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Abstract: Stress recognition, particularly using machine learning (ML) with physiological data such
as heart rate variability (HRV), holds promise for mental health interventions. However, limited
datasets in affective computing and healthcare research can lead to inaccurate conclusions regarding
the ML model performance. This study employed supervised learning algorithms to classify stress
and relaxation states using HRV measures. To account for limitations associated with small datasets,
robust strategies were implemented based on methodological recommendations for ML with a limited
dataset, including data segmentation, feature selection, and model evaluation. Our findings highlight
that the random forest model achieved the best performance in distinguishing stress from non-stress
states. Notably, it showed higher performance in identifying stress from relaxation (F1-score: 86.3%)
compared to neutral states (F1-score: 65.8%). Additionally, the model demonstrated generalizability
when tested on independent secondary datasets, showcasing its ability to distinguish between stress
and relaxation states. While our performance metrics might be lower than some previous studies, this
likely reflects our focus on robust methodologies to enhance the generalizability and interpretability
of ML models, which are crucial for real-world applications with limited datasets.

Keywords: heart rate variability; stress recognition; affective computing; machine learning

1. Introduction

Affect recognition constitutes a critical element in discerning internal bodily feelings
(e.g., fear, happiness, and stress) that influence mental health and well-being [1]. Tradi-
tionally, mental health has been evaluated using standardized self-report instruments with
established clinical validity, such as the Patient Health Questionnaire (PHQ-9) for depres-
sion assessment [2]. However, these questionnaires are susceptible to subjective bias, as
respondents may provide inaccurate or imprecise answers [3]. Fortunately, questionnaires
can be supported by physiological data to provide a reliable approach for determining an
individual’s mental state. The concept of inferring mental states from physiological data is
not new, dating back to the 1920s with the invention of the lie detector, which functioned by
sensing changes in blood pressure, breathing, and heart rate [4]. In fact, advancements in
wearable technology have facilitated the development of more advanced affect recognition
and health monitoring systems. This allows for the continuous monitoring of physiological
data, offering the potential to identify early warning signs for mental disorders [5].

Given the complexity of psychophysiological responses, myriad studies have ex-
amined the development of affect detection and recognition prototypes using machine
learning (ML). These techniques encompass supervised and unsupervised learning ap-
proaches. ML offers a powerful framework for solving classification and recognition
problems, demonstrating remarkable success in diverse fields, particularly clinical applica-
tions [6,7]. Pioneering research by Picard et al. [1] shifted the focus from facial and verbal
expressions to physiological responses for affect recognition. Using data from a single
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participant over several weeks, this study achieved a classification performance of 81%
for eight emotions based on breathing, heart activity, muscle activity, and skin conduc-
tance. This pivotal work paved the way for subsequent studies employing ML algorithms
with multiparticipant data to recognize various affective states, including emotions [8–10],
fear [11,12], and stress [13,14].

Recognizing different stress levels holds significant promise for developing early inter-
vention strategies, stress management techniques, and preventative measures to promote
mental health and well-being [15]. A growing body of research explores stress detection
through the development of predictive models using ML algorithms based on physiologi-
cal data [13–19]. Among various physiological measures, heart rate variability (HRV) has
emerged as a critical biomarker for monitoring stress responses. HRV reflects the activity of
the autonomic nervous system, providing valuable insights into stress regulation [20–22].

Affective computing and healthcare research often rely on limited datasets, necessitat-
ing caution when developing ML algorithms to prevent biased conclusions about model
performance. Schmidt et al. [23] reviewed affect recognition using ML and found that
most studies (43 out of 46) used data from fewer than 40 participants, with only one ex-
ceeding 100. Furthermore, the reported accuracy rates varied widely (40% to 97%), raising
concerns in areas like biomedical research [24] and psychiatric studies [25]. Significant
variations in accuracy due to limited data could potentially indicate overestimated perfor-
mance or methodological shortcomings. These shortcomings manifest as issues with data
segmentation, inappropriate feature selection, and an inadequate validation strategy.

The present study employed supervised learning algorithms for stress and relaxation
classification using HRV measures. We accounted for limitations associated with small
datasets, a prevalent challenge when implementing and interpreting ML algorithms as
documented in the literature. Accordingly, our study design incorporates best practices for
reliable ML algorithms with limited datasets [24–28].

2. Background
2.1. Related Work

ML techniques for stress detection have garnered significant interest in affective
computing and healthcare [13,18,29,30]. Recent advancements in technology, especially
wearable devices, have facilitated the non-invasive collection of physiological data. In a
comprehensive review of affect recognition, Schmidt et al. [23] examined the detection of
several affective states, including emotion, excitement, frustration, happiness, relaxation,
and stress. Most of the studies (34 out of 46) focused on identifying stress levels (16 studies)
and emotional states (18 studies). The results highlight the use of various physiological
signals in the reviewed studies: 40 used cardiac activity, 35 used skin conductivity, 15
used miscellaneous signals (e.g., accelerometer data, muscle activity, respiration, and
temperature), and seven used brain activity.

Building upon the seminal work of Healey and Picard [13], which demonstrated the
feasibility of real-world driver stress detection using physiological data, researchers have
increasingly explored ML algorithms for this purpose. The publicly available dataset
from this foundational study has been instrumental in advancing the field, providing a
valuable resource for algorithm development and validation. In parallel, researchers have
introduced new datasets focused on monitoring physiological responses during cognitive
stress tasks [31–34], thereby enriching the ML applications for affect recognition. For
instance, Dalmeida and Masala [18] leveraged features extracted from HRV within one of
these public datasets to train and evaluate various supervised ML algorithms for stress
detection. Notably, their work explored the generalizability of these models by testing
them on new HRV data collected via wearable devices. Similarly, Benchekroun et al.
[35] conducted a cross-dataset analysis to assess the generalizability of HRV-based stress
detection models. However, these studies had limitations, such as the selection of features
irrelevant to the context of the investigated problem and the use of overlapping window
segmentation to increase the dataset size. Focusing on HRV analysis, three standardized
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analytical approaches have been articulated by the Task Force of the European Society of
Cardiology and the North American Society of Pacing and Electrophysiology [21]: time
domain, frequency domain, and non-linear methods as summarized in Table 1 [36].

Table 1. Heart rate variability features.

Measure Unit Description

Time Domain
MeanRR ms Mean of all RR intervals

RMSSD ms Root mean square of successive differences between
adjacent RR intervals

SDNN ms Standard deviation of RR intervals

NN50 – Number of differences that differ by 50 ms between
adjacent RR intervals

pNN50 % Percentage of differences that differ by 50 ms between
adjacent RR intervals

Frequency Domain
ULF power ms2 Power of the ultra-low frequency band: (<0.003 Hz)
VLF power ms2 Power of the very low-frequency band: (0.003–0.04 Hz)
LF power ms2 Power of the low-frequency band: (0.04–0.15 Hz)
HF power ms2 Power of the high-frequency band: (0.15–0.4 Hz)
LF/HF – Ratio of LF to HF power
Total power ms2 Sum of the energy in the ULF, VLF, LF, and HF bands

Non-Linear Methods

SD1 ms Poincaré plot standard deviation perpendicular to the line
of identity

SD2 ms Poincaré plot standard deviation along the line of identity

Note. ms: millisecond; ms2: milliseconds squared.

2.2. Methodological Limitations

The recent surge in affect recognition research using physiological data and ML algo-
rithms has highlighted several methodological challenges. These challenges encompass
issues with data segmentation, feature engineering, and model evaluation. Inadequate
attention to these aspects can lead to overfitting, overly optimistic performance estimates,
and issues with generalizability, thereby hindering both the deployment and interpretation
of the developed ML models [24–28]. Additionally, researchers emphasize the need for
explainable ML methods, particularly in healthcare applications, to improve user under-
standing of the models’ predictions and decision-making processes [37–40].

2.2.1. Data Segmentation

A critical issue arises when researchers seek to artificially increase dataset size by
dividing each participant’s physiological data into multiple segments [18,41,42]. This
practice violates the fundamental statistical assumption that observations must be inde-
pendent since these resulting segments are interdependent due to being derived from
the same participant. This can lead to data leakage, where dependent observations from
the same participant are present in both the training and testing sets [24]. Furthermore,
the use of overlapping window segmentation presents another potential source of depen-
dency [31,43,44]. With this approach, observations not only come from the same participant
but the physiological data themselves are partially shared across segments. Figure 1 illus-
trates an example of a 150 s HRV signal analyzed with a 50 s window size. This results
in four segments with an overlapping approach (Figure 1a) and three segments with a
non-overlapping approach (Figure 1b). For instance, a study investigating the detection of
panic attack severity used overlapping windows on HRV data from 10 participants [45].
This approach generated a large number of observations (up to 1700 samples), substan-
tially increasing the size of training and testing sets. A different study used overlapping
windows with a 0.25 s shift on physiological data from 15 participants [31]. To address
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potential data leakage concerns arising from the segmentation process, they employed a
subject-independent validation strategy.

S1 S2 S3 S4

(a) Overlapping segmentation.

S1 S2 S3

(b) Non-overlapping segmentation.

Figure 1. Physiological data segmentation approaches with a 50-second window size.

In a fear classification study, Petrescu et al. [46] used overlapping and non-overlapping
segmentation techniques on a dataset consisting of 32 participants. They reported equivocal
results regarding the ML model performance for each segmentation approach. However, it
is not clear to what extent the classification accuracy is impacted by the use of an overlap-
ping technique vs. a non-overlapping one [47]. In fact, Dehghani et al. [48] demonstrated
that improved model performance is associated with the use of dependent observations
and the employment of an inadequate validation strategy. Data leakage can lead to overly
optimistic estimates of a model’s generalizability because dependent observations are pre-
sented in both training and testing sets (refer to theoretical and mathematical derivations
of performance overestimation [49,50]). One study addressed data leakage in mental stress
classification by employing two key strategies to ensure data independence [17]. First,
they avoided the use of any segmentation methods on the physiological data. Second, the
study implemented a subject-independent validation strategy. This involved training and
testing the ML models on separate groups of participants drawn from the same experiment.
However, the generalizability of these findings remains limited due to the relatively small
sample size.

2.2.2. Feature Engineering

An additional issue relates to the number and choice of features employed in the ML
classifiers. Inappropriate feature selection can lead to overfitting, where the model performs
well on the training data but fails to generalize to unseen data. The existing literature
highlights two suboptimal approaches to feature selection: (1) including all collected
physiological measures, regardless of their relevance or dataset size, or (2) focusing solely
on a limited set of features, potentially excluding relevant ones within the specific context
of the investigated problem (e.g., behavioral and clinical; [31,51,52]).

Feature selection is a critical step in building robust ML models for healthcare ap-
plications. Including all collected physiological measures, regardless of relevance, can
increase the dimensionality of the input space, thus increasing model complexity. This,
as highlighted by Vabalas et al. [27], can lead to overfitting, especially in small datasets.
Overfitting occurs when models memorize training data rather than learning generalizable
patterns, resulting in poor performance on unseen data despite high training accuracy [53].
Consequently, a large number of features, especially redundant ones, can increase model
complexity and hinder accurate ML performance evaluation [54]. Conversely, relying solely
on statistical correlations for feature selection or mathematical-based algorithms for feature
elimination does not provide a clear physiological rationale. While features with strong
statistical associations might be identified, their clinical relevance remains questionable if
they lack a sound physiological foundation. This can hinder model interpretability, making
it difficult to understand the predictive mechanisms. In one example, non-linear HRV
measures were selected to classify stress levels based on a statistical correlation analysis
between the features and the target, but the physiological rationale behind the feature se-
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lection was not discussed [55]. Additionally, in another study, an analysis of 30 s segments
was performed to obtain VLF power from the HRV frequency domain as an ML feature [18].
However, a segment with a minimum length of 5 min was found to be necessary for the
robust computation of frequency components in the VLF band [36].

2.2.3. Model Selection and Evaluation

A robust evaluation strategy is important in ensuring the generalizability of ML
models, especially when dealing with small sample sizes. Several validation strategies are
commonly used in the implementation of supervised ML algorithms, such as the hold-out
method and cross-validation (CV) techniques [49]. The latter is more often employed in the
context of limited datasets because of its ability to utilize the entire dataset in model fitting
and evaluation.

K-fold is a prominent CV technique that randomly splits the dataset into K subsets
and then trains the model iteratively on the K-1 subsets while keeping the remaining
subset for validation [49]. Subsequently, overall performance is calculated as the average
accuracy rate resulting from all K trials. However, random splitting with dependent
observations poses a data leakage problem, as the training and validation sets may include
data segments from the same participant. As briefly discussed in the previous sections, data
leakage leads to biased and overly optimistic generalization performance estimates. Recent
research has suggested splitting the data per participant using a subject-independent
CV, such as the leave-one-out CV, to limit the effect of the dependent observations on
the development and evaluation of the ML models [48,56]. The leave-one-out CV is an
example of the K-fold method, where K is the total number of observations or participants.
In a review of affect recognition, 13 studies (out of 46) used the K-fold CV, while the
remaining studies incorporated variations of the leave-one-out CV [23]. This indicates that
the leave-one-out CV is the preferred approach to mitigate the violation of the independence
assumption within the context of affective computing applications. However, there are
two key limitations of leave-one-out CV compared to k-fold CV. First, leave-one-out CV
can be computationally expensive for large datasets, as it requires training the model n
times (where n is the number of observations). Second, it is prone to high variance in
performance estimates, particularly when outliers are present in the dataset.

Hyperparameter selection is commonly performed prior to model evaluation, although
the use of a standard CV procedure with both processes can cause model selection bias. In
particular, the use of the same validation set in each process can introduce overly optimistic
estimates of the expected generalization performance [50]. Consequently, the nested CV
technique can be used to manage both model evaluation and hyperparameter selection as
integral processes, albeit with different validation sets.

2.3. Recommendations

This section provides practical recommendations to mitigate the risks associated with
data leakage, overfitting, and performance overestimation in small datasets [24–27]:

Feature selection —Features should be rationally selected based on the clinical or physio-
logical motivation of the investigated ML problem to facilitate the contextual interpre-
tation of the model’s performance [57]. After determining the most relevant features,
several techniques can be used for feature selection, such as correlational analysis or
feature elimination methods. To minimize the effect of performance overestimation
and reduce computational costs, the selected features should be limited to a reason-
able feature-to-sample ratio [27]. A common practice in biomedical research using
small datasets is to choose one feature for every 10 independent observations [24].

Validation strategy —Independence among observations should be considered when deal-
ing with data generated from the same participant or obtained from data segmentation
to avoid data leakage during model selection, particularly when splitting the dataset
into training and validation/testing sets. Hence, an appropriate validation strategy
should be implemented. The leave-one-out CV technique is notably effective for
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small datasets with dependent observations, such as those collected from the same
participants across different conditions [24]. Another variant, leave-one-group-out
(LOGO) CV, is also beneficial, particularly when dealing with data segmentation
where observations are grouped by the participant’s identification key (ID). Moreover,
overfitting, especially with small datasets, may arise during model selection from us-
ing the same validation/testing set in the hyperparameter selection and performance
evaluation processes. Therefore, the nested CV approach is proposed as a mitigation
strategy for selection bias and performance overestimation [25,27,50].

To address the methodological limitations identified earlier, this study adopted several
best practices. Firstly, a non-overlapping segmentation approach was utilized instead of an
overlapping one to minimize the impact of dependent observations. Additionally, only the
most relevant features were selected within the context of stress recognition. Furthermore,
the LOGO validation strategy was employed to reduce dependency and data leakage
resulting from using multiple observations of the same participant. Lastly, a nested CV
approach was implemented to mitigate issues related to using the same validation sets for
both hyperparameter selection and performance evaluation.

3. Materials and Methods
3.1. Dataset

This study employed three datasets. The primary dataset, collected previously by the
researchers, served as the training set. Two additional secondary datasets were combined
and used as the testing set.

3.1.1. Primary Dataset

In preparation for training ML algorithms, we utilized HRV data from our prior study
involving 38 participants undergoing baseline, cognitive stress, and paced breathing. Specif-
ically, participants completed the N-back task [58], a cognitive stress test, both before and
after the paced breathing exercise. The duration of HRV recordings for each condition was
5 min (300 s), obtained using a photoplethysmography (PPG)-based sensor. The experiment
design, including details of the tasks and procedures, is comprehensively described in the
published paper [59]. To maintain a consistent focused protocol, data from the second
stress task for all participants (post-paced breathing) and the control group’s relaxed state
(no paced breathing; 19 participants) were excluded. Each recording was segmented into
non-overlapping 60 s windows (see Figure 2), resulting in 380 observations labeled as
neutral (baseline—152), stressed (cognitive task—152), or relaxed (paced breathing—76).

3.1.2. Secondary Datasets

While several publicly available datasets offered electrocardiogram (ECG) and HRV
data, the selection process prioritized datasets aligning with the study’s requirements.
Following a review of the datasets concerning the experiment condition, number of partici-
pants, signal length, signal quality, and study protocol, two datasets were selected for the
generalizability assessment:

1. WESAD
Wearable Stress and Affect Detection Dataset (WESAD) is a publicly available multi-
modal dataset consisting of physiological data recordings, including body temperature
and three-axis acceleration, ECG, electrodermal activity, electromyograms, and respi-
ration recorded during baseline, stress, meditation, and amusement conditions using
chest belt and wrist sensors. Data were collected from 15 participants in a controlled
laboratory experiment, and physiological signals were sampled at 700 Hz [31]. In
addition, self-report surveys were administered to gauge stress and emotional states.
This dataset has been widely used in relevant research studies [10,60–62]. All condi-
tions except for the data collected during the amusement phase were employed in the
present study.
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2. SWELL
Smart Reasoning Systems for Well-being at Home and at Work (SWELL) is a publicly
available dataset collected by researchers at the Institute for Computing and Informa-
tion Sciences at Radboud University [32]. It consists of computer recordings of body
posture, ECG signals, facial expressions, and skin conductance from 25 participants
performing two work-related tasks under two types of stress induction (i.e., receiving
unexpected email interruptions and pressure to complete their work within a certain
timeframe). ECG signals were sampled at 2048 Hz. In addition, the researchers
collected subjective information regarding the participants’ emotions, mental effort,
perceived stress, and task load. This dataset has been widely used in relevant research
studies [10,63–65].

All HRV signals were checked for signal quality, resulting in the exclusion of one
HRV recording in the relaxed state from the WESAD dataset because the number of signal
samples was insufficient for HRV analysis. Moreover, the data labeled stress and relaxed
for eight participants were excluded from the WESAD dataset because they performed
the paced breathing exercise before the stress task. As the present study was focused on
three states (i.e., neutral, stress, and relax), the HRV data collected during the amusement
condition from the WESAD dataset were also excluded. Therefore, the total number of
observations was 120: 38 samples were labeled neutral, 53 were labeled stress, and 29 were
labeled relax.

3.2. Data Preprocessing

Due to the physiological differences among participants across the three datasets,
all recordings were normalized based on the average HRV of each participant’s baseline
measurement as shown in Equation (1) [66,67]. In this context, RR represents the HRV
signal, where each RR(i) corresponds to the time interval between successive R peaks
of the QRS complexes of the ECG waveform at time point i. Additionally, RR(i)baseline
represents the HRV signal collected during the baseline phase. N denotes the total number
of time points in the HRV signal:

RR(i) =
RR(i)

mean(RR(i)baseline)
, i = 1, 2, · · · , N (1)

Moreover, a non-overlapping segmentation method was applied to the training dataset,
dividing the 300 s HRV recording into shorter segments using a window size of 60 s and
a 10 s gap to minimize dependency among segments (see Figure 2). This process yielded
four segments per condition per participant. To maintain consistency between the training
and testing datasets, the ECG signals from the WESAD (700 Hz) and SWELL (2048 Hz)
datasets were downsampled to 500 Hz. Subsequently, peaks were detected to extract the
RR intervals using the NeuroKit2 Python package [68]. Thereafter, a 300 s segment was
extracted from the center of each HRV recording. The HRV signals were then normalized
based on Equation (1), filtered using the adaptive threshold detection and moving average
correction algorithms [69], and analyzed using the Systole Python packages [70].

S1

60s

300s

S4

60s

S2

60s

S3

60s

10s 10s 10s 10s10s

Figure 2. Non-overlapping segmentation of a 300 s HRV signal into 4 segments, using a window size
of 60 s and a gap of 10 s between segments.
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3.3. Classification Approach

Six common supervised ML algorithms were selected: logistic regression (LR), decision
trees (DT), k-nearest neighbors (KNN), Naive Bayes (NB), random forest (RF), and support
vector machine (SVM). The nested CV method was used to perform hyperparameter
selection and model evaluation as integral processes using the LOGO CV, which is a
variation of the leave-one-out method [71]. The LOGO CV method was used to group
segments resulting from the non-overlapping segmentation approach for each participant
based on their ID, with each participant having data from three conditions.

For the primary dataset, the HRV data of each participant were assigned three labels
based on the condition of data acquisition: (1) neutral (baseline), (2) stress (cognitive stress
task), and (3) lrelax (paced breathing exercise). In a preliminary analysis of a three-class
ML classifier using DT, the algorithm showed high accuracy rates in identifying the neutral
(90%) and relax states (97%) but failed to distinguish the stress from neutral states (34%).
This confusion between the neutral and stress states could be due to the moderate effect
of the mental stressor on HRV measures as discussed in [59]. Therefore, two independent
binary classifiers were implemented to differentiate the stress state from each non-stress
state: (1) stress vs. neutral, and (2) stress vs. relax. To assess generalizability, the ML model
that showed the best performance resulting from the nested CV method was evaluated
using two combined secondary datasets (i.e., WESAD and SWELL). The ML algorithms
were implemented using the Scikit-Learn Python package [72]. An illustration of the overall
process, including data preprocessing, feature selection, model selection and evaluation is
shown in Appendix A Figure A1.

3.4. Feature Selection

This study sought to distinguish between stress and non-stress states (i.e., neutral
and relax). Hence, different features were selected based on the purpose of the developed
ML binary classifier, albeit using a similar feature selection strategy. According to Vabalas
et al. [27], the feature-to-sample ratio in limited datasets should be reasonably low. A
common practice in biomedical research using small datasets is to select one feature for
every 10 independent observations [24]. Thus, a maximum number of three features was
selected, as the primary dataset consisted of 38 participants.

Following significant ANOVA results indicating changes in MeanRR, post hoc analysis
revealed significant changes from neutral to stress (t(105) = −6.84, p < 0.001) and from
stress to paced breathing (t(105) = 4.10, p < 0.001). Therefore, MeanRR was chosen as the
primary feature for implementing both ML binary classifiers, as it reflected the average HRV
variation and could be reliably assessed in 60 s HRV segments [73]. SDNN was selected as
the secondary feature for distinguishing between stress and relaxation due to its significant
statistical variation in both states, particularly in relation to paced breathing. SDNN could
also be calculated from the 60 s segment [73]. To determine the significance of the remaining
features, relative feature importance was calculated using an RF implemented via Scikit-
Learn, which computed a weighted average score based on the degree to which the feature
reduced impurity in the tree node. Based on the importance scores and their association
with cardiac vagal tone [36], RMSSD and HF power were chosen for the stress vs. neutral
classification. For stress vs. relax classification, SD2 was chosen due to its association with
the low-frequency power and paced-breathing activities [36]. A summary of the importance
scores of the selected features is outlined in Table 2. The Spearman’s rank-order correlation
revealed non-significant correlation coefficients among the selected features (p > 0.05). As
the features had different scales, a standardization approach was applied to numerical
features by removing the mean value and dividing it by the standard deviation, resulting
in a distribution with unit variance.
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Table 2. Feature importance scores.

Feature Score

Stress vs. Neutral
MeanRR 37.4%
RMSSD 31.3%
HF power 31.3%
Stress vs. Relax
MeanRR 31.3%
SDNN 34.8%
SD2 33.9%

3.5. Nested Cross-Validation

Model selection using the CV method is divided into two main steps: hyperparameter
selection and performance evaluation. These steps are often assessed using the same valida-
tion/test set, potentially leading to biased performance estimates. Nested CV addresses this
by incorporating two nested CV loops. The inner loop focuses on hyperparameter selection,
while the outer loop is used for the performance evaluation. A specific CV method can be
selected for each loop from a pool of available methods (e.g., K-fold, leave-one-out). As
previously discussed, the leave-one-out method is recommended for limited datasets and
dependent observations. In this study, the LOGO method was adopted to group associated
segments based on participant ID [71]. LOGO is similar to leave-one-out, but it allows for
the assignment of multiple observations to a single group. The total number of splits was
equal to the total number of participants in the primary dataset (38), which corresponds to
a 38-K-fold CV procedure.

Figure 3 illustrates the overall nested LOGO CV process using a simplified example of
four participants, each with four associated segments. First, the segments are grouped based
on participant ID. Then, the primary dataset is divided into N outer training/validation
sets, where N is the number of participants (N = 4). Within the outer loop, a training set
is selected from each iteration and passed to the inner loop for hyperparameter selection.
In the inner loop, the selected training set is further divided into three (N-1) internal
training/validation sets. GridSearchCV, with a predefined search space for each ML
algorithm, is implemented to find the optimal hyperparameters as detailed in Appendix A
Table A1. The optimal hyperparameters are then used to fit the model on the outer training
set and evaluate it on the outer validation set. This process generates N performance
estimates from the outer loop, from which average performance and stability metrics are
calculated for each ML algorithm. Finally, the primary dataset is retrained using the model
with the highest performance and stability.

While the nested CV approach aims to mitigate bias by separating the processes of
hyperparameter selection and performance evaluation, the ideal scenario would involve
using two entirely independent datasets. This would eliminate any potential bias or data
leakage between the different stages of model selection [50,74]. However, in cases where
data are limited, the nested CV approach provides a reasonable trade-off between bias
mitigation and efficient use of available data.

3.6. Performance Metrics

ML performance was evaluated using the following metrics: accuracy, precision, re-
call, F1 score, confusion matrix, area under the curve (AUC), and Matthew’s correlation
coefficient (MCC). Given the equal importance of correctly classifying both stressed and
non-stressed states in this study, we prioritized minimizing both false positives and false
negatives. Therefore, the F1-score was chosen as the primary evaluation metric. It provides
a single, balanced measure by incorporating both precision and recall. Additional perfor-
mance metrics were also employed for supplementary analysis, and the standard deviation
(SD) was reported for the F1-score.
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Optimal 
Parameters

I N N E R  L O O P
H y p e r p a r a m e t e r  

S e l e c t i o n

Original Dataset

O U T E R  L O O P
M o d e l  E v a l u a t i o n

TrainV

Train Train

Train Train

Train V

Train Train

Train

P1 P2 P3 P4

S1
S2
S3
S4

V

V

Train V

V

V

Figure 3. A conceptual illustration of the nested CV procedure with four participants, each with four
segments. Note. V refers to the validation set, S refers to the segment number, and P refers to the
participant ID.

4. Results
4.1. Classification of Stress and Neutral States
4.1.1. Model Selection

Table 3 summarizes the average performance metrics obtained using nested CV for
stress vs. neutral classification on the primary dataset. Overall, the ML models had
relatively low performance in classifying stress and neutral states (accuracy: 53–61%). More
specifically, the precision and recall scores obtained by all models were significantly less
than 70%, indicating a high misclassification rate. Among all the classifiers, RF showed
the best performance and highest stability, with an F1 score of 56.2% (SD = 10.8%) and an
accuracy of 61.2%. The remaining classifiers had F1 scores in the range of 43–56%. Hence,
the RF with the following hyperparameters was selected for the generalizability evaluation
using the secondary datasets: max_depth = 2, min_samples_leaf = 0.10.
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Table 3. Nested CV performance (stress vs. neutral) (%).

Metric F1 Score (SD) Accuracy Precision Recall AUC MCC

LR 43.1 (17.8) 53.6 38.3 58.6 43.1 71.7
DT 54.4 (11.4) 59.5 59.9 57.9 54.4 60.0

KNN 56.3 (11.8) 57.2 58.1 61.2 56.3 62.7
NB 53.8 (14.9) 54.3 47.5 71.1 53.8 73.7
RF 56.2 (10.8) 61.2 60.1 59.9 56.2 70.7

SVM 51.2 (13.9) 56.9 57.5 56.6 51.2 65.8

4.1.2. Generalizability Assessment

Figure 4 presents the confusion matrix with the corresponding performance metrics
for the stress vs. neutral classifier on the secondary dataset. The model achieved a moderate
F1-score of 65.8% and an accuracy of 70.3%. Notably, the model excelled at identifying
all neutral instances (100% precision), but it had a lower recall rate for stress instances,
misclassifying approximately half (49.1%).
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50.9%

26
49.1%

Neutral Stress

Predicted Label

Metric Score

F1-Score 65.8%

Accuracy 70.3%

Precision 100%

Recall 49.1%

AUC 53.6%

MCC 64.2%

Figure 4. Confusion matrix and performance metrics for the stress vs. neutral classifier.

4.2. Classification of Stress and Relax States
4.2.1. Model Selection

Table 4 summarizes the average performance metrics obtained using nested CV for
stress vs. relax classification on the primary dataset. In contrast to the stress vs. neutral
classification, the models achieved relatively high accuracy rates, ranging from 84% to
89%. This suggests a better overall ability to distinguish between these states. Additionally,
the precision for all models was above 80%, suggesting a lower rate of false positives
compared to the classification of stress vs. neutral states. Among all classifiers, the RF
demonstrated the best performance and stability, with an F1-score of 89.2% (SD = 7.2%).
Notably, the RF achieved a high recall score of 96.7%, indicating good success in iden-
tifying stress instances (i.e., low false negatives). Hence, the RF was chosen for further
evaluation on the secondary datasets with the following hyperparameters: max_depth = 2,
min_samples_leaf = 0.10.

Table 4. lNested CV performance (stress vs. relax) (%).

Metric F1 Score (SD) Accuracy Precision Recall AUC MCC

LR 87.2 (11.3) 85.2 89.7 90.1 87.2 76.0
DT 87.1 (10.4) 85.9 90.5 89.5 87.1 74.3

KNN 84.0 (12.5) 81.6 85.2 87.5 84.0 77.6
NB 84.4 (10.3) 79.3 80.2 94.1 84.4 83.6
RF 89.2 (7.2) 85.5 84.8 96.7 89.2 89.1

SVM 84.3 (10.4) 80.6 83.5 89.5 84.3 76.3
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4.2.2. Generalizability Assessment

Figure 5 presents the confusion matrix with the corresponding performance metrics
for the stress vs. relax classifier on the secondary dataset. Compared to the stress vs. neutral
classification, the model achieved significantly better performance, with an F1-score of
86.3% and accuracy of 84.1%. Notably, the model excelled at identifying relaxed instances,
achieving a high precision of 97.6%. This indicates that the model rarely misclassified
relaxed instances as stress. However, the recall score of 77.4% suggests that the model
missed identifying some stress instances, classifying them as relaxed.
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41
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Precision 97.6%

Recall 77.4%

AUC 84.2%

MCC 70.7%

Figure 5. Confusion matrix and performance metrics for the stress vs. relax classifier.

4.3. Effects of Validation Strategy on Model Performance

To evaluate the impact of the chosen validation strategy (nested CV with LOGO) on
classification performance, all ML models were compared using four different CV methods:
standard K-fold CV, nested K-fold CV, standard LOGO CV, and nested LOGO CV. To ensure
consistency in the K-fold CVs, all models were evaluated using 10 folds. Figure 6 illustrates
the classification performance of the combined (primary and secondary) segmented dataset
for the stress vs. relax classification using the accuracy metric. This analysis showcases an
extreme feature selection strategy by incorporating all commonly derived HRV features
from both the time and frequency domains. These features include MeanRR, RMSSD,
SDNN, pNN50, LF power, HF power, LF/HF ratio, and total power.

Overall, the evaluation of different CV methods revealed that standard K-fold achieved
the highest average accuracy across all investigated ML models. Nested LOGO CV, on the
other hand, exhibited the lowest performance, with an average accuracy 5% lower than
standard K-fold. This difference was most pronounced for the SVM model, where standard
K-fold yielded a 9.2% higher accuracy compared to nested LOGO CV. The difference
for the RF model was slightly smaller, around 2.8%. Furthermore, nested LOGO CV
showed a higher standard deviation across all models, suggesting potential instability in
its performance compared to the other CV methods.

To further assess the differences in performance between the standard and nested
versions of K-fold and LOGO CV methods, we conducted 30 trials focusing on the RF
classifier. Each trial involved shuffling the observations and varying the seed parameter for
the K-fold method. However, group randomization or shuffling was deemed unnecessary
for the LOGO CV, as all observations were included in the analysis irrespective of their order.
This characteristic of LOGO CV resulted in consistent performance across all trials, reflected
by a flat line in Figure 7. Hyperparameter selection for the nested CV methods employed
GridSearchCV within the inner loops, whereas standard CV methods utilized it in the main
loops. Subsequently, the identified optimal hyperparameters were used to train the model
on the training set. Notably, the standard (non-nested) implementations of both K-fold and
LOGO CV generally achieved higher accuracy rates compared to their respective nested
counterparts. Furthermore, the K-fold methods consistently outperformed the LOGO
methods in terms of accuracy.
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Figure 6. Average accuracy rate for each CV method.
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Figure 7. Performance of standard and nested implementations of K-fold and LOGO CV methods
over 30 trials. Note. Code Adapted from Sci-kit Learn [75].

5. Discussion

The purpose of this study was to evaluate the effectiveness of supervised learning
algorithms for classifying stress and relaxation levels using HRV features. We addressed
limitations in existing research by developing reliable ML classifiers to mitigate overfitting,
overly optimistic performance estimates, and generalizability challenges.

5.1. Model Performance

Two independent binary classifiers were implemented to identify stress from non-
stress states (i.e., neutral and relax). Based on the nested CV model selection results, the
RF achieved the highest performance among the remaining ML algorithms in terms of
identifying both stress and non-stress states. In a seminal investigation of the perfor-
mance of various ML classifiers, Fernández-Delgado et al. [76] assessed 179 classifiers from
17 families in 121 datasets and concluded that RF had the best performance. When deploy-
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ing affect recognition in real-world settings, clinicians and users benefit from interpretable
and explainable ML models [77,78]. Given that RF is based on ensemble learning of numer-
ous decision trees, there may be a lack of understanding regarding how particular decisions
were made between the predictors and the outcome [79]. Therefore, several strategies
have been proposed to address this issue, including the introduction of a taxonomy of RF
interpretative models via model visualization and post hoc explanatory methods [79,80].
According to the findings of the current study, DT achieved comparable performance to RF
(see Tables 3 and 4), which is considered as a simple and easy-to-understand classification
algorithm in the healthcare field [81].

Generally, the RF model performed significantly better in classifying stress vs. relax-
ation (F1 score = 89.2%) compared to stress vs. neutral (F1 score = 56.2%). This likely reflects
the stronger physiological impact of paced breathing on cardiovascular activity compared
to the mild effects of mental stress tasks. Notably, the relevant HRV features used in the
stress vs. relax classifier were significantly different between the two states. However, a
note of caution is needed here, as the “relaxed” state in this study was associated with the
paced breathing exercise itself. Future studies could benefit from measuring HRV after the
breathing exercise to obtain a more accurate representation of a true relaxed state or by
supplementing the data with subjective self-reported scores from participants to provide a
more holistic picture of their relaxation levels [18].

5.2. Performance Overestimation

While our findings of the RF model performance achieved an accuracy of 60.8% in
differentiating stress from neutral states, this falls short of the 80% or higher success rates
reported in similar studies [16,31,82]. This performance gap may stem from two method-
ological factors in the reviewed studies: (1) using overlapping segmentation during data
preprocessing, which can introduce dependence between observations, or (2) incorporating
a high number of features relative to the dataset size, potentially leading to overfitting.
Although Castaldo et al. [17] mitigated these limitations by implementing non-overlapping
segmentation and utilizing a minimal feature set, they achieved a high accuracy rate of
94% with the KNN model on their primary dataset. However, a crucial consideration lies
in the generalizability of their findings to a broader population due to the limited dataset
size employed in their study (42 participants). In comparison, our study utilized a slightly
larger dataset size (76 participants), encompassing data from both primary and secondary
datasets. Generally, small training and testing sets do not represent the general population
and, by extension, cannot support an accurate assessment of the generalizability of ML
model performance [24].

To address potential performance overestimation during model selection, we em-
ployed the nested LOGO CV method for both hyperparameter selection and performance
evaluation. Despite the variance-bias trade-off [83], this approach is only advised for
small datasets, as the variance of generalization performance can be quite high other-
wise. In the case of large datasets, alternative methods like leave-five-group-out CV can
be employed. This approach leverages multiple groups for validation by aggregating
participant-dependent observations, simulating the K-Fold method.

Overall, performance overestimation was demonstrated using a comparison of differ-
ent validation strategies. Consistent with the literature [23,84,85], LOGO CV and, partic-
ularly, nested LOGO CV methods provided lower accuracy rates compared to standard
and nested K-fold CV methods, with a mean difference of 5%, across the investigated ML
models. Similarly, a study on human activity recognition data found that K-fold CV overes-
timated the accuracy of an RF classifier by 13% compared to leave-one-out CV, highlighting
the importance of choosing appropriate validation strategies [86]. Performance estimates
obtained through standard CV methods might exhibit susceptibility to bias, potentially
leading to overestimated accuracy metrics. This issue can be attributed to two primary
factors. First, standard CV methods can suffer from data leakage, as the same data are used
for both hyperparameter selection and model evaluation. Second, the presence of depen-
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dent observations, either due to data segmentation or derived from the same participants,
can lead to inflated performance measures [49,50,87].

5.3. Model Generalizability

A critical aspect of ML development is generalizability. While achieving high general-
izability is desirable, establishing acceptable levels for generalization is also important [88].
Therefore, the testing phase in the present study employed two secondary datasets to
evaluate how well the ML algorithms adapt to unseen data. The secondary datasets were
carefully selected based on the experimental protocol and HRV recording length, but
the HRV data were collected with ECG-based instruments rather than the PPG-based
instruments used in the primary dataset. Additionally, participants in the SWELL dataset
underwent a work-related stress task that differed slightly from the primary dataset. How-
ever, both tasks evoked a mental stress workload. Thus, the goal of the generalizability
test was to assess model performance not only on unseen data but also extending the
application on data collected with different instruments and under slightly different mental
stressor conditions. Altogether, the RF model demonstrated good classification perfor-
mance on the secondary datasets, with an F1 score of 86.3% for the stress vs. relax states.
However, the model’s ability to differentiate stress from neutral states was lower, achieving
an F1 score of 65.8%.

5.4. Limitations

Although the present study successfully demonstrated the impact of using a robust
ML methodology for small datasets, it features certain limitations in terms of dependency,
labeling strategy, and model stability. First, pure dependency is not necessarily implied
when the violation of the independence assumption is mitigated by grouping associated
segments via the LOGO CV method [89]. The observations were still interdependent within
a group because they were generated from the same participant. Second, the observations
were assigned to one of three classes (neutral, stress, and relax) based on the conditions
under which the data were collected. In accordance with the methods employed in similar
studies [41,46,52], it may have been more ecologically valid to supplement the dataset
with the subjective scores reported by participants, as these reflected their current stress
or relaxation levels. Lastly, the relatively high SD of the outer CV performance indicates
stability issues in the LOGO CV methods. Hence, further research is needed to investigate
the causes of model instability and explore approaches to better stabilize the model.

6. Conclusions

In conclusion, this study explored the potential of supervised learning for stress and
relaxation recognition using HRV features employing binary classification models. We
identified critical limitations in existing research regarding data segmentation, feature
selection, and model evaluation, which can lead to overfitting and hinder generalizabil-
ity. To overcome these limitations, we implemented robust ML algorithms with careful
consideration of appropriate validation strategies and the selection of relevant features.

Based on our findings, the RF model achieved the best performance in distinguishing
stress from non-stress states, showing notably higher accuracy in identifying stress from
relaxation (F1-score: 86.3%) compared to neutral states (F1-score: 65.8%). The generaliz-
ability of this model was further demonstrated by evaluating its performance on publicly
available datasets that followed a similar protocol to our primary dataset. While the per-
formance metrics of this study may be lower than those reported in previous studies, this
difference likely reflects our emphasis on implementing robust methodologies aimed at
reducing the effects of overfitting and data leakage. This focus is essential not only for
promoting generalizability but also for developing more interpretable and explainable ML
models in the context of real-world applications, particularly when dealing with limited
physiological datasets.
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Appendix A. Supplementary Data

Table A1. Predefined hyperparameters for the GridSearchCV.

Algorithm Hyperparameter Value

LR C (regularization strength) 10i, i = [−4, 4]

DT max_depth
min_samples_leaf

[1, 2, 3, 4]
[0.02, 0.04, 0.06, 0.08]

KNN n_neighbors [2, 3, · · · , 9]
NB var_smoothing 10i i = [−9, 0]

RF max_depth
min_samples_leaf

[2, 3] + None
[0.05, 0.10]

SVM C (regularization strength)
kernel

10i, i = [−4, 4]
Radial-basis function



Sensors 2024, 24, 3210 17 of 21

Training Dataset
N = 38 participants,
S = 456 observations,

F = 10 features

Features
Importance and

relevance analyses

Observations
Missing data

380 observations,
3 features

Nested CV
IL: Hyperparameter selection
OL: Performance evaluation

Predictive Model

7 features excluded

76 observations excluded
(19 participants labelled relaxed)

Testing Dataset

N = 38 participants,
S = 129 observations

Observations
Missing data

120 observations

WESAD: 9 observations excluded
8 paced breathing before stress
1 signal quality

Datasets

Preprocessing

Model Selection

Model Evaluation

Figure A1. A flowchart of the ML process including dataset split, preprocessing, model selection and evaluation. Note. IL: Inner Loop, OL: Outer Loop. Adapted
from [26].
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