the framework.

To achieve precise pseudo-labeling, we prepared three pretrained networks: one
pretrained multitask network for facial landmark detection and head pose estimation
trained on the 300W-LP dataset and two pretrained networks for face recognition trained
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on the VGGFace2 [28] and MS1MV3 [29] datasets, respectively. First, we designed our
pseudo-labeling framework by referring to 300W-LP [22], a previous labeling framework
for facial landmarks and head pose estimation. In 300W-LP [22], the authors used iterative
fitting to find the optimal labels because, when relabeling the 300W [30] dataset to 300W-LP,
it is not possible to label manually. In contrast, in this study, instead of using iterative fitting,
we designed a sampling and fitting algorithm for various views of the image and found
the optimal label. In our pseudo-labeling framework, to reduce the bias of the existing
pretrained networks and for more robust feature learning, the landmark pseudo-label was
supplemented using an alignment method of eye landmarks based on eye blink detection.
Furthermore, given that most facial analysis datasets contain images of celebrities, we used
two pretrained networks for redundant validation through pseudo-facial identification.
Finally, we produced a pseudo-labeled training dataset (PLTD) for multitask learning.

In the following sections, we describe how to perform multitask learning using the
pseudo-labeled training dataset and propose two new loss functions for learning that
complement each other without converging to a single task. By using our proposed
pseudo-labeling and multitask learning frameworks, we show that the robustness and
generalization of our model is increased as the number of face IDs and background noise
in the dataset increases, and we can achieve similar or better performance than other state-
of-the-art (SOTA) methods in each task. Our contributions can be summarized as follows.

• We applied our pseudo-labeling framework to tasks lacking a face ID, such as facial
landmark detection and head pose estimation. We also used an inherently large face ID
face recognition dataset.

• Within our pseudo-labeling framework, we prepared a pseudo-labeled training dataset
by assigning entirely new class labels. This dataset contained 8.3 M images annotated
with 93 K facial class labels, 68 landmarks, and Euler angles using three pretrained net-
works.

• In our pseudo-labeling framework, we used an eye blink detection network to align
the eye landmarks to make them more robust, which the pretrained network could
not achieve. We then employed a selective fitting algorithm to generate high-quality
pseudo-labels and validated them using pretrained networks to prevent duplicated
face IDs.

• In our multitask learning framework, we designed a loss that generated a synergy
between tasks for pose-invariant face recognition and pose-guided facial landmark
detection. In addition, we developed a new face recognition evaluation method for
pose-invariant evaluation on the IJB–C [31] dataset.

• Finally, we constructed a novel pseudo-labeling and multitask learning framework and
demonstrated its SOTA or near-SOTA performance, thus illustrating its applicability to
not only the three tasks but also the entire field of facial analysis.

2. Related Works
2.1. Single-Task Learning
2.1.1. Face Recognition

Investigations into face recognition technology using deep learning techniques have
mainly focused on refining the datasets and loss functions. The high accuracy in face
recognition tasks is largely attributed to the quality of the associated datasets, which have
grown immensely in size. Datasets such as CASIA-WebFace [32], VGGFace2 [28], MS-Celeb-
1M [33], Megaface [34], and Webface [35] have between thousands and up to 100,000 human
classes, and datasets with 4 million human classes have been created recently.

As these large, high-quality datasets become available, the design of practical loss
functions for training on these datasets has become crucial. In deep-learning-based meth-
ods, the traditional SoftMax loss is based on the Euclidean distance between the embedding
features. However, newer methods, such as L-Softmax [36] and A-Softmax [37], focus on
angular distances that allow more effective decision boundaries for unseen human classes.
Further advances, such as CosFace [38], introduce additional distances in the angular space
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to distinguish human classes more effectively. ArcFace [4] improves this by adding a
margin to the angular distance, thereby further expanding the decision boundary. However,
as the datasets have grown, these advanced loss functions have become computationally
intensive, particularly in fully connected layers. Partial FC [5] addresses this issue by
remembering the center of each human class’s embedding features and employing efficient
sampling through multi-GPU setups. It considers only the positives and negatives of each
human class, thereby reducing the computational cost of training.

2.1.2. Head Pose Estimation

Head pose estimation is primarily used as a lightweight indicator to determine the
user status in areas such as virtual reality/augmented reality (AR) for human–computer
interaction, autonomous driving systems, and similar applications.

Algorithms such as POSIT [39] and Perspective-n-Points [40] were used to deduce
rotation matrices from landmarks and convert them into pose values. The construction
of datasets was challenging because it was necessary to label the Euler angles accurately.
Further, a variety of parameters, such as the distance between the camera and subject, the
focal length, and other camera parameters, had to be kept consistent, making the process of
obtaining the data difficult.

However, owing to the creation of the CMU-MultiPIE [41], BIWI Kinect Head Pose
Database [42], and CMU-Panoptic [43] datasets, which are labeled with Euler angles for
various poses, deep-learning-based head pose estimation methods such as FSA-Net [44],
TriNet [45], and RankPose [46] have shown substantial performance improvements. These
datasets have facilitated progress in head pose estimation and facial landmark detection.
This task also offers a supplementary tool for the learning of pose-invariant features in face
recognition and facial landmark detection, and it employs projection algorithms such as
Perspective-n-Points to facilitate mutual estimation.

2.1.3. Facial Landmark Detection

At present, facial landmark detection is being used in various applications, as it
involves locating key characteristic points on the face and using them to create 3D face
models or produce virtual facial movements by mapping them to the blend shapes of
3D avatars.

Among deep-learning-based methods [6,7,22,47–51], TCDCN [47] represents an early
2D facial landmark detection model using deep learning; it demonstrates superior per-
formance compared with previous nonparametric methods, even with a simplistic CNN
layer structure. In contrast, FAN [48] adopts the stacked hourglass network structure to
enable 2D and 3D facial landmark detection. Further, the Wing loss [49] has been proposed
as a new loss function that focuses on small errors in the loss function to achieve refined
learning in landmark detection.

2.2. Multitask Learning

In deep learning, multitask learning is often used to improve the performance of a
primary task. The MTCNN [19] face detector is a good example of multitask learning in
face analysis. It emphasizes the accuracy of face identification in images by simultaneously
learning to distinguish between faces and backgrounds and locating five key points to
facilitate the accurate determination of the bounding box coordinates. The primary goal
of multitask learning is to increase the efficiency of all constituent tasks; nevertheless, the
parameters must be carefully assigned to match the network architecture and learning
methodology to avoid one-sided biases and achieve a balanced performance improvement.

As an example of good parameter assignment tailored to specific tasks, the all-in-one
CNN [27] describes a universal multitask learning model that integrates tasks correspond-
ing to the main areas of face analysis, namely face recognition, face detection, head pose
estimation, and facial landmark detection. This method specifies face recognition as the
primary network branch from which the subnetwork branches are constructed and sub-
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sequently trained for additional tasks. SwinFace [21] introduces a multitask learning
approach that achieves SOTA performance while proficiently managing approximately
42 tasks, including face recognition, facial expression, age estimation, and facial attribute
estimation; the results demonstrate that this learning method generalizes the network
performance for various facial regions of interest (ROI) required in different tasks.

As facial landmark detection and head pose estimation are inter-projectable, a dataset
called 300W-LP [22] was created to combine these two tasks into a single dataset, using a
face model such as the 3D Morphable Model (3DMM) [52] to enable sophisticated facial
landmark detection and head pose estimation. FAN [48], 3DDFA [22,53,54], and Synergy-
Net [7] leverage 300W-LP [22] to present multitask learning methods that extend beyond
facial landmarks and head pose estimation to include 3D face alignment. In particular,
SynergyNet [7] focuses on predicting the complete 3D face geometry, including 3D face
alignment from 3D face modeling and face orientation estimation using a proposed multi-
task, multimodal, multi-representation landmark refinement network. This study focuses
on 3D landmarks and important face attributes by using their embedded information to
guide the learning of the 3D face geometry. SynergyNet demonstrates robustness under
various conditions and exhibits SOTA performance in facial landmark detection and head
pose estimation.

3. Proposed Method
3.1. Pseudo-Labeling

In this section, we introduce our pseudo-labeling framework for the integration of
three tasks: face recognition (FR), head pose estimation (HPE), and facial landmark detec-
tion (FLD).

3.1.1. Dataset Selection Strategy

Table 1 lists the commonly used datasets for each task. We focus on the ratios of the
datasets, the number of images per ID, and the total amount of data. We select three datasets
as the pseudo-labeled training dataset: two FR datasets, VGGFace2 [28] and MS1MV3 [29],
and 300W-LP [22], which is the labeled dataset for HPE and FLD.

Table 1. Datasets for face recognition, head pose estimation, and facial landmark detection.

Dataset # Images # IDs Image/ID # Landmarks Pose

CASIA-WebFace [32] 0.5 M 10 K 47 -
VGGFace2 [28] 3.3 M 9 K 363 -
MS1MV3 [29] 5.2 M 93 K 56 -

MegaFace2 [34] 4.7 M 0.6 M 7 -
WebFace260M [35] 260 M 4 M 21 -

300W [30] 3.8 K - - 68
AFLW [55] 20 K - - 21
COFW [56] 1.3 K - - 29
WFLW [57] 7.5 K - - 98
BIWI [42] 15 K - - - ✓

CMU-Panoptic [43] 1.3 M - - - ✓
300W-LP [22] 61 K - - 68 ✓

BIWI [42] and CMU-Panoptic [43] are mainly used as HPE datasets, and 300 W [30],
AFLW [55], COFW [56], and WFLW [57] are mainly used as FLD datasets. However, these
HPE and FLD datasets face challenges in pseudo-labeling each other because of an absolute
lack of face IDs, insufficient data, or a large domain gap between the datasets. For example,
HPE datasets have face images in large poses, whereas FLD datasets have no face image
information in large poses, which likely indicates mislabeling. However, HPE and FLD
are sufficiently related to allow for mutual perspective projection, and the 300W-LP [22]
dataset was developed in another study to contain labels for HPE and FLD tasks. The
300W-LP dataset was created by applying the 3DDFA [22] fitting algorithm through the
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3D Face Morphable Model [52] from 300 W; it includes 2D and 3D landmarks and the yaw,
pitch, and roll of the pose labels in large pose variants. However, although this dataset was
expanded from 3837 images to 61,225 images, it still has issues, such as a lack of face IDs, an
inability to detect eye blinks, and the distortion of most images in three dimensions, leading
to a lack of diversity in the background domain. To resolve these issues, we attempted to
integrate the data from this dataset with the abundant face IDs from the FR datasets and
train a multitask network using 300W-LP to attempt pseudo-labeling.

When selecting an FR dataset for pseudo-labeling, as shown in Figure 2, we primarily
considered datasets with a balance among the number of images per ID and the total
number of IDs. We chose VGGFace2 [28] as it allows sufficient background diversity.
However, when training facial recognition networks using VGGFace2, we observed that
the small number of face IDs caused a noticeable drop in verification performance in the
challenge test dataset, IJB-C [31]. To compensate for this, we considered adding other
FR datasets, such as MS1MV3 [29], MegaFace2 [34], and WebFace260M [35], which have
several IDs. MegaFace2 was not considered owing to its small number of images per
ID, and the training of WebFace260M was computationally expensive. Consequently, we
used MS1MV3 for noise and alignment. Finally, we selected two FR datasets, VGGFace2
and MS1MV3. To assign new IDs to the integrated dataset, we prepared two individual
networks on each dataset by using the ResNet [58] architecture.

Figure 2. Selecting the face recognition datasets to address the lack of face IDs and diversity in the
background in the 300W-LP [22] dataset. Each arrow indicates why we use the VGGFace2 [28] and
MS1MV3 [29] datasets.

3.1.2. Pseudo-Labeling Landmark and Pose

We devised a pseudo-labeling framework to create an integrated training dataset
for multitask learning, as shown in Figure 3. Our pseudo-labeling framework consists of
two main steps. Initially, the two FR datasets are subjected to pseudo-labeled landmarks
and pose labels. We prepared a pretrained model by using the 300W-LP [22] dataset on
the ResNet50 [58] model and concurrently employed Google’s MediaPipe [59] landmark
detection framework to minimize bias in our network. One of the issues described earlier is
the notable influence of the face detection bounding box area used during training. It affects
the generalization of tasks dealing with insufficient face IDs to real-world applications.
Therefore, an algorithm that uses multiple detection ROIs for a single image is essential
in determining accurate landmark and pose values. Thus, we implemented an algorithm
to extract quality pseudo-labels by generating multiple input images from a single image.
By applying various mixtures of crops and padding from our data augmentation set, we
enabled our pretrained network and MediaPipe [59] to extract landmark and pose values
from diverse perspectives. Algorithm 1 describes the sampling and fitting algorithm
intended for pseudo-labeling.
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Algorithm 1 Sampling and Selective Fitting Algorithm for Pseudo-Labeling.
Input: number of total samples N, image for sampling I, set of augmentations
A = {a1, ..., aN}, pretrained network with 300W-LP [22] dataset net, Euclidean distance
threshold td.
Output: Pseudo 68 landmarks and pose values.

1: make a new list D
2: for n = 1 to N do
3: augmented image I′ ← an(I)
4: L68, P3 ← net(I′)
5: I′eyel

, I′eyer ← Crop(I′, L68[37 : 48])
6: σl , σr ← neteye(I′eyel , I′eyer)
7: L68[37:48]← AdjustUpperEyes(L68[37 : 48], σl , σr)
8: Lmed

468 ← MediaPipe(I′)
9: Lmed

68 ← IndexMatching(Lmed
468 )

10: if L68 is valid landmark then
11: append L68, P3 to D
12: end if
13: if Lmed

68 is valid landmark then
14: append Lmed

68 , P3 to D
15: end if
16: end for
17: while Remaining D > 3 do
18: Lmean

68 ← MeanLandmark(D)
19: idx ← CalcMostFarLandmark(D, Lmean

68 )
20: delete idx in D list
21: end while
22: if Remaining D ≤ 3 then
23: Lmean

68 ← MeanLandmark(D)
24: assign← true
25: for Lsample

68 in D do

26: if Distance(Lsample
68 , Lmean

68 ) > td then
27: assign← false
28: end if
29: end for
30: if assign then
31: assign Lmean

68 , Pmean
3 pseudo label of I

32: end if
33: end if

In particular, in Algorithm 1, we create multiple image inputs by applying the aug-
mentation set A to each image I in the FR datasets. These inputs are then processed by
our pretrained network net and trained using 300W-LP [22] and MediaPipe to extract the
landmark vector L and pose vector P, respectively. Representing the landmark vector
and the pose vector in Algorithm 1, Lk denotes the vector containing the number of k
landmarks. However, 300W-LP, which we used as the training dataset, rarely includes cases
with eye blinks. Consequently, our pretrained model struggles with closed, obstructed, or
narrowly opened eyes because it has not been trained using such samples. In contrast, the
FR datasets that we chose include a diverse range of cases, and labeling without adjusting
for the landmarks corresponding to the eyes would make the resulting pseudo-labeled
dataset unable to account for challenging cases such as closed eyes.
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Figure 3. Overview of pseudo-labeled training dataset generation for multitask learning. The upper
part illustrates the application of the pseudo-labeling framework of landmarks and poses to the
face recognition datasets. The bottom part describes the method of pseudo-labeling face IDs for
our training datasets, which involves duplicate ID verification and assigns new face ID labels to the
VGGFace2 [28], MS1MV3 [29], and 300W-LP [22] datasets. The direction of all arrows indicates the
order of application of the framework.

Therefore, to incorporate a different level of complexity for eye landmarks compared with
300W-LP [22], we used a CNN-based eye blink detection network, as proposed by Hu et al. [60].
We pretrained an eye blink detection network using the ResNet18 architecture [58] based on the
labeling information of cropped eyes and the binary class of opened or closed eyes as refined
by Song et al. [61], using the BioID [62], AR [63], and CAS-PEAL [64] datasets.

As shown in Figure 4, we applied the trained eye blink detection network, neteye,
in Algorithm 1. This network was applied to the eye regions identified by L68[37:48],
corresponding to the 37th to 48th indices of the landmark vector. It extracted σl and σr
values ranging from 0 to 1, representing the probability of blinks in the left and right eyes,
respectively. In the AdjustUpperEyes method in Algorithm 1, these σl and σr values were
then multiplied by the difference values, hl1, hl2, hr1, and hr2, representing the distances
between the upper and lower eyes of each face, to incorporate the weight of the eye part
of the landmark. Subsequently, the validity of the extracted landmarks was assessed.
Landmarks that were abnormally small compared with the width and height of the input
image and those that showed the x-axis coordinates of the landmarks clustered in the center
of the image were considered invalid. Only samples validated through this process were
incorporated into the list of landmark vectors D.

Figure 4. Illustration of handling of closed or partially closed eyes using an eye blink network to
address the limitations of the FLD task. We train the ResNet18 model on cropped eye blink datasets
to predict the probability of eyes being open or closed. The red dots represent the eye’s landmarks
before adjustment and the green dots represent the landmarks after adjustment.
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Meanwhile, as MediaPipe [59] is not trained with 300W-LP [22], we did not apply
AdjustUpperEyes. Unlike typical landmark detection, MediaPipe outputs 468 landmarks.
Therefore, to find the indices of these 468 landmarks that are most similar to those of the 68
landmarks, we used the 300W-LP dataset for the pretraining network. We compared the
results from our pretrained network with MediaPipe’s results to extract the 68 landmark
indices most analogous to 300W-LP from the 468 landmarks provided by MediaPipe, as
illustrated in Figure 5. Similarly, after confirming that the landmark vector extracted via
MediaPipe was valid, we added it to the list of landmark vectors D.

Figure 5. Illustration of sampling of a pseudo-landmark label from Algorithm 1. We used our
pretrained network and Google’s MediaPipe [59] to generate a diverse set of pseudo-landmark
samples. We applied index matching to select 68 landmarks from the 468 landmarks output by
MediaPipe. The green arrows and dots show the flow and output of the pretrained network on the
Algorithm 1, while the blue arrows and dots show the flow and output of the MediaPipe.

For selective fitting, we calculated the average landmark vector from the list of land-
mark vectors D, excluded the landmark vector with the farthest Euclidean distance from
the average landmark vector from the list D, and repeated this step until the length of the
list D was three or fewer. These were accepted as pseudo-labels for the image I only when
the mean Euclidean distance between Lmean

68 and each of the remaining samples was lower
than the Euclidean distance threshold, td. Consequently, the final image would store three
or fewer samples’ average landmark and average pose values. The distance threshold td
was established based on the average performance of the AFLW2000-3D [22] test, with a
normalized mean square error of 0.05, in the 3D FLD tasks.

3.1.3. Pseudo-Labeling Face Identification

We have described how to label pseudo-landmarks and pseudo-pose labels. Next,
we describe a framework for the distribution of face IDs to integrate the dataset in the
following Algorithm 2. First, most FR datasets are composed of data on celebrities and other
famous individuals. Consequently, some duplicate IDs exist between the FR datasets. To
filter out duplicates between the VGGFace2 [28] and MS1MV3 [29] datasets, we calculated
the similarity threshold values tMS and tVGG while pretraining the face recognition task
with each dataset. During the pretraining process, we used the LFW [65] verification test,
commonly employed to evaluate the performance of face recognition tasks, to measure the
optimal similarity threshold that maximizes the verification performance. This threshold
was then used as the similarity threshold for the detection of duplicates in Algorithm 2.
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Both angular and Euclidean distances can be used to measure similarity; however, the
same distance metric must be employed in the loss function used during pretraining. Since
we used the large margin cosine loss [38] function in our proposed method, we employed
the angular distance for the cosine similarity in detecting data duplicates. For multitask
learning, we filtered out duplicate IDs between VGGFace2 [28] and MS1MV3 [29] and
added new IDs to 300W-LP [22] for the pseudo-labeled training dataset.

Algorithm 2 Identifying Duplicate IDs to Assign New IDs for the Integrated Dataset.
Input: Pretrained network using VGGFace2 [28] netVGG, pretrained network using
MS1MV3 [29] netMS, VGGFace2 as DVGG, MS1MV3 as DMS, number of IDs in DVGG
lVGG, number of IDs in DMS lMS, 300W-LP [22] as D300W , similarity threshold tVGG for
netVGG, and similarity threshold tMS for netMS.
Output: Our pseudo-labeled training dataset DT with self-curated and unduplicated IDs.

1: EVGG ← Empty list of length lVGG+lMS
2: EMS ← Empty list of length lVGG+lMS
3: for each ID iVGG in DVGG do
4: SI ← set all images in iVGG
5: EVGG[iVGG]← Mean(netVGG(SI))
6: EMS[iVGG]← Mean(netMS(SI))
7: end for
8: for each ID iMS in DMS do
9: SI ← set all images in iMS

10: EVGG[lVGG + iMS]← Mean(netVGG(SI))
11: EMS[lVGG + iMS]← Mean(netMS(SI))
12: end for
13: SimVGG ← ComputeSimilarityList(EVGG, tVGG)
14: SimMS ← ComputeSimilarityList(EMS, tMS)
15: U← FindDuplicates(SimVGG, SimMS)
16: D′T ← MergeDatasets(DVGG, DMS, U)
17: D′300W ← SemiIdentify(D300W)
18: U′ ← repeat step 1 to 15 using D′T , D′300W
19: DT ← MergeDatasets(D′T , D′300W , U′)

As we integrated VGGFace2 [28] and MS1MV3 [29] as D′T , we needed to assign new
IDs to 300W-LP [22], which does not have any existing IDs. In particular, 300W-LP is a
dataset that distorts each image of 300W [30], which holds approximately 3800 images,
into 10 to 20 images, thus augmenting the dataset. Consequently, we assumed that each
of the approximately 3800 images possessed a unique ID. We assigned arbitrary IDs to
61,225 images as D′300W and checked for duplicate IDs at D′T . We reviewed 92 internal
duplicate IDs U′ and directed them to an integrated dataset of VGGFace2 and MS1MV3.
We confirmed the absence of duplicate IDs and prepared the pseudo-labeled training
dataset labeled with 8,271,075 images and 93,094 IDs, along with pseudo-landmark and
pseudo-pose values. Figure 6 illustrates the constructed training dataset.
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Figure 6. Visualization of our pseudo-labeled training dataset. It contains 8.3 M images and 93 K face
IDs with pose and landmark label annotations.

3.2. Multitask Learning

In this section, we discuss how to train the three tasks using the integrated training
dataset discussed in the previous section. In particular, because the pseudo-labeled training
dataset used pseudo-labeling rather than exact labeling, outliers inevitably existed, and
we needed to find a learning technique to reduce these imperfections. The multitask
learning of different facial analysis tasks also requires coordination on the optimal face
regions required by each task. For example, for facial landmark detection, optimal learning
results are achieved when the face region includes a significant portion of the head, chin,
and neck. In contrast, face recognition can achieve good results when the background is
minimized and major facial features such as the eyes, nose, and mouth are correctly aligned
in a cropped face area. To address this performance trade-off based on the face area, we
considered the required bounding box area of the face to determine the maximum area that
could be used without degrading the performance of the task, and we actively used data
augmentation methods to cut out arbitrary face areas between the maximum and minimum
areas and use them for training.

3.2.1. Network Architecture

To show that our proposed learning method is feasible, we chose ResNet [58], a
network structure commonly used in face-recognition-based networks, as a baseline and
used the ResNet50 structure for our pretrained model to make the comparison as fair
as possible. Furthermore, we used the modified IResNet50 [66], which is used in recent
face-recognition-based methods such as ArcFace [4] and Partial FC [5], as the backbone of
the multitask learning network. IResNet has no critical differences from ResNet, but we
chose and modified the IResNet structure because it allowed us to appropriately modify the
details of the normalization and activation layers required by each task in face recognition,
facial landmark detection, and head pose estimation. While tuning the network architecture
for each task, we also considered maximizing the shared parameters to minimize the
inference time loss. To do this, we referenced several face analysis tasks [7,44,67,68] and
finally split the shared and independent parameters at a 3:1 ratio for each task in the
baseline network. The modified IResNet50 consists of four layers, where the first three
layers are shared layers and the last layer is divided into sublayers customized for each
task, as shown in Figure 7.
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Figure 7. Illustration of our multitask learning network based on the modified IResNet [66], consisting
of four layers. The first three layers serve as shared layers across all tasks, and the last layer is
duplicated as a sublayer for each task. The direction of all arrows indicates the order of application of
our network layers.

3.2.2. Multitask Loss Functions

To ensure balanced learning between tasks and avoid convergence to a specific task,
weights must be assigned to each task, as given in Equation (1):

Ltotal = LFR + λ1LFLD + λ2LHPE, (1)

where LFR, LFLD, and LHPE denote the loss functions of face recognition, facial landmark
detection, and head pose estimation, respectively. We set the base criterion at 1 for LFR
and applied the learning weights λ1 and λ2 to LFLD and LHPE, respectively. These weights
were adjusted based on the sum of the values represented by the final output of each task.
We fine-tuned each task’s contribution to the overall multitask framework by choosing
λ1 to be 100 and λ2 to be 10 to provide an appropriate learning ratio based on the final
convergence of each task’s loss function. We created our multitask loss function, described
in Equation (1), by computing the total loss value Ltotal by summing all weighted losses
from each task.

The loss function for the head pose estimation task is given in Equation (2):

LHPE =
1

NP

NP

∑
i=1
|Pi

PRED − Pi
GT |, (2)

where NP is the number of elements (=3), representing yaw, pitch, and roll, and P is the
pose vector including these three Euler angle values. It is calculated by computing the
mean absolute error between the predicted pose vector PPRED and the ground truth pose
vector PGT . The head pose tends to be less influenced by the face region than the other
two tasks and achieves convergence in the shortest time during training. Therefore, we
designed the losses for the remaining two tasks to complement each other by assigning
learning weights through the pose values to the other two tasks.

We prepared two major loss functions for the loss function of facial landmark detection
LFLD, as presented in Equation (3):

LFLD = Lwing + λPLMSE, (3)

where one is the Wing loss Lwing [49] and the other is the mean square error (MSE) loss
multiplied by λP. λP is a regularization term that controls the convergence between the
Wing loss and the MSE loss. The method for the determination of λP and its effects on the
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convergence of the losses are described in Equation (6) through (9). The Wing loss Lwing is
given by Equation (4):

Lwing =

{
w ln(1 + |x|/ϵ) if |x| < w
|x| − C otherwise

, (4)

where w denotes the non-negative value to set the range of the nonlinear part, ϵ limits the
curvature region, and C = w− w ln(1 + w/ϵ) is the smoothness between the linear and
nonlinear parts. L denotes the landmark vector and x denotes the L1 norm of the Euclidean
distance between the predicted landmark vector LPRED and the ground truth landmark
vector LGT .

Equation (3) also contains the loss of the mean square error, commonly used for
regression tasks, as given in Equation (5):

LMSE =
1

NL

NL

∑
i=1

(Li
PRED − Li

GT)
2 , (5)

where NL represents the total number of landmarks, Li
PRED is the i-th landmark coordinate

of the predicted landmark vector, and Li
GT is the i-th landmark coordinate of the ground

truth landmark vector. Our MSE loss, combined with λP in Equation (3), focuses more on
large errors to emphasize the importance of accurate landmark prediction in the presence
of pose variations, making it a counterpart to the Wing loss [49] in our facial landmark
detection task.

To compute λP, we need to derive the projected landmark vector LP from the mean
3D landmark L3D used to calculate the samples in 300W-LP [22] by using the ground truth
pose values of the pitch, yaw, and roll. The mean 3D landmark vector, denoted as L3D,
comprises 68 landmark points, each represented by three-dimensional Euclidean space
coordinate vectors x, y, and z. This vector is derived from the average landmark vector
of samples in the frontal view of 300W-LP with pitch, yaw, and roll values close to zero.
This mean 3D landmark is then multiplied by the projection matrix to locate the projected
landmark vector given by

L3D =
[
x y z

]T , (6)

Following the derivation of the mean 3D landmark, the rotated point L′3D was calcu-
lated. This point is a product of the rotation matrix R, taken from Rodrigues’ formula [69],
and the original 3D landmark, L3D, resulting in new coordinates x′, y′, and z′. The interac-
tion between these components is summarized in Equation (7):

L′3D = R · L3D =
[
x′ y′ z′

]T , (7)

where the projected 2D landmark vector LP = (xP, yP) can be obtained using perspective
projection to the rotated point L′3D in Equation (8):

LP =

[
xP
yP

]
=

[
fx 0 cx
0 fy cy

]
· L′3D, (8)

where fx, fy are the focal lengths; cx, cy are the principal points; and xP, yP are 2D projected
landmark coordinate vectors. These values can be determined based on the input shapes
or assigned arbitrarily. λP is calculated using Equation (9):

λP = mean(
LP
||LP||

− LPRED
||LPRED||

), (9)

where λP is the mean of the Euclidean distance between the norms of the predicted land-
mark vector LPRED, projected landmark vector LP, and visualization representation shown
in Figure 8. The primary intent behind employing λP is not necessarily to enhance the
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accuracy but to facilitate the initial learning of the landmarks. Given the possibility that the
pseudo-labeling of the ground truth is erroneous, λP also serves as a counterpart to address
potential inaccuracies, acting as a stabilizing component in our multitask loss function.

With regard to the loss function for face recognition, we acknowledge the effective-
ness of representing the embedding features in the angular domain through the angular
margin, which has been proven to enhance the performance significantly. Consequently,
we adopted the marginal cosine loss function method, conceptualized in approaches such
as CosFace [38], SphereFace [37], and ArcFace [4], due to the novel representation in the
angular domain.

Building on the foundational work on the large margin cosine loss [38], we focus on
the angular region specific to each ID. To achieve this, we apply the pose ratio as a margin,
allowing a greater emphasis on the angular region of each ID. As shown in Figure 9, the
allocation of feature regions according to the pose values of each ID tends to drift away from
the center of the feature region that the ID holds as the pose values increase. To address
this concern and assign feature regions unaffected by the pose, we set margins to allow
more challenging pose values closer to the center of their respective ID. LFR represents the
large margin cosine loss originally proposed in [38]. However, in this study, we adapted it
to incorporate the additional variance associated with pose values in the margin, as given
in Equation (10).

Figure 8. Illustration of the calculation of λP, depicting the computation of the mean Euclidean dis-
tance between the normalized projected landmark vector LP and the normalized predicted landmark
vector LPRED.

LFR = LLPMC(θ, y)

=
1

NF
∑

i
−log

es·cos(θi
yi
−mp)

es·cos(θi
yi−mp) + ∑j ̸=yi

es·cosθi
j
,

(10)

subject to
cos(θi

j) = WT
j , xi, (11)

where NF is the number of training samples, and xi is the i-th normalized feature vector
with a corresponding ground truth class of yi. Wj is the normalized weight vector of the
j-th class, and θj is the angle between Wj and xj, as conceptualized in CosFace [38]. A novel
margin, mp = m1 + m2 ∗ γP, is proposed, where γP is the average of the three poses—yaw,
pitch, and roll—summed and then divided by 180 to ensure a value ranging between 0
and 1.

When using our proposed large pose margin cosine loss, we assign more margin
values as a weighted indication that the class is correct as the head pose value of the input
face image increases. This enables the network to achieve tighter class clustering despite
the diverse variations in head pose. Incorporating pose-invariant feature regions provides
a means to effectively address and accommodate more difficult pose values, creating an
improved and reliable face recognition model.
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Figure 9. Visualization of loss functions of CosFace [38] and ours with t-sne results. We applied a
new margin mp to the loss of CosFace for pose-invariant learning.

4. Experimental Results

In this section, we compare the results against those of various SOTA methods for
each task and provide further understanding through an ablation study. We prepared three
different network backbones, namely ResNet50 for our pretrained network, IResNet50
for our single-task learning (STL), and IResNet50-Multi for our multitask learning (MTL)
model. As described in Section 3.2, the first three layers of each ResNet structure are
shared layers, with the remaining layer allocated to each respective task. Our pretrained
model, ResNet50 [58], used images of size 128 × 128, whereas our STL and MTL models
using IResNet50 [66] were trained with images of size 112 × 112. These networks used
λ1 = 100 and λ2 = 10 as parameters for the integrated loss Ltotal in Equation 1, with C = 10
and ϵ = 2 as hyperparameters for the Wing loss [49] in Equation (4). Finally, for LFR in
Equation (10), the hyperparameters s = 64, m1 = 0.3, and m2 = 0.7 were used, which
are generally used in face recognition tasks. We started learning with a learning rate of
0.01, multiplying by 0.9 at every epoch, and trained on 8.3 M data per epoch for 20 epochs.
The training was conducted on a computer with NVIDIA’s RTX A6000. Each epoch took
approximately 3 h when training in FP16 and 6 h in FP32, resulting in a total training time
of 60−120 h.

4.1. Face Recognition
4.1.1. Test Dataset

We prepared four datasets for the face recognition task, namely LFW [65], CFP-FP [70],
AgeDB [71], and IJB-C [31], which are commonly used for performance comparisons,
as shown in Table 2. LFW, CFP-FP, and AgeDB contain 13 K, 7 K, and 16.5 K images,
respectively, and evaluations were performed on 6 K, 7 K, and 6 K verification pairs,
respectively. These datasets were used to monitor the learning process of face recognition
during multitask training. IJB-C has 148.8 K images exhibiting large pose and age variations.
Although multiple testing methods, including verification and identification, are available
for this dataset, only 1:1 verification was performed in this study. With 15M pairs in this
test dataset’s protocol, it is suitable for evaluating the true acceptance rate (TAR) against
the false acceptance rate (FAR), and many face recognition methods conduct TAR@FAR
evaluations ranging from FAR = 1 × 10−1 to FAR = 1 × 10−6. This study conducted
evaluations across the entire protocol for IJB-C 1:1 verification. Furthermore, we focused
on our pose-invariant learning method using our loss function and categorized IJB-C cases
based on the pose values into soft, medium, and hard, as measured internally.

Table 2. Face recognition test datasets used for comparison of verification accuracy.

Dataset # of ID # of Images # of Verification Pairs

LFW [65] 5.7 K 13 K 6 K
CFP-FP [70] 500 7 K 7 K
AgeDB [71] 568 16.5 K 6 K
IJB-C [31] 3.5 K 148.8 K 15 M
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4.1.2. Experimental Results

Table 3 presents the accuracies obtained in the LFW [65], CFP-FP [70], and AgeDB [71]
tests. Our pretrained models achieved 99.33%, 92.38%, and 94.20%, respectively, using
VGGFace2 [28], and 99.85%, 98.70%, and 98.11%, respectively, using the MS1MV3 [29]
dataset. Furthermore, our STL model, trained using the pseudo-labeled training dataset
(PLTD) that we developed through pseudo-labeling and combining MS1MV3, VGGFace2,
and the 300W-LP dataset, achieved 99.72%, 97.73%, and 96.9%, respectively, in the face
recognition task. Our MTL model, incorporating the large pose margin cosine loss, achieved
99.70%, 97.26%, and 96.53%, respectively. Compared with the SOTA models, while most
comparative models use ResNet100 [58] or IResNet100 [66] as their backbones, our model
deploys ResNet50 [58] and IResNet50 [66]. Despite such differences, our best MTL model
exhibited competitive performance in IJB-C [31], achieving 94.17% at TAR@FAR = 1× 10−4.

Table 3. Evaluation results (%) for face recognition datasets LFW, CFP-FP, AgeDB, and IJB-C. Using
TAR@FAR = 1× 10−4 for IJB-C. Bold denotes the best performance, and higher values reflect better
results.

Method Dataset LFW CFP-FP AgeDB IJB-C FPS

SphereFace [37] CASIA 99.42 - - - -
CosFace [38] CASIA 99.73 - - - -

SphereFace (Re-Imp) MS1MV2 99.67 98.46 98.17 91.77 -
CosFace (Re-Imp) MS1MV2 99.78 98.26 98.17 95.56 -

CircleLoss [72] MS1M 99.73 96.02 - 93.95 -
CurricularFace [73] MS1MV2 99.80 98.37 98.32 96.10 329.8

ArcFace [4] MS1MV2 99.82 98.49 98.05 96.03 331.5
ArcFace [4] MS1MV3 99.83 99.03 98.17 96.5 331.5

MagFace [74] MS1MV2 99.83 98.46 98.17 95.97 254.3
Partial FC [5] MS1MV3 99.85 98.7 98.11 96.08 255.1
SwinFace [21] MS1MV2 99.87 98.60 98.15 96.73 70.3

Ours (pretrained)—ResNet50 VGGFace2 99.33 92.38 94.20 88.05 321.7
Ours (pretrained)—ResNet50 MS1MV3 99.85 98.70 98.11 96.08 321.7

Ours (STL)—IResNet50 PLTD 99.72 97.73 96.90 94.05 253.2
Ours (MTL)—IResNet50-Multi PLTD 99.70 97.26 96.53 94.17 221.2

Ours (MTL)—IResNet100-Multi PLTD 99.68 97.22 96.29 94.09 112.0

4.1.3. Discussion

In Section 3.1, we reassigned face IDs during dataset integration through pseudo-
labeling. Duplication may have been misjudged as an error in some instances; these are
referred to as outliers in our context. However, the verification performance summarized
in Table 3 is comparable to, if not synonymous with, that of other SOTA algorithms. It
is inferred that the test performance might have partially diminished because we did
not crop the faces tightly or align them during the training stage, as done by other face
recognition methods while using the dataset. Additionally, despite training with ResNet100,
similar to SOTA configurations, our performance metrics were identical to those achieved
with ResNet50.

These results indicate that filtering and learning from them is feasible even if the
pseudo-labeled dataset incorporates some outliers. It also exhibits the potential to effort-
lessly integrate various facial analysis tasks beyond the proposed methods, highlighting
the versatility and adaptability of our approach despite the anomalies and discrepancies
within the data. In addition, we compared the inference time with that of similar works
under identical conditions and conducted a frame-per-second (fps) comparison for the
ResNet50 and IResNet50 models used in the comparison works. Unlike the recent trend
of using arrays of multiple GPUs to train face recognition methods, our fps comparison
was conducted using only a single GPU. Despite performing multitask computations, our
proposed method performed well in terms of fps.
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Next, in Table 4, we present the experimental results regarding the large pose margin
cosine loss designed for our MTL and introduce a new IJB-C [31] test method for the
evaluation of pose invariance. The IJB-C 1:1 verification method stores the average of all
embedding features of the templates corresponding to each ID within the dataset. Then, it
conducts a TAR@FAR performance evaluation by comparing the templates over 15 million
pairs. Here, while we store the average of each template’s embedding feature in the gallery
similarly, for the probe, we detect the yaw, the z-axis rotation angle of each face in each
template, through our MTL model. Based on the yaw values, we name the images within
0◦ to 30◦ as soft cases, 30◦ to 60◦ as medium cases, and 60◦ to 90◦ as hard cases. We save the
average of the images corresponding to each case in each template as an embedding feature
to use as the probe. Ultimately, among 15,658,489 pairs in the IJB-C 1:1 verification method,
15,070,066 pairs have a soft case, 11,410,991 pairs have a medium case, and 5,926,383 pairs
have a hard case, with the possibility of duplicates owing to the presence of all three cases
within one template.

Table 4. Evaluation results (%) for our single-task learning (STL) and multitask learning (MTL)
models on the IJB-C test dataset across all, soft, medium, and hard cases, with thresholds ranging
from 1× 10−5 to 1× 10−1. Bold denotes better performance between our STL and MTL models.

Training Dataset
(PLTD)

IJB-C (TAR@FAR)

1 × 10−5 1 × 10−4 1 × 10−3 1 × 10−2 1 × 10−1

All Cases 90.73 94.05 96.28 97.89 98.95
Ours Soft Case 89.03 92.5 94.94 96.77 98.23
(STL) Medium Case 76.41 84.19 89.31 93.51 96.47

Hard Case 55.34 68.27 77.64 85.96 92.9

All Cases 89.86 94.17 96.6 97.95 98.95
Ours Soft Case 87.18 92.42 95.26 96.96 98.43

(MTL) Medium Case 77.21 86.03 91.27 94.57 96.99
Hard Case 56.64 71.48 81.49 88.62 94.23

In Table 4, for a fair comparison, only our single-task and multitask learning models
are used for the evaluation. Both applied the same learning rate and hyperparameters
and concluded the training at the same epoch for comparison. If we compare IJB-C [31]
TAR@FAR = 1× 10−5 and 1× 10−4, the STL model performs better in all cases; however,
our model performs better in medium and hard cases. Accordingly, we observed that the
large pose margin cosine loss that we applied could represent more accurate embedding
features for such large pose cases. However, compared to the soft cases, many aspects
still need improvement. We anticipate that we will attain performance comparable to
that of other SOTA methods by repeatedly refining our pseudo-labeled training dataset
throughout our entire framework.

4.2. Head Pose Estimation
4.2.1. Test Dataset

For head pose estimation, we used two test datasets. One was AFLW2000-3D [22],
which was relabeled from AFLW [55] using the 300W-LP method [22]. While the original
and re-annotated versions exist, we only used the original version for testing because the
re-annotated version has all faces tightly cropped. This dataset comprises 2000 images,
including Euler angles and 68 facial landmarks. The other dataset was BIWI [42], where the
evaluation was performed on 15,678 images. In addition, because the Euler angle variation
of 300W-LP used for pseudo-labeling was between −99◦ and 99◦, only test samples within
the Euler angle were used for AFLW2000-3D and BIWI.
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4.2.2. Experimental Results

The evaluation method used for the test employed the MAE of the Euler angle, as
in other methods, to conduct the evaluation. Table 5 presents the comparative results for
AFLW2000-3D [22]. Our multitask learning model achieved SOTA performance with an
AFLW2000-3D MAE score of 3.32. Furthermore, as observed from Table 6, it achieved
state-of-the-art results with an MAE score of 3.54.

Table 5. Mean absolute error (MAE) comparison on AFLW2000-3D [22] for head pose estimation.
Bold denotes the best performance, and lower values reflect better results.

Method Yaw Pitch Roll MAE FPS

FAN (12 points) [48] 6.36 12.3 8.71 9.12 -
HopeNet [75] 6.47 6.56 5.44 6.16 323.2
FSANet [44] 4.5 6.08 4.64 5.07 389.6

3DDFA-TPAMI [54] 4.33 5.98 4.30 4.87 -
3DDFA-V2 [53] 4.06 5.26 3.48 4.27 -

QuatNet [76] 3.97 5.62 3.92 4.15 -
TriNet [45] 4.2 5.77 4.04 3.97 311.3

RankPose [46] 2.99 4.75 3.25 3.66 291.7
SynergyNet [7] 3.42 4.09 2.55 3.35 128.1

Ours (Pretrained) 2.89 4.77 3.35 3.67 320.8
Ours (MTL) 2.80 4.27 2.9 3.32 221.2

Table 6. Mean absolute error (MAE) comparison on BIWI [42] for head pose estimation. Bold denotes
best performance.

Method Yaw Pitch Roll MAE FPS

3D-FAN [48] 8.53 7.48 7.63 7.89 -
HopeNet [75] 4.81 6.61 3.27 4.90 323.2
FSANet [44] 4.27 4.96 2.76 4.00 389.6
QuatNet [76] 4.01 5.49 2.94 4.15 -

TriNet [45] 4.11 4.76 3.05 3.97 311.3
RankPose [46] 3.59 4.77 2.76 3.71 291.7

Ours (pretrained) 4.34 5.18 2.61 4.04 320.8
Ours (MTL) 3.23 5.03 2.36 3.54 221.2

4.2.3. Discussion

We achieved SOTA performance on both AFLW2000-3D [22] and BIWI [42], the repre-
sentative test datasets for head pose estimation. This demonstrates that our pseudo-labeled
training dataset allowed our multitask learning framework to achieve positive performance
improvements in each task. By adding a large amount of face IDs and diverse background
noise to address the lack of diversity in existing datasets, as identified in Section 1, we
achieved higher accuracy for unseen images in the head pose estimation task.

4.3. Facial Landmark Detection
4.3.1. Test Dataset

We evaluated our model on the AFLW2000-3D [22] dataset, which was also used for
head pose estimation. We measured the performance of our model using the normalized
mean square error (NMSE):

NMSE =
1

NL

NL

∑
i=1

(Li
PRED − Li

GT)
2

d
, (12)

where NL denotes the number of landmarks in landmark vector L, Li
PRED is the i-th

landmark coordinate of the predicted landmark vector, Li
GT is the i-th landmark coordinate
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of the ground truth landmark vector, and d is the size of the facial bounding box for the
normalized mean square error.

4.3.2. Experimental Results

Table 7 shows a comparison of the performance of various methods and the proposed
model in terms of the NMSE. Evaluations were carried out in three different pose ranges
based on the yaw rotation angle of the face: from 0◦ to 30◦, from 30◦ to 60◦, and from 60◦

to 90◦. The mean values were calculated by averaging the results within each pose range.
Our MTL model demonstrated NMSE scores of 2.62, 3.45, and 4.51 in the respective pose
variations. Although our model did not achieve SOTA performance in all variations, it
showed superior performance within the lower range of pose variations from 0◦ to 30◦,
exceeding the results of SynergyNet [7].

Table 7. Normalized mean square error (NMSE) percentage comparison on AFLW2000-3D [22] for
3D facial landmark detection across three yaw angle ranges, 0◦ to 30◦, 30◦ to 60◦, 60◦ to 90◦, and the
overall mean error. Bold denotes the best performance, and lower values reflect better results.

Method 0◦ ∼ 30◦ 30◦ ∼ 60◦ 60◦ ∼ 90◦ Mean FPS

3DSTN [77] 3.15 4.33 5.98 4.49 -
3D-FAN [48] 3.16 3.53 4.6 3.76 84.3
PRNet [78] 2.75 3.51 4.61 3.62 261.3

3DDFA-PAMI [54] 2.84 3.57 4.96 3.79 -
3DDFA-v2 [53] 2.63 3.42 4.48 3.51 -
SynergyNet [7] 2.65 3.30 4.27 3.41 128.1

Ours (pretrained) 3.08 3.74 4.53 3.78 322.5
Ours (MTL) 2.62 3.45 4.51 3.53 221.2

4.3.3. Discussion

Based on the ground truth, our model achieved its best performance in the range
of yaw values from 0◦ to 30◦. Unfortunately, it did not perform as well in other angle
ranges. This result is probably due to the characteristics of the pseudo-labeled training
dataset that we created. As discussed previously, pseudo-labeling allows outliers to be
included in the dataset, and these outliers are likely to be included as the pose variation of
the face images used for pseudo-labeling increases. The pretrained model that we used for
pseudo-labeling in Section 3.1 was trained using 300W-LP [22], which has a higher degree
of distortion in images with a large pose variation and a nonuniform definition of invisible
landmark points, and we suspect that these features were reflected in the pseudo-labeling.
However, despite these challenges, our MTL model achieved near-SOTA performance,
as shown in Table 7. This notable result highlights the robustness and adaptability of
our approach in handling multiple tasks and varying conditions effectively, especially
considering that the model achieves this while sharing the network parameters with other
tasks for multitask learning.

4.4. Ablation Study

In this section, we analyze through additional experiments whether multitask learning
affects the performance improvement, the influence of the hyperparameters λ1 and λ2 of
the loss function designed in Section 3.2, and the influence of the regularization term λP.

4.4.1. Influence of Multitask Learning

To demonstrate the effectiveness and stability of our proposed multitask learning
framework through pseudo-labeling, we conducted experiments, as shown in Table 8.
Table 8 shows that multitask learning configurations can outperform single-task learning
models. All models were trained with a pseudo-labeled training dataset (PLTD). While the
STL models did not perform optimally due to mislabeled outliers in the training dataset, the
MTL models were trained with an optimal network parameter distribution for each task.
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Table 8. Comparison of the performance of the baseline model in single-task learning (STL) and
multitask learning (MTL) configurations across a variety of tasks, including face recognition (FR),
head pose estimation (HPE), and facial landmark detection (FLD).

Method FR HPE FLD IJB-C AFLW2000-3D (MSE) AFLW2000-3D (MAE) # Params FPS

STL ✓ - - 94.05 - - 24.6M 321.7
STL - ✓ - - 3.67 - 23.5M 320.9
STL - - ✓ - - 3.78 23.8M 322.5
MTL ✓ ✓ - 94.16 3.54 - 56.8M 243.8
MTL ✓ - ✓ 94.17 - 3.34 60.1M 237.9
MTL - ✓ ✓ - 3.52 3.33 47.3M 252.7
MTL ✓ ✓ ✓ 94.17 3.53 3.32 73.3M 221.2

4.4.2. Influence of Regularization Term λP

The λP described in Equation (3) is a regularization term that we adopted because the
proportion of large pose variation data in the large datasets was relatively small. If we did
not adopt λP, we would have been required to learn by excluding the difficult data in the
large datasets, by the principle of convergence to the mean in deep learning, which affects
the convergence of head pose estimation, as shown in Table 9. A λP value of 0 indicates
that no regularization strength is used, a λP value of 1 indicates fixed strength for the facial
landmark detection loss function, and a λP value of α indicates regularization strength that
is dynamically computed during training iterations.

Table 9. Experimental results when changing the value of λP in Equation (3) demonstrate the impact
of the regularization intensity on the model performance across multiple benchmarks.

Method IJB-C AFLW2000-3D (NMSE) AFLW2000-3d (MAE) BIWI (MAE)

LFLD(λP = 0) 94.16 3.55 3.58 3.70
LFLD(λP = 1) 94.17 3.56 3.67 3.81
LFLD(λP = α) 94.17 3.53 3.32 3.54

4.4.3. Influence of Hyperparameters λ1 and λ2

In multitask learning, adjusting the learning weights for the loss function designed for
each task is essential for the optimization process. In this paper, we take the loss function for
face recognition as the baseline in the unified loss function designed in Equation (1) and set
the hyperparameter coefficients of λ1 and λ2 to the other tasks, facial landmark detection
and head pose estimation, respectively. Table 10 shows the results of the experiments
conducted to find the optimal hyperparameters. In detail, the loss convergence ratio is
the ratio of LFR, λ1LFLD, and λ2LFLD in Equation (1) based on the loss value of each task
when the learning converges to the maximum. The results show that the convergence
ratio should be distributed to a certain extent to converge to more optimal multitask
learning. Learning by increasing the hyperparameter coefficients for the remaining two
tasks is more effective in our proposed multitask learning framework than learning by
expanding the hyperparameter coefficients for face recognition, which constitutes most of
the pseudo-labeled training dataset.
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Table 10. Experimental results showing the impact of multitask learning hyperparameters λ1 and
λ2 on the test accuracy with various benchmarks. These hyperparameters are used in Equation (1)
to balance the contributions of each task in the overall multitask learning framework. To check the
change caused by λ1 and λ2, we obtained the loss convergence ratio based on the convergence value
of the loss function of each task.

λ1 λ2 IJB-C (1 × 10−4) AFLW2000-3D (NMSE) AFLW2000-3D (MAE) Loss Convergence Ratio

0.1 0.1 94.22 5.12 4.14 0.98:0.00:0.02
0.1 1 94.21 4.77 3.42 0.86:0.00:0.14
0.1 10 94.22 4.56 3.35 0.37:0.00:0.63
0.1 100 94.23 4.98 3.35 0.08:0.00:0.92
1 0.1 94.20 4.61 3.98 0.96:0.01:0.03
1 1 94.19 4.21 3.41 0.85:0.01:0.14
1 10 94.12 4.37 3.39 0.37:0.01:0.62
1 100 94.18 4.27 3.38 0.08:0.01:0.91
10 0.1 94.88 3.99 3.94 0.94:0.05:0.02
10 1 94.19 3.65 3.54 0.82:0.04:0.14
10 10 94.17 3.61 3.33 0.35:0.02:0.63
10 100 94.17 3.60 3.33 0.06:0.00:0.93

100 0.1 94.18 3.74 3.99 0.67:0.32:0.01
100 1 94.19 3.55 3.59 0.61:0.29:0.10
100 10 94.17 3.53 3.32 0.31:0.15:0.54
100 100 94.17 3.54 3.32 0.04:0.03:0.94

4.5. Visualization

In this section, we compare our model with SynergyNet [7], a SOTA method that
implements multitask learning for facial landmark detection and head pose estimation to
produce visualization results. The results of AFLW2000-3D [22] are visualized in Figure 10.
Both models could identify the landmarks and Euler angles with a high degree of accuracy;
however, unsuccessful detection occurred in some cases with a large pose variation.

Figure 10. Visualization of ground truth, SynergyNet [7], and our model for HPE and FLD on
AFLW2000-3D [22].

Figure 11 shows the performance of our model and SynergyNet [7] when applied
to different ROIs of the face in images from IJB-C [31]. It demonstrates that our trained
model can accurately detect landmarks in different face ROIs by learning diverse face ID
information and background noises in the training dataset through pseudo-labeling. In
contrast, SynergyNet [7] requires the precise detection of the face area through a detector
owing to its insufficient training in various situations. The results in Figure 11 suggest
that our model can be used with various face detectors. Our training framework provides
more reliable performance for face recognition, head pose estimation, and facial landmark
detection, making it more suitable for practical applications.
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Figure 11. Visualized results of the FLD task between SynergyNet [7] and our model under various
face ROIs. The original SynergyNet uses its face detector before facial landmark detection; we
compared our model with SynergyNet with and without the detector.

5. Conclusions

In this study, we addressed the problem of tasks with insufficient facial analysis
performing well on test datasets but performing poorly when applied in the real world. To
solve this problem, we used a dataset of face recognition tasks with a large number of face
IDs and performed data enlargement through pseudo-labeling to create a multitask training
dataset. We constructed a multitask learning method and achieved SOTA or near-SOTA
performance. By using multitask learning, we configured a pose-guided loss function
to achieve pose-invariant performance in face recognition and accurate learning in facial
landmark detection, even when using a pseudo-labeled dataset containing outliers. We
believe that our framework can be applied to various facial analyses.
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