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Abstract: Plankton studies serve as a basis for marine ecosystem research, but knowledge of marine
plankton is still incomplete due to its extreme taxonomic and functional complexity. The application
of metabarcoding is very valuable for the characterisation of the plankton community. The plankton
community of the Southern Adriatic is subject to strong environmental fluctuations and changes,
which underlines the need for frequent, reliable and comprehensive characterisation of the plankton.
The aim of this study was to determine the taxonomic composition and seasonal distribution of
eukaryotic plankton in the Southern Adriatic. Plankton samples were collected monthly for one
year at the coastal station of the Southern Adriatic and metabarcoding was used for taxonomic
identification. The results showed a high taxonomic diversity and dynamic seasonal distribution
patterns for both the protist and metazoan plankton communities. Metabarcoding revealed both
the core, year-round plankton community and previously unrecorded plankton organisms in the
Southern Adriatic. The results provide for the first time a comprehensive overview of the plankton
community in this area by metabarcoding. The identified seasonal patterns of plankton genera and
species in the Southern Adriatic will contribute to the understanding of plankton interactions and
future changes in community diversity characterisation.

Keywords: biodiversity; Adriatic Sea; plankton; metabarcoding

1. Introduction

Marine eukaryotic plankton comprises a huge diversity of organisms that have
adapted to drift and are transported over long distances by ocean currents [1]. The
diversity of marine plankton is reflected in taxonomic composition, body size and life
history (meroplankton vs. holoplankton). Microscopic unicellular eukaryotes (protists or
microeukaryotes) form an important part of the marine plankton community as primary
producers (phytoplankton), consumers, parasites and symbionts [2,3]. Protists are often
difficult to identify morphologically, as they are small and sometimes do not differ in their
morphological characteristics from related taxa. Multicellular heterotrophic organisms
(metazoans) participate in the plankton community primarily as consumers (zooplankton)
and are often restricted to certain life stages (meroplankton). Although metazoans have a
significantly larger body size than protists, many of them are still too small for microscopic
identification, and there are also morphological similarities between related taxa (e.g.,
copepods and invertebrate larval stages). The planktonic larval stage plays a crucial role
in the dispersal of many benthic invertebrates, but very little is known about the larval
biology of most species. Often the taxonomy of larvae and adults is not yet unified, further
complicating ecological analyses. Plankton functions as a complex ensemble of organisms
that constantly interacts with environmental factors and organisms of other marine habi-
tats (benthos, nekton) and, therefore, plays a fundamental role in marine food webs and
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the chemical and physical cycles of the oceans [4]. The interactions within the plankton
community also determine the diversity and dynamics of the community. Because of this
fundamental role, accurate information on the diversity and changes in the structure of the
plankton community in space and time is needed. Plankton biodiversity is crucial for the
functioning, sustainability and resilience of marine ecosystems. However, for most marine
areas, the spatial and temporal patterns and taxonomic details of the plankton community
are not defined.

Traditionally, plankton is identified using light microscopy. However, due to the small cell
size, similar morphology and low abundance of many important components, an additional
and complementary methodological approach such as metabarcoding reveals further details.
Metabarcoding in combination with high-throughput sequencing (HTS) enables the simul-
taneous detection of multiple taxa over a large systematic range by using universal or more
specific PCR primers to amplify taxonomically informative gene regions from environmental
DNA [5]. Although metabarcoding (like any method) is subject to certain methodological
biases (e.g., in sampling, pre-processing, DNA extraction, marker and primer selection, PCR
amplification and sequencing), correct data analysis and interpretation that takes these biases
into account leads to a highly reliable and comprehensive description of the plankton com-
munity. Metabarcoding and HTS have been used and described to study global plankton
diversity and to recognise patterns of taxa occurrence. Metabarcoding studies have described
spatial and temporal variation in complete eukaryote plankton assemblages [6–8], but more
often studies have focused on selected plankton taxa [9–15]. As at the global scale, only those
groups and taxa representative of the Adriatic plankton community have been analysed using
metabarcoding [16–24], neglecting insight into the eukaryotic plankton community as a whole.
For the Southern Adriatic, previous plankton research in this area also included mainly zoo-
plankton and phytoplankton studies on certain representative groups. Zooplankton studies
focused on copepods [25–29], tintinnids [30–32] and gelatinous invertebrates [33–37], while
phytoplankton studies mainly characterised diatoms [38–40]. Moreover, the studies were pre-
dominantly based on traditional methods of taxa identification. Considering all this, there is a
considerable lack of knowledge about the Southern Adriatic plankton diversity that has been
recorded by metabarcoding. Our study aims to provide the first comprehensive description of
the eukaryotic plankton community of this ecologically important marine region.

The Adriatic Sea is the semi-enclosed, northernmost part of the Mediterranean. Due
to its geographical and oceanographic characteristics, the Adriatic Sea is an extremely
dynamic but also vulnerable ecosystem. Biodiversity and climate changes affecting larger
marine areas (Mediterranean and global oceans) are first reflected/recognised in the Adri-
atic, which underlines the importance of the Adriatic in monitoring the effects of climate
change [41]. The Southern Adriatic is the deepest part of the Adriatic Sea and a key area for
the regular exchange of water between the Adriatic and the Ionian Sea through the Strait of
Otranto. The presence of a quasi-permanent cyclonic circulation [42] is characteristic of the
Southern Adriatic, and these circulation events have a strong influence on the Southern
Adriatic ecosystem and the plankton community [34]. Recent changes in the plankton
composition of the Southern Adriatic have been linked to large-scale climatic changes in
the area [34]. The Southern Adriatic is the entry point and the first capture area for poten-
tial new arrivals and invasive species in the Adriatic ecosystem [43,44]. As the Southern
Adriatic is a dynamic environment, and the Adriatic Sea is the gateway to further marine
influences from the Mediterranean and beyond, the characterisation of the SA plankton
community is crucial for indicating changes and predicting the evolution of the community
for the entire Adriatic Sea. The description of the Southern Adriatic plankton community
contributes to the understanding of plankton interactions and changes in community di-
versity, especially in detecting new, non-indigenous members of the community over the
course of future climate change scenarios.

The main objective of this manuscript is to describe the diversity of the Southern
Adriatic eukaryotic plankton community in its entirety, resulting in a detailed, reliable and
comprehensive insight into the community structure and pointing to the current community



Diversity 2024, 16, 293 3 of 19

interactions. The applied monthly sampling strategy, which enables the description of the
plankton temporal pattern contributes to the general knowledge of plankton biodiversity
and the further development of regional monitoring plans.

2. Materials and Methods
2.1. Sampling and DNA Isolation

Samples were collected at the Southern Adriatic coastal station (LOKRUM, depth
100 m, GPS coordinates: 42◦37′21.0′′ N, 18◦06′00.0′′ E) located in the vicinity of Lokrum
Island, near Dubrovnik (Figure 1A). Vertical hauls with the plankton net (53 µm) equipped
with the closing mechanism were performed at a monthly frequency for a one-year period
(March 2021–February 2022). Plankton was sampled in two layers, namely surface (0–50 m)
and subsurface (50–100 m). The sampling of both layers encompasses the euphotic zone (up
to 100 m). Net samples were filtered on 1.2 µm cellulose filters and stored in an RNAlater at
−20 ◦C until genomic DNA isolation. Isolations of the genomic DNA were performed using
the NucleoSpin eDNA Water kit (Macherey-Nagel, Germany) according to manufacturer
instructions. The quality and quantity of the isolated DNA were checked spectrophotomet-
rically using nanodrop (Implen, Germany), and the samples were sent for metabarcoding
library preparation and sequencing. DNA metabarcoding library preparation and sequenc-
ing were carried out by AllGenetics and Biology SL, Spain (www.allgenetics.eu, accessed
on 4 May 2021).
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Figure 1. Map of the Adriatic Sea. Lokrum sampling station (red circle) is marked in the coastal
area of the Southern Adriatic (A). Overall dataset taxonomic assignment of the ASVs (B). Rarefaction
curves of all samples (C). Alpha diversity of the Southern Adriatic community is shown as the
number of ASVs, Shannon, and InvSimpson index of the sampling seasons and depths (D).

2.2. DNA Metabarcoding Library Preparation and Sequencing

For library preparation, primers that amplify a region of around 430 bp of the V4 region
of the 18S gene were used: TAReuk454FWD1 (5′ CCA GCA SCY GCG GTA ATT CC 3′) [45]
and TAReukREV3 (5′ ACT TTC GTT CTT GAT YRA TGA 3′) [45,46]. These primers have

www.allgenetics.eu
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the Illumina sequencing primer sequences attached at their 5′ ends. In the first amplification
step, PCRs were carried out in a final volume of 12.5 µL, containing 1.25 µL of template DNA,
0.5 µM of the primers, 3.13 µL of Supreme NZYTaq 2x Green Master Mix (NZYTech, Portugal)
and ultrapure water up to 12.5 µL. The reaction mixture was incubated as follows: an initial
denaturation step at 95 ◦C for 5 min, followed by 35 cycles of 95 ◦C for 30 s, 48 ◦C for 45 s,
72 ◦C for 45 s and a final extension step at 72 ◦C for 7 min. The oligonucleotide indices that are
required for multiplexing different libraries in the same sequencing pool were attached in a
second amplification step with identical conditions but only for 5 cycles and at 60 ◦C annealing
temperature [47]. A negative control that contained no DNA (BPCR) was included in every
PCR round to check for contamination during library preparation. The library size was
verified by running the libraries on 2% agarose gels stained with GreenSafe (NZYTech) and
imaging them under UV light. Then, the libraries were purified using the Mag-Bind RXNPure
Plus magnetic beads (Omega Bio–tek, Georgia, USA), following the instructions provided
by the manufacturer. Finished libraries were pooled in equimolar amounts according to the
results of a Qubit dsDNA HS Assay (Thermo Fisher Scientific Inc., Germany) quantification.
These pools also contained a testimonial amount (1 µL) of the PCR negative controls. The
pool was sequenced in a fraction of NovaSeq PE250 (Illumina, USA) aiming for a total output
of 1 gigabase. Illumina paired-end raw data consist of forward (R1) and reverse (R2) reads
stored in separate files, which are sorted by library and include the reads’ quality scores. We
assessed the quality of the FASTQ files with the software FastQC, version 0.11.9 [48] and
summarised the output using MultiQC, version 1.12 [49]. The raw FASTQ files were used for
further bioinformatics steps.

2.3. Bioinformatics

Processing of raw reads for quality trimming and Amplicon Sequence Variants (ASVs)
identification was conducted using R (R version 4.3.1, www.R-project.org, accessed on 4 July
2023) and the dada2 package (DADA version 1.26, [50]). After inspecting the read quality
profiles (plotQualityProfile) of forward (R1) and reverse reads (R2), the quality-filtering step
is completed with the filterAndTrim() function using the parameters maxEE = 2, truncQ
= 5, maxN = 0 and trimLeft = 20. With the parameter truncLen, the reads were truncated
at 240 nt (R1) and 210 nt (R2), maintaining overlap after truncation in order to merge the
forward and reverse reads later. All the other arguments in filterAndTrim() were set to the
default values. Additionally, within the dada2 quality-filtering step, the argument trimLeft
was used to remove primers. The quality of the filtered files was also checked, and it was
confirmed that truncation excluded average qualities Q-scores read areas <30. The error
rates were learned using the errF and errR functions. The minimum number of total bases
to use for error-rate learning was set to the default value (nbases = 1 × 108). The maximum
number of times to step through the self-consistency loop was also set to the default value
(MAX_CONSIST = 10). The sample inference algorithm was applied to the filtered and
trimmed sequence data, and ASVs were inferred using the Dada function. Paired reads
were merged with a minimum overlap set to 15 nucleotides in the mergePairs function.
Merged sequences outside the expected range (300–450 bp) were discarded. Chimeric
sequences were removed using the removeBimeraDenovo function and consensus method.
Taxonomy assignment is implemented using the naive Bayesian classifier method [51] and
the PR2 database (PR2 version 4.14.0), a curated list containing only eukaryotic taxa [52].
The minimum bootstrap confidence for assigning a taxonomic level has been set to 90. A
BLAST search [53] of unclassified ASVs (the taxonomy assigned to the level higher than
the genus by DADA and the PR2 database) against the nonredundant nucleotide GenBank
reference database [54] was conducted.

2.4. Community Diversity and Composition Analyses

Plankton community composition analyses, statistical analyses and generation of
figures were conducted using R (R version 4.3.1, www.R-project.org) and the packages
vegan [55], ggplot2 [56], phyloseq [57] and netcomi [58]. The plankton ASV dataset was

www.R-project.org
www.R-project.org
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reduced by removing ASVs classified as land-originated taxa. ASVs classified to taxonomic
ranks higher than genus were also excluded from the dataset. Samples with very low read
abundances (<300 reads; samples JUG3 and JUG22) were removed from the dataset. The
number of reads in each sample was normalised using median sequencing depth. For
taxa abundance visualisations (bar plots), sample counts of a taxa abundance matrix were
transformed to relative abundances. The counts of each sample were transformed individ-
ually. Each sample plankton community’s alpha diversity was calculated as ASVs richness
and diversity indices (Shannon and InvSimpson index) value. An analysis of variance
(ANOVA) was used to test for differences in alpha diversity parameters among different
seasons and sampling depths. Patterns of sample dissimilarity (beta diversity) (NMDS plot)
were analysed based on ASVs and genera presence–absence (Jaccard distance), visualised
using unconstrained ordinations of non-metric multidimensional scaling (NMDS), and
statistical confidence was tested with multivariate PERMANOVA (permutations = 9999).
Permutational multivariate analysis of variance (PERMANOVA) is a common method for
assessing whether a variable is associated with an overall difference in sample community
composition. ASVs were merged at the genus level (tax_glom function in phyloseq), and
subsets of dataset groups (protist and metazoan) were used for heatmap and network com-
position analyses. For seasonal taxonomic composition analyses (hierarchical clustering
and heatmap analyses), frequencies of occurrence for genera [59] were calculated as the
number of times a genus occurred in a time frame (season) divided by the total number
of samples in that time frame (season). To generate heatmaps, we applied agglomerative
clustering specifically with the clustering method ward.D2, and correlation was used as
a clustering distance measure with the R package pheatmap. The definition of seasons
in the study followed the meteorological (climatological) seasons in the Northern Hemi-
sphere (https://www.ncei.noaa.gov/news/meteorological-versus-astronomical-seasons,
accessed on 4 July 2023) for spring (March, April, May), summer (June, July, August),
autumn (September, October, November) and winter (December, January, February).

The plankton community association network (nodes are taxa/genera) was con-
structed from the phyloseq object using the compositionally aware correlation estimator
SparCC [60] and the R package netcomi [58]. Read counts data were log-ratio transformed
and the Bayesian approach was applied for zero handling. A threshold of 0.4 was used as
a sparsification method so that only genera with an absolute correlation greater than or
equal to 0.4 are connected. To detect clusters in the network, cluster optimal modularity op-
timisation was used, and unsigned transformation was set so that the edge weight between
strongly correlated genera is high, no matter the sign (+ or − correlation). Betweenness and
degree centrality measures were used for identifying hub nodes. Betweenness centrality
measures the importance of a node in connecting other nodes in the network, thus captur-
ing the role of a genus as an intermediary between other genera in the network. Degree
centrality describes only the number of connections (edges) a genus has established with
other genera in the network. Betweenness considers all geodesics between two nodes. R
package igraph [61] was used for visualizing and analysing the network. Global network
properties were defined for the whole network.

An online tool of The Interactive Tree Of Life (https://itol.embl.de, accessed on 4 July
2023) [62] was used to display and annotate common phylogenetic trees of the marine
eukaryotic plankton community.

2.5. Data Availability

The data for this study have been deposited in the European Nucleotide Archive
(ENA) at EMBL-EBI under accession number PRJEB75449.

3. Results and Discussion
3.1. Overview of the Diversity

High-throughput sequencing of the Southern Adriatic dataset (24 samples) resulted in
1.945,388 raw reads overall. After bioinformatics processing, 1,267,410 reads, corresponding

https://www.ncei.noaa.gov/news/meteorological-versus-astronomical-seasons
https://itol.embl.de
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to 932 ASVs, were used for the taxonomy assignment. A large part of the ASVs were as-
signed to Metazoa (711 ASVs and 1.251,960 reads), followed by protists (microeukaryotes)
(182 ASVs and 13,789 reads) (Figure 1B). The remaining 39 ASVs assigned to land-originated
taxa of Embryophyta (5 ASVs, 161 reads), Fungi (10 ASVs, 987 reads), seaweed Rhodophyta
(2 ASVs, 25 reads) and unclassified Eukaryota (22 ASVs, 481 reads) (Figure 1B) were re-
moved from further plankton community analyses. In the dataset, 475 ASVs (48% of all
ASVs in the dataset; 62 protists and 413 metazoan ASVs), represented by 649,177 reads
(51% of all dataset reads), were identified to a taxonomic rank higher than genus. Since
our focus was to characterise plankton genus and/or species assemblages, a subset of
ASVs reliably identified at the species or the genus level was produced. This finalised
(genus/species level) Southern Adriatic plankton dataset contained 418 ASVs, with an
average of 54 ASVs per sample. Rarefaction curves of all samples reached saturation,
indicating that the sequencing depth was sufficient (Figure 1C). Unclassified ASVs (taxon-
omy assigned to levels higher than genus) were mainly assigned to unclassified Metazoa
(copepods predominantly). A BLAST search found that 32% of these unclassified ASVs
show high sequence identity (≥99%) to marine uncultured and environmental clones from
different metagenomic surveys. This part of the dataset represents a reservoir of hidden
diversity that is yet to be uncovered, as species isolation and barcoding will progress and
enrich the reference databases used in metabarcoding. Future research hence will be able
to mine the here-published dataset for the early presence of species for which, currently, no
information or no sequence information is available.

In the finalised (genus/species level) Southern Adriatic plankton dataset, the highest
ASV number was detected in winter, and the lowest was in summer samples (Figure 1D).
Between seasons, significant differences were recorded for the detected number of ASV
(ANOVA, p = 0.026 *, Tukey test = winter-summer, p adj = 0.0163399). The Shannon
Index ranged from 3.2 in winter to 1.0 in the autumn sample and InvSimpson from 1.7 in
spring to 13.6 in the winter sample (Figure 1D), but no significant differences (ANOVA,
p < 0.05) in both diversity indices were present between the seasons. Sampling depth did
not have a significant effect on any of the alpha diversity measures during the year. The
average numbers were 56 and 5.9 for the surface (50–0 m) and 53 and 7.2 for the subsurface
(100–50 m) layer for the ASV number and InvSimpson Index, respectively. The average
number of the Shannon Index was 2.3 for both sampling layers (Figure 1D).

Community composition based on ASVs (Figure 2A) or genera (Figure 2B) differed sig-
nificantly between seasons (PERMANOVA, p = 1 × 10−4), and 23% (ASVs) or 25% (genera)
of the variation was explained by the season parameter. Separated clusters of plankton com-
munities were revealed with NMDS analysis for the four seasons, with different seasonal
similarities present for the ASV and genera-based NMDS (Figure 2). When the distance
between samples was based on ASV presence/absence, the summer samples shared higher
similarity with the spring and autumn samples, while the winter samples were grouped
separately from other seasons. On the contrary, when the distance between samples was
based on genera presence/absence, the similarity between summer and autumn, as well as
the winter and spring samples, was indicated. A significant effect of the sampling depth on
community composition was also present (PERMANOVA, p = 0.0191) for both ASVs and
genera-based analyses but contributed only 7% of the variation in community distances
(Figure 2).

3.2. Taxonomic Structure

The plankton community of the Southern Adriatic Sea consisted of 19 major taxonomic
groups (pr2 database divisions), including metazoans (11 different groups) and 8 protist
groups (Figure 3). A total of 298 ASV (93 different taxa; all at species and genus level) were
assigned to metazoans, while 120 ASV (58 different taxa; all at species and genus level)
were assigned to protist groups. Metazoan ASVs were uniformly abundant throughout
the year. Among the protists, dinoflagellates dominated in abundance and were detected
in all samples throughout the year and at all depths. Similarly, ciliates (Ciliophora) were



Diversity 2024, 16, 293 7 of 19

detected in all seasons, although in lower abundance than dinoflagellates. Most of the
other eukaryote groups showed distinct distributions across the seasons (Figure 3). The
protist group Bacillariophyta was detected evenly in both sampling layers, but mainly in
the spring and summer months and only in low abundance in winter. The protists of the
Chlorophyta group were detected in all seasons except autumn, but in low abundances
(<100 read/sample). A sister group of Chlorophyta, the Prasinodermophyta group, was
only detected in the surface layer of the summer samples. Zooplankton protists of the
Cercozoa and Radiolaria groups were present in all seasons except summer, and although
they were generally recorded in low abundances (<100 read/sample) in the dataset, these
groups contributed significantly to diversity in autumn. Among the other heterotrophic
protists, a group of pico-sized ubiquitous marine stramenopiles (MASTs) was recorded
throughout the water column in winter in the Southern Adriatic dataset (Figure 3).
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About 20% of all recorded genera in the Southern Adriatic metabarcoding dataset
were shared by all seasons; they were present throughout the year. These 27 shared genera
(copepods: Acartia, Calocalanus, Candacia, Centropages, Clausocalanus, Corycaeus, Euterpina,
Haloptilus, Isias, Lucicutia, Mecynocera, Oithona, Paracalanus, Pareucalanus, Sapphirina and
Temora; shrimps: Meganyctiphanes; hydrozoans: Clytia, Liriope, Solmundella and Sulculeolaria;
dinoflagellates: Blastodinium and Dino-Group-I-Clade-1; annelids: Polyophthalmus and
Tomopteris; gastropod: Creseis; and tunicate: Doliolum) represent a year-round community
in the southern coastal zone of the Adriatic Sea, which was detected by metabarcoding. As
expected, most organisms of the year-round community spend their entire life cycle in the
plankton (holoplankton); also, organisms of the meroplankton such as the annelids of the
genus Polyophtalmus (Polyophthalmus pictus) formed the year-round plankton community
of the coastal Southern Adriatic, suggesting that the eggs and/or larval stages of this
genus/species in the plankton are not restricted to a specific season.

Together with the year-round community, autumn in the Southern Adriatic was char-
acterised by the highest number of genera occurring only in a given season (24 genera,
corresponding to 18% of all identified genera), followed by winter (16 genera, 12%), while
spring had the lowest number of unique genera (6 genera, 4.5%). Between the seasons, winter
and autumn shared the highest number of genera (12 genera, 9%), while spring and summer,
as well as summer and winter, shared the lowest number of genera, only 3 genera (2%).

Among the most common marine eukaryotic plankton organisms [63] all major protist
(Alveolata, Chlorophyta, Ochrophyta and Radiolaria) and metazoan (Annelida, Arthro-
poda, Bryozoa, Chordata, Cnidaria, Ctenophora, Echinodermata, Mollusca and Phoronida)
groups (divisions) had genus/species representatives in the Southern Adriatic dataset
(Figure 4), confirming a broad taxonomic range covered by 18S metabarcoding. In addition,
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the metabarcoding dataset enabled the detection of some marine eukaryotic plankton
groups that are usually less frequently studied and/or taxonomically characterised, such
as the metazoan phyla Nemertea and Platyhelminthes.
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Figure 3. Seasonal presence and read abundance of protist (A) and metazoan (Arthropoda excluded)
(B) groups (divisions) identified in the Southern Adriatic metabarcoding dataset. Seasonal read
abundances are expressed as read proportions of individual groups standardised over the total
number of reads obtained for each sample. Sample names indicate the sampling month and sampling
depth. In the subsurface sample from September, only representatives of the Arthropoda were
recorded in the metazoan community.
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marked in different colours. Groups that have genus/species representatives in this study metabar-
coding dataset are indicated in bold. Branch lengths of the tree are ignored.

3.2.1. Protist (Microeukaryotes) Community Structure

The protist community, which was assigned to eight taxonomic groups, numbered
58 taxa (39 genera and 19 taxa from global environmental datasets) (Figure 5). For the
coastal Southern Adriatic, a seasonal clustering of the protist community into two main
groups (spring–summer and autumn–winter) was observed. The highest number of protist
genera was shared between autumn and winter (Figure 5). Furthermore, autumn was
characterised by the highest number of genera detected only in this season (autumn unique).
Only two genera were found in all four seasons. The seasonal frequencies of occurrence
of protist genera were generally low (Figure 5). There were more unique than shared
genera in all seasons. Nevertheless, most protist groups showed seasonal differences in
the composition of assigned genera (Figure 5). However, when characterising the seasonal
patterns of protist groups’ characterisation, their low read abundance should be taken
into account. In addition, the occurrence of the recorded genera should be confirmed and
analysed over a period of several years.

The Chlorophyta were represented in the dataset by two taxa of prasinophytes (genus
Chloropicon and prasinophyte clade IX), both of which showed a higher frequency of oc-
currence in winter (Figure 5) but were also recorded in other seasons except autumn. The
picophytoplanktonic prasinophyte genus Chloropicon is the first record for the Adriatic. The
metabarcoding record of another picophytoplankton genus, Prasinococcus (Prasinodermo-
phyta), presented here is also the first record for the Adriatic. This genus of a non-flagellate
coccoid alga was only detected in the summer (August 2021) during our one-year study.
New discoveries of genera and species of coccoid and flagellate picoplankton in the South-
ern Adriatic indicate a large protist diversity in this area, which is still unexplored due to
the morphological similarity of genera/species and limited morphological identification
possibilities [44,64].

During the year, Cercozoa (genera Aulacantha and Coelodendrum) and Radiolaria (gen-
era Sphaerozoum, Disolenia, Collozoum and Eucyrtidium) occur more frequently in the colder
seasons. The annual occurrence of the radiolarian genera correlates with the occurrence
of the dinoflagellate genus Brandtodinium, which is known to be a common symbiotic
partner of these polycystine radiolarians in symbiotic interactions between pelagic hosts
and microalgae [65]. Brandtodinium was only recently described as a new dinoflagellate
genus [65], and this metabarcoding record represents a new occurrence for the Southern
Adriatic. As Brandtodinium has only recently also been metabarcoded for the northern
Adriatic [24], this may indicate a wider and more common occurrence in the Adriatic that
was previously hidden due to microscopic identification limitations. While species of the
genus Eucyrtidium have been described in previous studies as characteristic of the euphotic
layer in the Southern Adriatic [66], the genera Sphaerozoum (Sphaerozoum trigenimum and
Sphaerozoum fuscum), Disolenia (Disolenia quadrata) and Collozoum (Collozoum sp.) represent
new records for the study area. All Cercozoa genera recorded in the metabarcoding dataset
of the Southern Adriatic belong to the class Phaeodarea, a group of cosmopolitan protists
traditionally categorised as radiolarians (Haeckel’s Radiolaria), but molecular phylogeny
assigns them to the Cercozoa [67]. Phaeodarea (phaeodarians) are quantitatively the most
important radiolarians in the Adriatic, and both Aulacantha scolymantha and Coelodendrum
ramosissimum have already been recorded in the Southern Adriatic [66]. The diversity and
seasonal occurrence (winter/autumn) of Cercozoa and Radiolaria recorded in this study
using metabarcoding were consistent with previous studies of these two protist groups
using the classical identification methodology [66].
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Figure 5. Heatmap representing Southern Adriatic protist genera seasonal frequency of occur-
rence. Clustering of the dataset is indicated as dendrograms showing clustering of samples (merged
according to season) with similar community structure and clustering of genera with similar sea-
sonal occurrence patterns. Division affiliation of each genus is indicated on the heatmap side edges.
(A). Upset plot of the shared protist genera between the seasons (B). There has never been a consensus
with regard to whether or not Salpingacantha are morpho-types of Salpingella or distinct species [68],
so the two taxa were, in our analysis, left as separate genera.

Dinoflagellates dominated the protist dataset of the Southern Adriatic, with 48%
of the total protist abundance, 76% of ASVs and 35% of all protist taxa. Among the
Southern Adriatic dinoflagellates, parasitic (Blastodinium, Chytriodinium, Ellobiopsis, Hemato-
dinium, Syndinium and environmental Dino-Group-Clades (Syndiniales)) and free-living
(Goniodoma, Heterodinium, Polykrikos, Tripos and Warnowia) genera were recorded. In ad-
dition to Brandtodinium (Brandtodinium nutricula), Pelagodinium (Pelagodinium beii) as a
foraminifera symbiont [65,69] and Ellobiopsis (Ellobiopsis chattonii) as a common parasite of
pelagic marine copepods (Acartia, Calanus, Centropages) [70] were recorded for the first time
in the Southern Adriatic. As Pelagodinium has only recently been metabarcoded for the
Northern Adriatic [24], its detection in the Southern Adriatic may indicate a broader and
more common occurrence in the Adriatic, which was previously hidden due to microscopic
identification limitations. Blastodinium, Syndinium and Chytriodinium are cosmopolitan
genera of parasitic dinoflagellates, also known as copepod parasites in the gut or lipid-rich
copepod eggs [71,72]. As parasites have been shown to influence the mortality and fecun-
dity of copepod populations [73] and copepods are the most abundant metazoans in the
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ocean and represent an important trophic link in pelagic food webs [74], the successful
identification of copepod parasites in the Southern Adriatic dataset contributed signifi-
cantly to the understanding of the diversity and health of the marine plankton community.
The advantage of metabarcoding over classical microscopy in the identification of genera
and species of parasitic dinoflagellates also lies in the fact that parasitic dinoflagellates
often deviate from the typical dinoflagellate morphology (motile, bi-flagellated protist
nucleus and dinokaryon as the nucleus) and change their morphology during their life
cycle [71]. Parasitic dinoflagellates (Blastodinium, Hematodinium and Dino environmental
clades (Syndiniales)) were the most abundant dinoflagellate taxa (>100 read/sample) in
the Southern Adriatic dataset. The Syndiniales environmental sequences belonged to
Groups I and II, further assigned to eleven clades. Sequences from global environmental
datasets are also most frequently assigned to Groups I and II [75]. The dinoflagellate
genus Blastodinium occurred in all seasons, as did the (Syndiniales) Dino-Group- I-Clade-1.
Other Syndiniales clades were recorded interchangeably throughout the year (Figure 5A).
Overall, dinoflagellate taxa were recorded in all seasons but with a higher taxa richness in
autumn (15 taxa) and winter (12 taxa) compared to summer (9 taxa) and spring (8 taxa).
The parasitic/symbiotic genera were clustered in autumn–winter, whereas the free-living
genera occurred more frequently in a spring–summer cluster. A similar seasonal occurrence
of dinoflagellates, with a high abundance and diversity of parasitic taxa in winter, has
already been observed for other Mediterranean coastal study sites [13,46].

After dinoflagellates, diatoms (Bacillariophyta) were the second most abundant protist
group in the dataset, accounting for 33% of the assigned protist reads. With the excep-
tion of Asterionellopsis as a winter-only diatom genus and Chaetoceros, which was detected
throughout the year (except in autumn), the other diatom genera recorded (Rhizosolenia,
Pseudo-nitzschia, Thalassiosira, Meuniera and Cerataulina) belonged to the spring–summer
cluster (Figure 5). The more frequent presence and higher abundance in the warmer
seasons (spring–summer) of Bacillariophyta were also found in previous Mediterranean
plankton studies using metabarcoding [20,46] and also light microscopy [76,77] as taxa
identification methods. The confirmation of Chaetoceros as an all-year present genus is also
consistent with previous metabarcoding studies in the Mediterranean [21]. Interestingly,
our metabarcoding dataset lacks autotrophs (phytoplankton), except for Bacillariophyta,
Chlorophyta and some dinoflagellate taxa. Although these missing phytoplankton groups
(autotrophs), such as Chrysophyceae, Dictyochophyceae, Haptophyta and Cryptophyta
(Figure 4), usually contribute with lower read abundances (less than 10%) and taxa rich-
nesses, their presence is usually successfully recorded with 18S barcodes in Mediterranean
metabarcoding datasets [20,46]. The underrepresentation and non-detectability of au-
totrophic taxa in the coastal protist community of the Southern Adriatic should be further
investigated, and possible methodological biases (sampling, sample preservation, DNA
isolation and PCR amplification) should be considered. Although the methodology applied
in our study provided a relevant and unified overview of the eukaryotic biodiversity of the
Southern Adriatic Sea, due to the taxonomic complexity of the eukaryotic plankton [1], all
methodological steps may still be unsatisfactory for investigating the composition of many
plankton groups.

Among protists, ciliates were less abundant (7% of protist reads) but had similar ASV
(Ciliophora 30, Bacillariophyta 21) and taxa richness (Ciliophora 13, Bacillariophyta 7) as
diatoms. Ciliates were found in all seasons, and most taxa (61%) were assigned to the
tintinnids (Tintinnida). The tintinnids (Xystonella, Salpingacantha, Salpingella, Codonellop-
sis, Dictyocysta and Rhabdonella) were characteristic of autumn–winter, but some genera
were also found in summer (Amphorides and Eutintinnus). The tintinnids detected in our
metabarcoding dataset are characteristic genera of the Adriatic surface zooplankton com-
munity (coastal and open waters) [30,31]. The ciliates from our Southern Adriatic dataset
also included parasites of marine organisms (order Apostomatia; genera Chromidina and
Synophrya) and environmental clades (PHYLL_4).
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3.2.2. Metazoan Community Structure

To characterise the structure of the metazoan community, 298 metazoan ASVs (588,845 reads)
associated with 11 divisions and counted for 73 different genera were used (Figure 6A). The
metazoan taxa found characterise the meroplanktonic and holoplanktonic representatives of
the zooplankton community in the Southern Adriatic (Figure 6A). For the coastal Southern
Adriatic, a seasonal clustering of the metazoan community into two main groups (spring–winter
and summer–autumn) was found, but a dominant clustering between all-year present and
seasonally present genera was also evident. As for protists, the highest number of metazoan
genera detected only in one season was found in autumn (13 unique genera) (Figure 6B). The
phylum Arthropoda dominated the metazoan dataset in terms of abundance (505,433 reads;
86% of metazoan reads) and diversity (209 ASVs and 41 taxa). Most of the arthropod taxa
belonged to the marine copepods (39 taxa, orders Calanoida, Cyclopoida and Harpacticoida).
Cyclopoid and Harpacticoid copepods showed lower abundances and a lower taxa richness.
Harpacticoid copepods were represented with only one genus, Euterpina, in the Southern Adriatic
dataset. Among the Arthropoda, only two taxa were identified that are not copepods (shrimps
of the genera Meganyctiphanes and Leptomysis) (Figure 6). Although Meganyctiphanes only occurs
in low abundance, it was observed throughout the year. All recorded arthropod genera are
part of the holoplankton. Most copepod genera (75%) were detected throughout the year and
occurred with a high frequency of occurrence in all seasons (Figure 6A). The copepod genera
Calocalanus, Centropages, Clausocalanus, Paracalanus and Oithona had the highest frequency of
occurrence (100%) in all seasons, meaning that they were confirmed in all samples of the dataset
(Figure 6A). In addition, among copepods, the genera Acartia, Temora and Mecynocera were also
confirmed with high frequency (>80%) in all seasons. With 30 ASVs assigned to Calocalanus,
the metabarcoding results were consistent with morphologically based copepod inventories
describing a high species diversity of Calocalanus in the Adriatic (15 species, [27]). In contrast to
the year-round genera, 36% of the copepod genera in the Southern Adriatic dataset were seasonal
and were recorded only in autumn (Pontella, Pseudanthessius), winter (Pachos), spring/autumn
(Neocalanus), summer/autumn (Diaixis and Copilia) and autumn/winter (Critomolgus). Season-
specific genera were mostly recorded in lower read abundances. Pontella and Copilia were also
recorded only sporadically and in lower abundances in previous Southern Adriatic zooplankton
studies based on morphological identification [28,29]. Most of the copepod genera recorded
by metabarcoding are known as common species of the Adriatic, living mainly in coastal and
surface waters (Paracalanus, Clausocalanus, Calanus, Calocalanus, Acartia, Centropages, Oithona and
Euterpina), but some were characterised as very rare copepods for the Adriatic (Pachos, Neocalanus)
in previous studies [25–27]. In addition to free-living (pelagic or benthic) copepods, the Southern
Adriatic dataset also enabled the identification of some marine invertebrate parasites/symbionts
(Pseudanthessius) [78]. Our results also confirm that the Southern Adriatic dataset shows a similar
copepod diversity as the dataset from the Tyrrhenian Sea, which was also analysed with 18S
metabarcoding [15].

The division/phylum Cnidaria was represented in the dataset by the class Hydrozoa
and Anthozoa (Figure 6A). While Anthozoa showed a low diversity with only two genera
(Metridium and Tubastraea), the Hydrozoa comprised diverse orders; truly holoplanktonic
(Siphonophorae and Trachymedusae) and hydrozoan medusae with obligate benthic life
stagesthat form the meroplankton (Anthoathecata, Narcomedusae, Limnomedusae and
Leptothecata). Together with copepods, hydrozoans were the most abundant group in
the metazoan dataset. Hydrozoans accounted for 12% of all metazoan reads. In addi-
tion, most hydrozoan genera (Liriope (Limnomedusae), Clytia (Leptothecata), Sulculeolaria
(Siphonophorae) and Solmundella (Narcomedusae)) were recorded throughout the year.
The genus Aglaura (Trachymedusae) was only absent in summer. Obelia (Leptothecata)
was characteristic for the winter–spring period, while Hydractinia (Anthoathecata) could
only be detected in winter. All identified hydrozoans were previously recorded for the
Southern Adriatic [34,36,37], with the exception of the two Siphonophorae genera, Nanomia
(Siphonophorae), which was previously only identified for the Northern Adriatic [17,79],
and Cordagalma (Siphonophorae), which represents a new record for the Adriatic but was
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previously recorded for the Mediterranean [80]. The results presented here, thus, clearly
show that species from the genus Cordagalma enter the Adriatic. Nanomia (N. bijuga) was
present most of the year, while Cordagalma (C. ordinatum) was only recorded in autumn
(Figure 6). Meroplanktonic hydrozoans Liriope and Aglaura were also the most common
and abundant hydromedusae in previous research for the area with juveniles present
throughout the year [34].

Diversity 2024, 16, 293  13  of  20 
 

 

on morphological identification [28,29]. Most of the copepod genera recorded by metabar-

coding are known as common species of the Adriatic, living mainly in coastal and surface 

waters (Paracalanus, Clausocalanus, Calanus, Calocalanus, Acartia, Centropages, Oithona and 

Euterpina), but some were characterised as very rare copepods  for  the Adriatic  (Pachos, 

Neocalanus) in previous studies [25–27]. In addition to free-living (pelagic or benthic) co-

pepods, the Southern Adriatic dataset also enabled the identification of some marine in-

vertebrate parasites/symbionts  (Pseudanthessius)  [78]. Our  results  also  confirm  that  the 

Southern Adriatic dataset shows a similar copepod diversity as the dataset from the Tyr-

rhenian Sea, which was also analysed with 18S metabarcoding [15]. 

 

Figure 6. Heatmap representing Southern Adriatic metazoan genera seasonal frequency of occur-

rence. Clustering of the dataset is indicated as dendrograms showing clustering of samples (merged 

according to season) with similar community structure and clustering of genera with similar sea-

sonal occurrence patterns. Division affiliation of each genus is indicated on the heatmap side edges. 

(A). Upset plot of the shared metazoan genera between the seasons (B). 

The division/phylum Cnidaria was represented in the dataset by the class Hydrozoa 

and Anthozoa (Figure 6A). While Anthozoa showed a low diversity with only two genera 

(Metridium and Tubastraea), the Hydrozoa comprised diverse orders; truly holoplanktonic 

(Siphonophorae and Trachymedusae) and hydrozoan medusae with obligate benthic life 

stagesthat form the meroplankton (Anthoathecata, Narcomedusae, Limnomedusae and 

Leptothecata). Together with copepods, hydrozoans were the most abundant group in the 

metazoan dataset. Hydrozoans accounted for 12% of all metazoan reads. In addition, most 

hydrozoan genera  (Liriope  (Limnomedusae), Clytia  (Leptothecata), Sulculeolaria  (Sipho-

nophorae)  and  Solmundella  (Narcomedusae)) were  recorded  throughout  the  year. The 

Figure 6. Heatmap representing Southern Adriatic metazoan genera seasonal frequency of occur-
rence. Clustering of the dataset is indicated as dendrograms showing clustering of samples (merged
according to season) with similar community structure and clustering of genera with similar seasonal
occurrence patterns. Division affiliation of each genus is indicated on the heatmap side edges. (A).
Upset plot of the shared metazoan genera between the seasons (B).

All other metazoan groups (Annelida, Mollusca, Ctenophora, Phoronida, Bryozoa,
Echinodermata, Nemertea, Platyhelminthes and Tunicata) together contributed 2% to the
abundance of metazoans and were represented by a smaller number of genera. They also
tended to occur sporadically and with lower seasonal abundance in the dataset (Figure 6A).
Nevertheless, temporal patterns were identified for the metazoan community of the South-
ern Adriatic. In addition to copepods, the genera of polychaetes (Annelida), the mero-
planktonic Polyophthalmus, the holoplanktonic Tomopteris, the holoplanktonic gastropod
genus Creseis (Mollusca) and the pelagic tunicate genus Doliolum (Thaliacea) were recorded
with high frequency of occurrence in all seasons (Figure 6A). The pelagic tunicate genus
Oikopleura (Appendicularia) was absent from the Southern Adriatic metabarcoding dataset
only in autumn. Similar to Tomopteris, another holoplanktonic polychaete genus (Ty-
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phloscolex) was recorded throughout the year, but Typhloscolex was absent in spring. The
other polychaete genera in the Southern Adriatic dataset were mostly recorded only in
winter–autumn, with the exception of Odontosyllis, a polychaete genus that was recorded
in summer (Figure 6). These other polychaetes, which only occur at certain times of the
year, make up the meroplankton community. Molluscs were generally present through-
out the year, with holoplanktonic Creseis present year round and seasonal occurrences of
meroplanktonic bivalve genera in winter (Barnea) and summer (Atrina and Hyotissa) or
gastropods (Calliopaea and Haminoea) in summer/autumn.

The phyla Phoronida, Bryozoa, Platyhelminthes and Ctenophora were represented
in the Southern Adriatic coastal dataset with the smallest number of genera (one or two)
(Figure 6A), all of which were previously recorded for the studied area. The metabarcoding
dataset record of Charistephane fugiens confirms the presence of this ctenophore in the
Southern Adriatic, which was recently described as a new species for the Adriatic Sea [43].
This previous research characterised C. fugiens as being associated with the winter months,
when there is a significant influx of Mediterranean water into the Southern Adriatic [43].
In our metabarcoding dataset, the annual occurrence of C. fugiens was also recorded only
once, in spring (April), suggesting that a year-round population of this species has not yet
been established/detected in the Southern Adriatic. However, further research, including
a higher temporal and spatial resolution of the sampling strategies, will be necessary to
clarify the distribution of the ctenophore C. fugiens distribution in the Southern Adriatic.

3.3. Network Analysis

In order to understand the complex interaction of the plankton community, an asso-
ciation network was created and analysed (Figure 7). Considering only associations with
higher correlation (threshold 0.4), 72 genera composed the plankton network of the South-
ern Adriatic. Ten clusters (functional groups within the community) were identified within
the network. The nodes (genera) in the clusters are strongly connected to each other but
have few connections to genera outside their cluster. The clusters of the Southern Adriatic
network counted between 12 and 2 nodes (genera) and were taxonomically diverse. The
established connections between protists and metazoans confirmed the complexity of the
interactions in the plankton community. The network clusters supported the seasonal patterns
of co-occurrence of protist and metazoan genera (Figures 5 and 6), and the identified hub
nodes correspond to the genera present throughout the year. When considering betweenness
centrality, the following seven genera (in descending order of betweenness centrality) were
identified as hub nodes (keystone taxa) within the plankton community in the Southern
Adriatic: Chaetoceros, Polyophthalmus, Zoothamnium, Meganyctiphanes, Metridium, Mecynocera
and Temora (Figure 7). Considering the degree centrality measure, the following seven genera
(in descending order of degree centrality measure) were identified as hub nodes: Lucicutia,
Corycaeus, Chaetoceros, Meganyctiphanes, Metridium, Paracalanus and Acartia.

As the planktonic organisms share the same habitat and influence each other, the iden-
tified hub genera may comprise representative patterns of the plankton community [20],
but the ecological role and importance of the associations established in the coastal South-
ern Adriatic network remain to be determined using a more comprehensive dataset. A
comparison of the networks created for the future metabarcoding data will provide infor-
mation on whether and how nodes (genera), clusters or the overall structure of the network
change from year to year.
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4. Conclusions

Our metabarcoding dataset provides the first comprehensive and united overview of
the Southern Adriatic eukaryotic biodiversity patterns over the course of the year. Seasonal
successions of the most important and highly diverse plankton groups were characterised,
with the reliably identified genus/species level representatives characterised. In addition to a
detailed description of the core, year-round eukaryotic plankton community, the metabarcoding
approach allowed us to uncover a previously unknown diversity in the Southern Adriatic.
This included taxa/genera ranging from pico-sized protist phytoplankton (Chloropicon and
Prasinococcus), heterotrophic protist radiolarians (Sphaerozoum, Disolenia and Collozoum), parasitic
dinoflagellates (Ellobiopsis) to metazoan Siphonophorae (Nanomia and Cordagalma). Taxa that
occur consistently in a studied area represent a “core community” while taxa that occur only
rarely form a “rare community”. For them, we must assume that our dataset may be unsuit-
able for characterizing seasonal patterns; characterisation and a sampling scheme with higher
temporal resolution will address this issue. Nonetheless, the new findings suggest that there
is great plankton diversity in this area that remains to be explored. In addition, the metabar-
coding dataset of the Southern Adriatic contains a collection of ASVs that cannot currently be
reliably identified to the species/genus level (due to a lack of reference sequences) but may
make an important contribution to the ecology and biodiversity of the Southern Adriatic and
Mediterranean. At the same time as characterising, the characterisation of taxonomic diversity
is restricted by microscopy, and our metabarcoding dataset has successfully confirmed seasonal
patterns and genus occurrences previously recorded by classical methods (microscopy) for the
studied area. These results indicate a potential successful application of metabarcoding for
marine monitoring, including the monitoring of invasive species and species not yet known.
Importantly for monitoring applications, metabarcoding has the potential to reveal additional
and previously unrecorded biodiversity. The results reported here show that a wide range of
planktonic life can be recorded and analysed simultaneously, which is important for down-
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stream analyses dealing with the intricate interactions in the planktonic network. The plankton
association network provided a high-level insight into the global structure of the community,
which needs to be further studied with more extensive spatiotemporal datasets. To summarise,
our results highlight the added value of metabarcoding-based research for monitoring marine
plankton. We have created the starting point to define the ecological context of the described
plankton community of the Southern Adriatic and their interactions. In order to assess the
consistency and ecological significance of the plankton diversity revealed by metabarcoding in
this study, further observations are required in the future.
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