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Abstract: Intramolecular cycloadditions have the great advantage of forming two rings simultane-
ously. We report the use of intramolecular [3 + 2] cycloaddition of the nitrile oxide derived from
an N-propargylbenzimidazole oxime in the synthesis of a hitherto unreported tetracyclic isoxazole-
containing ring system bearing “6-5-5-5”-membered ring fusions. The initial condensation was
achieved through reaction of o-phenylenediamine with ethyl diethoxyacetate, followed by alkylation
with propargyl bromide, deprotection of the acetal to the aldehyde, formation of an aldoxime, and
intramolecular nitrile oxide cycloaddition (INOC). Characterization of the aldoxime and tetracyclic
isoxazole is included herein.
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1. Introduction

When synthesizing polycyclic fused ring systems, employing intramolecular cycload-
ditions can efficiently form two rings in a single synthetic step. Previous reports have used
this strategy to their advantage. Meng and coworkers used the benzimidazole scaffold
and intramolecular cycloaddition of azomethine ylides to prepare a series of pyrrolidino
[2′,3′:3,4]pyrrolidino[1,2-a]benzimidazoles [1]. Benzimidazoles are prominent in many bio-
logically active compounds and play an important role as therapeutic agents (e.g., antiulcer
and anthelmintic drugs), in addition to displaying antimicrobial, antiviral, anticancer, anti-
inflammatory, and analgesic activity [2]. More recently, Villa and coworkers synthesized a
series of fused pyrrolo[3,4-b]quinoline compounds containing the benzimidazole core that
were found to exhibit antifungal activity against pathogenic fungal strains [3]. Cytotoxicity
was not demonstrated against mammalian cells at the concentration that inhibited fungal
growth [3]. We became interested in using the benzimidazole scaffold as a precursor for
hitherto unreported tetracyclic ring systems, especially using intramolecular cycloaddition.
Benzimidazoles offer two sites for functionalization on the imidazole ring: at the N-1H and
the C-2H.

Incorporating the isoxazole ring was of particular interest, as isoxazoles have unique
functionality through their reductive ring-opened products and are readily prepared via
[3 + 2] cycloaddition of a nitrile oxide and alkyne. One well-studied class of ring-opened
isoxazole products is the β-enaminones, which can be readily prepared via reductive
ring-opening through a number of methods (including catalytic hydrogenation with Pd/C
or Raney Ni) [4]. The resulting β-enaminone serves as a versatile precursor for various
heterocycles, as exemplified by its recent application in synthesizing anti-inflammatory
drugs such as celecoxib, deracoxib, and mavacoxib through the formation of pyrazoles
from β-enaminones [5]. A recent review has summarized reactions of β-enaminones [6].

We present a novel tetracyclic ring system that incorporates a benzimidazole and
an isoxazole, achieved by leveraging the substitution pattern of the benzimidazole and
employing INOC methodology.
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2. Results

Using a benzimidazole scaffold having INOC in mind, we devised a synthetic scheme
to afford aldoxime 5 based on the established synthesis of aldehyde 4 (Scheme 1) [1,3].
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Scheme 1. Synthesis of benzimidazole-containing aldoxime 5, alkylated with the propargyl moiety.

In the same manner as in previous reports [1,3], the synthesis outlined in Scheme 1
began with condensation of o-phenylenediamine 1 with ethyl diethoxyacetate in refluxing
ethanol. This formed benzimidazole 2 [1,7], which was deprotonated with NaH and
alkylated with propargyl bromide in dry THF to yield 3. The acetal-bearing benzimidazole
3 was hydrolyzed by heating in strongly acidic conditions to afford aldehyde 4. Aldoxime 5
was then prepared from aldehyde 4 by reaction with hydroxylamine hydrochloride, using
base to free hydroxylamine of its hydrochloride salt. Our goal when designing compound
5 was to place a dipolarophile (the alkyne) adjacent to a 1,3-dipolar species (a nitrile oxide,
easily generated in situ from the neighboring aldoxime). Indeed, a nitrile oxide intermediate
was formed in situ from aldoxime 5 by stirring in biphasic bleach and DCM. The INOC
reaction formed tetracyclic isoxazole 6 cleanly in 97% yield from 5 (Scheme 2).
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Scheme 2. In situ generation of a nitrile oxide from aldoxime 5, which engaged in a 1,3-dipolar
[3 + 2] cycloaddition with the neighboring alkyne to form isoxazolo-4H-[3’,4’:3,4]pyrrolo [1,2-
a]benzimidazole 6.

The 2D NMR spectra of 6 support assignment of the 13C-NMR signals. From the
HMBC spectrum (see Supplementary Material), the C-3H signal correlates with C-10b,
C3a, and C-4. The C-4H signal correlates with C-5a, C-3a, C-3, C-10a, and C-10b. The
C-6H signal correlates with C-5a and C-9a. The C-9H correlates with C-9a and C-5a. The
annotated 13C-NMR spectrum is shown in Figure 1.
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The aromatic region of the 1H NMR spectrum (see Supplementary Material) of 6
shows a singlet for the C-3H proton at δ 8.42, a doublet for the C-9H proton at δ 7.88, a
doublet for the C-6H proton at δ 7.46, and a multiplet for the C-7H and C-8H protons at δ
7.35. A few additional noteworthy points can be made about compound 6. Because the
alkyne and nitrile oxide moieties are effectively “locked in place” by the benzimidazole
ring, cycloaddition between the two produces an isoxazole with a 3,4-substitution pat-
tern. Isoxazoles of this substitution pattern can be challenging to synthesize, since under
conventional conditions and due largely to steric and electronic effects, 1,3-dipolar [3 + 2]
cycloadditions regioselectively form 3,5-disubstituted isoxazoles [8]. This regioselectivity
is often seen as an advantage, as mixtures of 3,5 and 3,4-isomers are avoided which would
be time-consuming to separate. Despite this, an inherent byproduct of this convenience is
difficulty obtaining 3,4-disubstiuted products. Isoxazoles with 3,4-substitution patterns can
be prepared via complexation of the alkyne prior to cycloaddition, but an organoruthenium
catalyst such as Cp*RuCl(COD) is needed [9].

Interestingly, compound 6 is a novel ring system at the time of this publication,
and rings bearing “6-5-5-5” ring fusions are rare in the current literature. Prior to this
work, syntheses of a related antiaromatic “6-5-5-5” system was reported by Wang and
coworkers [10]. Conjugated polymers of a new class of π–expanded diketopyrrolopyrrole
analogs demonstrated broad absorption in the visible region. The synthesis of a comparable
“5-5-5” system was also reported [11]. These accounts serve as precedents for this work,
and the components of the reported “5-5-5” system correspond to the “5-5-5” structural
section of 6.

3. Materials and Methods

All starting materials were purchased from commercially available sources and used
as obtained. All reactions were performed in a ventilated hood. THF was distilled prior
to use via a Na/ketyl still and stored over activated 4Å molecular sieves. Thin-layer chro-
matography (VWR International, Radnor, PA, USA) was performed on Agela Technologies
aluminum-backed silica gel plates and the products were observed under 254 nm UV light.
Flash chromatography was performed using Silicycle P60 silica gel (230–400 mesh). NMR
spectra (400 MHz for 1H and 100 MHz for 13C, Bruker Biospin Corp., Billerica, MA, USA)
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were measured in CDCl3 or DMSO-d6. Chemical shifts (δ) were given in ppm relative to the
resonance of their respective residual solvent peak, CHCl3 (7.27 ppm, 1H; 77.16 ppm, the
middle peak, 13C). Multiplicities were described using the following abbreviations: s = sin-
glet, d = doublet, t = triplet, q = quartet, m = multiplet. FT-IR experiments were performed
using an ATR Perkin Elmer Spectrum 1 instrument (PerkinElmer Corp., Waltham, MA,
USA) or Fisher Scientific Nicolet iS5 instrument (Thermo Fisher Scientific Co., Waltham,
MA, USA). High-resolution mass-spectrometry (MS) experiments were recorded using
an Applied Biosystems Voyager DE-STR MALDI-TOF (ABI) instrument (JBI Scientific,
Huntsville, TX, USA).

3.1. Synthesis of 1-(2-propyn-1-yl)-1H-benzimidazole-2-aldoxime (5)

To a 50 mL round-bottomed flask was added 600 mg hydroxylamine hydrochloride
(8.63 mmol, 1.5 eq.) along with a magnetic stir bar and 15 mL anhydrous EtOH. To this was
added 692 µL (8.59 mmol, 1.5 eq.) pyridine. The solution was allowed to stir for 15 min.
To this was then added 1.047 g 1-(2-propyn-1-yl)-1H-benzimidazole-2-carboxaldehyde (4)
(5.26 mmol, 1 eq.) and the solution was stirred at r.t. for 12 h and monitored via TLC (1:1
EtOAc/hexanes). Upon completion, the solvent was removed under reduced pressure,
10 mL EtOAc added, and the undissolved brown solid vacuum filtered. The filtered solid
was rinsed with EtOAc (3 × 10 mL) followed by deionized H2O (3 × 10 mL) and allowed
to dry over vacuum yielding 952 mg 1-(2-propyn-1-yl)-1H-benzimidazole-2-aldoxime (5) in
84% yield. Purification could be carried out if needed by recrystallizing in anhydrous EtOH
and rinsing the filtered solid with diethyl ether (3 × 10 mL). Tan solid, m.p.: 197–197.4 ◦C.
(952 mg, 84%); 1H-NMR (DMSO-d6, 400 MHz) δ 3.38 (t, 1H, J = 2.49 Hz), δ 5.47 (d, 2H,
J = 2.59 Hz), δ 7.30–7.38 (m, 2H, 7.04 Hz), δ 7.69 (t, 2H, 7.81 Hz), δ 8.31 (s, 1H), δ 12.21 (s,
1H); 13C-NMR (CDCl3, 100 MHz) δ 34.64, 75.84, 79.02, 111.18, 120.14, 123.17, 124.37, 135.81,
142.10, 142.92, 145.46. FT-IR (cm−1): 3300–3250 (w), 3250–2000 (br,w), 1004, 753 (s), 661;
HRMS (TOF-MS ES+) m/z [M + H]+ calc. for C11H10N3O: 200.0824. Found: 200.0831.

3.2. Synthesis of Isoxazolo-4H-[3’,4’:3,4]pyrrolo [1,2-a]benzimidazole (6)

To a 150 mL round-bottomed flask was added 1.125 g (5.65 mmol, 1 eq.) 1-(2-propyn-
1-yl)-1H-benzimidazole-2-aldoxime (5) followed by 65 mL DCM, which was vigorously
stirred and cooled to 0 ◦C in an ice bath. To this was slowly added 20 mL of 6% aqueous
NaOCl (6% commercial CloroxTM bleach) and 10 mL deionized H2O over the course
of 15 min. The ice bath was removed, and the mixture was allowed to stir at ambient
temperature for 12 h. The red solution was transferred to a separatory funnel and the
aqueous layer extracted with DCM (3 × 10 mL). The combined DCM extracts were washed
with brine (3 × 10 mL), dried over anhydrous Na2SO4, and the solvent removed under
reduced pressure to give 1.090 g of 6 in 97% yield. Purification was carried via flash
chromatography eluting with EtOAc/hexanes 4:1); TLC in EtOAc/hexanes 1:1, Rf = 0.37;
tan solid, m.p.: 199.2–199.8 ◦C; 1H-NMR (CDCl3, 400 MHz) δ 5.05 (d, 2H, 1.07 Hz), δ
7.35–7.87 (m, 4H), δ 8.41 (s, 1H); 13C-NMR (CDCl3, 100 MHz) δ 41.41, 109.66, 121.85, 123.27,
123.55, 124.39, 132.71, 145.71, 148.39, 150.59, 158.36. FT-IR (cm−1): 3150–3110, 3075–3045,
1643, 1356, 838, 728; HRMS (TOF-MS ES+) m/z [M + H]+ calc. for C11H8N3O: 198.0667.
Found: 198.0673.

4. Conclusions

The aforementioned work demonstrated the intramolecular 1,3-dipolar [3 + 2] cy-
cloaddition of a nitrile oxide and alkyne to form two fused five-membered rings within a
larger heterocyclic ring system. In total, a new ring system was created which places one
six-membered ring fused to three heterocyclic five-membered rings (a “6-5-5-5” ring fusion
pattern). There are few examples of this ring fusion pattern in the current literature, and
this study suggests that ring strain need not play a significant role in the prevention of other
ring systems with this fusion pattern. With respect to derivatization of 5 and 6, the starting
diamine in the first synthetic step (1), as well as the alkyne-containing bromide used in the
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second step, can both be varied to introduce molecular diversity. Various commercially
available o-phenylenediamines exist (such as dimethyl and various dihalide derivatives),
and the synthesis is not limited to terminal alkynyl bromides. Internal alkynes can po-
tentially lead to 3-substituted isoxazole moieties, which can ring-open to β-enaminones,
known to serve as precursors to a number of other heterocycles [12]. Broadly, because
two rings are formed in a single step, INOC is shown to be an efficient tool to aid in the
construction of polycyclic fused heterocyclic ring systems.

Supplementary Materials: The following supplementary material can be downloaded: 1H-NMR,
13C-NMR, HSQC, HMBC, IR, and HRMS mass spectral data of compounds 5 and 6.
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