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Abstract: The photoredox-catalyzed decarboxylative cross-coupling reaction of aryl acetic acids and
aryl nitriles has been achieved under an argon atmosphere in high yields. This method provides a
fast way to obtain prevalent aryl acetic acids from an abundant natural source. A tentative radical
mechanism has been proposed.
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1. Introduction

Diarylmethane motifs play a prominent role in the natural, bioactive and pharmaceu-
tical product industries [1,2]. Some examples of anticancer agents include anastrozole [3],
pitracoxin [4] and diindolemethane [5] (Figure 1). Anastrozole and letrozole are known to
have pharmacological activity against breast cancer. Pharmacological experiments have
shown that piritrexim has a significant inhibitory effect on dihydrofolate reductase of
leukemia cells and is mainly used in the treatment of malignant tumors. Diindolemethane
is present in cruciferous plants and also exhibits anticancer effects. Beclobrate [6] is a potent
drug used to lower lipids and is about 20 times more effective than clofibrate. It also has
some inhibition activity on platelet aggregation. Terfenadine is a second-generation antihis-
tamine that is more selective to H1 receptors than the first generation and less irritating
to the central nervous system [7]. It has been reported that some molecules containing
diarylmethane skeleton may have a certain inhibitory effect on COVID-19 [8]. Carboxylic
acids are widely employed as raw materials in organic synthesis because of their features
of low toxicity, high stability and rich reserves. 3-indoleacetic acid (IAA) was detected by
Salkowski in 1885 [9], who demonstrated that it can not only regulate the growth of plants
but can also facilitate other aspects of plant development. In addition, the IAA industry is
currently maintaining a stable market growth [10]. Therefore, the transformation of IAA
and synthesis of diarylmethanes are highly appealing in organic chemistry due to their
significant importance.

There are many ways to synthesize diarylmethane [11–14], and the conventional
methods include (Scheme 1) (a) functionalization of arenes by means of a Friedel–Crafts
reaction [15–18], (b) cross-coupling reaction [19–26], and (c) reduction reaction [27,28].
Among them, the typical approaches demand a high temperature and high pressure, which
are generally achieved using highly demanded equipment. Recently, direct decarboxylative
cross-coupling reactions have attracted researchers’ attention. In 2018, Lundgren and
co-workers [29] reported the Cu-catalyzed decarboxylative cross-coupling reaction of aryl
acetic acids and boronic esters to diarylmethanes. In 2021, our group [30] reported the
decarboxylative cross-coupling reaction of NHPI with indoles to deliver a broad scope of
diarylmethanes. Furthermore, photo-catalyzed chemistry takes over a major area in organic
synthesis on account of its environmentally friendly. MacMillan [31–34] and other research
groups [35–38] have explored lots of novel works on photochemical decarboxylation. Aryl
nitriles were converted to their radical anion via SET reduction and underwent radical
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addition followed by decyanation [39–41]. With great efforts, we report the photoredox-
catalyzed decarboxylative cross-coupling reaction of aryl acetic acids and aryl nitriles under
an argon atmosphere in high yields.

Molecules 2024, 29, x FOR PEER REVIEW 2 of 12 
 

 

 
Figure 1. The represent drugs containing diarylmethane scaffolds. 

There are many ways to synthesize diarylmethane [11–14], and the conventional 
methods include (Scheme 1) (a) functionalization of arenes by means of a Friedel–Crafts 
reaction [15–18], (b) cross-coupling reaction [19–26], and (c) reduction reaction [27,28]. 
Among them, the typical approaches demand a high temperature and high pressure, 
which are generally achieved using highly demanded equipment. Recently, direct decar-
boxylative cross-coupling reactions have attracted researchers’ attention. In 2018, 
Lundgren and co-workers [29] reported the Cu-catalyzed decarboxylative cross-coupling 
reaction of aryl acetic acids and boronic esters to diarylmethanes. In 2021, our group [30] 
reported the decarboxylative cross-coupling reaction of NHPI with indoles to deliver a 
broad scope of diarylmethanes. Furthermore, photo-catalyzed chemistry takes over a ma-
jor area in organic synthesis on account of its environmentally friendly. MacMillan [31–
34] and other research groups [35–38] have explored lots of novel works on photochemical 
decarboxylation. Aryl nitriles were converted to their radical anion via SET reduction and 
underwent radical addition followed by decyanation [39–41]. With great efforts, we report 
the photoredox-catalyzed decarboxylative cross-coupling reaction of aryl acetic acids and 
aryl nitriles under an argon atmosphere in high yields. 

 
Scheme 1. The conventional methods toward synthesis of diarylmethanes. 

2. Results 
Initially, our investigations focused on the blue LED irradiation of 3-indoleacetic acid 

(IAA) 1a and 1,4-dicyanobenzene (1,4-DCB) 2a in DMSO under argon atmosphere using 
2 mol% of fac-Ir(ppy)3 in the presence of K2CO3 at room temperature. To our delight, the 
diarylmethane 3a was given in 82% isolated yield (Table 1, entry 1). No reaction took place 

Figure 1. The represent drugs containing diarylmethane scaffolds.

Molecules 2024, 29, x FOR PEER REVIEW 2 of 12 
 

 

 
Figure 1. The represent drugs containing diarylmethane scaffolds. 

There are many ways to synthesize diarylmethane [11–14], and the conventional 
methods include (Scheme 1) (a) functionalization of arenes by means of a Friedel–Crafts 
reaction [15–18], (b) cross-coupling reaction [19–26], and (c) reduction reaction [27,28]. 
Among them, the typical approaches demand a high temperature and high pressure, 
which are generally achieved using highly demanded equipment. Recently, direct decar-
boxylative cross-coupling reactions have attracted researchers’ attention. In 2018, 
Lundgren and co-workers [29] reported the Cu-catalyzed decarboxylative cross-coupling 
reaction of aryl acetic acids and boronic esters to diarylmethanes. In 2021, our group [30] 
reported the decarboxylative cross-coupling reaction of NHPI with indoles to deliver a 
broad scope of diarylmethanes. Furthermore, photo-catalyzed chemistry takes over a ma-
jor area in organic synthesis on account of its environmentally friendly. MacMillan [31–
34] and other research groups [35–38] have explored lots of novel works on photochemical 
decarboxylation. Aryl nitriles were converted to their radical anion via SET reduction and 
underwent radical addition followed by decyanation [39–41]. With great efforts, we report 
the photoredox-catalyzed decarboxylative cross-coupling reaction of aryl acetic acids and 
aryl nitriles under an argon atmosphere in high yields. 

 
Scheme 1. The conventional methods toward synthesis of diarylmethanes. 

2. Results 
Initially, our investigations focused on the blue LED irradiation of 3-indoleacetic acid 

(IAA) 1a and 1,4-dicyanobenzene (1,4-DCB) 2a in DMSO under argon atmosphere using 
2 mol% of fac-Ir(ppy)3 in the presence of K2CO3 at room temperature. To our delight, the 
diarylmethane 3a was given in 82% isolated yield (Table 1, entry 1). No reaction took place 

Scheme 1. The conventional methods toward synthesis of diarylmethanes.

2. Results

Initially, our investigations focused on the blue LED irradiation of 3-indoleacetic acid
(IAA) 1a and 1,4-dicyanobenzene (1,4-DCB) 2a in DMSO under argon atmosphere using
2 mol% of fac-Ir(ppy)3 in the presence of K2CO3 at room temperature. To our delight, the
diarylmethane 3a was given in 82% isolated yield (Table 1, entry 1). No reaction took
place when the reaction was performed without LED irradiation or without fac-Ir(ppy)3,
resulting in the recovery of substrates 1a and 2a (Table 1, entries 2–3). When fac-Ir(ppy)3
as the photosensitizer was replaced by [Ir(dtbbpy)(ppy)2]PF6, the yield dropped to 53%
(Table 1, entry 4). Furthermore, nearly no product was detected when the other photosensi-
tizers including organic photocatalysts eosin Y and rose bengal were employed (Table 1,
entries 5–7). The yield of the decarboxylation cross-coupling reaction dropped to 30%
in the absence of a base (Table 1, entry 8). This reaction could also proceed when using
other bases, such as K3PO4, NaOAc and CsF, but the yields decreased to some extent
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(Table 1, entries 9–11). In addition, DMSO was more optimal than other solvents for the
transformation, (Table 1, entries 12–14). while the reaction did not occur when DCM was
used as the solvent (Table 1, entry 12). The desired product was given with good yield
in MeCN and DMA (Table 1, entries 13–14). Finally, we found that only trace amounts of
diarylmethane were obtained when the reaction was performed under an air atmosphere
(Table 1, entry 15). This result implies a radical involved mechanism in the reaction because
of the biradical feature of the O2 molecule.

Table 1. Screening of reaction conditions a.
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With the above optimal conditions in hand, we examined the scope of aryl acetic
acids with 1,4-DCB to decarboxylative cross-coupling reaction. As shown in Table 2, all
aryl acetic acid derivatives 1a–1h reacted smoothly with 2a to obtain the unsymmetrical
diarylmethanes 3a–3h in good to excellent yields. First, alkyl and methoxy substituted
heterocyclic acids could provide the corresponding products in yields of 73% (3b), 76%
(3c) and 75% (3d), respectively. Moreover, phenyl acetic acid derivatives can also deliver
this desired transformation (3e–3g). Homoveratric acid was coupled to 1,4-DCB to furnish
product 3f in 83% yield. It is worth noting that the medicine molecule Naproxen was
tolerated with the mild reaction conditions to obtain target product 3h in moderate yields,
which is the property of non-steroidal anti-inflammatory group agents. This implies the
synthetic potential of our approaches to medicinal chemistry.

Next, a range of cyanoaromatics and cyano-heteroaromatics were capable of participat-
ing decarboxylative cross-coupling reaction with excellent yields (4a–4f, 71–80%) in Table 3.
2-methylterephthalonitrile was successfully converted into the corresponding product in
80% yield (4a). In addition, isonicotinonitrile was tolerated under the standard conditions
(4b). Finally, it is worth noting that isonicotinonitrile with halogen substituents were all
compatible reaction partners (4c–4e).
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Table 2. Scope of the decarboxylative cross-coupling reaction of various aryl acetic acids with
1,4-DCB a,b.
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Table 3. Scope of the decarboxylative cross-coupling reaction of various aryl nitriles with 3-indo
leacetic acid a,b.
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In addition, the practicality of this decarboxylative cross-coupling reaction was further
proved by a gram-scale reaction (Scheme 2). When the reaction was carried out under
photoredox-catalyzed method, the objected unsymmetrical diarylmethanes 3a could be
gained in high isolated yield (69%).
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A series of control experiments were achieved to gain more information about the de-
carboxylative cross-coupling reaction mechanism between aryl acetic acids and aryl nitriles
(Scheme 3). Initially, the reaction of 3-indoleacetic acid (1a) with 1,4-DCB (2a) was con-
ducted in the presence of radical scavenger TEMPO (2,2,6,6-tetramethylpiperidine) under
standard reaction conditions (Scheme 3A), and only a trace amount of compound 3a was
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perceived, and TEMPO-trapping compounds could be discerned by HRMS (Scheme 3A),
and homocoupling dimer could be detected by HRMS too (Scheme 3A). Then, the radical
intermediate in the reaction was compromised by some cyclizations [42] (Scheme 3B).
Dienes caused addition/cyclization compatible with intramolecular radical addition based
upon HRMS analysis. Finally, the light on/off experiment (Scheme 3C) also verifies that the
reaction involves a radical process [43]. These control experiments reveal that this reaction
involved radical intermediates.
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Guided by the above experimental results and previous literature [44–49], a plausible
mechanism is presented in Scheme 4 for a photoredox-catalyzed decarboxylative cross-
coupling reaction. In the first place, the irradiation of photocatalyst PC [Ir(ppy)3] with
visible light produces a photoexcited state PC*[*Ir(ppy)3], which is a strong reductant
(E1/2

red [IrIV/*IrIII] = −1.73 V vs. SCE) [50]. We assumed that the reduction of 1,4-DCB
(E1/2

red = −1.61 V vs. SCE) [51] by single electron transfer to form the corresponding radical
anion intermediate A and oxidized photocatalyst PC−e [IrIV(ppy)3] would be easy. Then,
the PC−e [IrIV(ppy)3] is a strong oxidant (E1/2

red = +0.77 V vs. SCE) and could undergo
a single electron transfer with 3-indoleacetic acid substrate [52] to deliver the radical
intermediate B with the elimination of CO2, together with regenerating PC [IrIII(ppy)3] and
finishing the photoredox cycle. Finally, the radical–radical coupling of intermediate A with
B and then aromatization with loss of CN− would produce the diarylmethane.
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3. Materials and Methods
3.1. General Information

All materials, reagents and solvents were purchased from commercial suppliers and
were used without further purification. Analytical TLC was performed with silica gel
GF254 plates, and the products were visualized by UV detection. Flash chromatography
was carried out using silica gel 200–300. The 1H NMR (400 or 600 MHz) and 13C NMR
(151 MHz) spectra were measured with CDCl3 as solvent. All chemical shifts (δ) are
reported in ppm and coupling constants (J) in Hz. High-resolution mass spectra (HR-MS)
were recorded under electrospray ionization (ESI) conditions.

3.2. General Procedure for Light-Promoted Decarboxylative Cross-Coupling Reaction between Aryl
Acetic Acids and 1,4-Dicyanobenzene

Aryl acetic acids (1, 0.2 mmol), 1,4-dicyanobenzene (2a, 0.1 mmol), K2CO3 (1 equiv.)
and fac-Ir(ppy)3 (2 mol%) were successively added to a dried reaction tube (10 mL) with a
magnetic stirring bar. Air was then withdrawn and backfilled with argon 3 times. Subse-
quently, degassed DMSO (1 mL) was injected into the tube by syringe. Then, the resulting
reaction mixture was performed at room temperature under blue LED (6 W) irradiation for
3–24 h. The reaction progress was monitored by TLC. After the reactions were completed,
the reaction mixture was diluted with water (10 mL) and washed with EA (3 × 10 mL).
The combined organic layers were dried over anhydrous Na2SO4 and concentrated under
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reduced pressure. The residue was purified by column chromatography to afford the
desired compounds 3 (ethylacetate/n-Hexane = 1:8 to 1:100).

4-((1H-indol-3-yl)methyl)benzonitrile (3a): The desired pure product was obtained in
82% yield as a white solid. 1H NMR (400 MHz, CDCl3) δ 8.08 (s, 1H), 7.60–7.52 (m, 2H),
7.47–7.32 (m, 4H), 7.25–7.16 (m, 1H), 7.14–7.04 (m, 1H), 6.98 (d, J = 2.3 Hz, 1H), 4.18 (s, 2H).
13C NMR (151 MHz, CDCl3) δ 147.0, 136. 5, 132.2, 129.3, 127.1, 122.6, 122.3, 119.6, 119.1,
118.8, 113.9, 111.3, 109.7, 31.8. HRMS (ESI) exact mass calcd for C16H14N2 [M+H]+ m/z
233.1073, found 233.1083.

4-((1-methyl-1H-indol-3-yl)methyl)benzonitrile (3b): The desired pure product was ob-
tained in 73% yield as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.50 (d, J = 8.2 Hz, 2H),
7.39 (d, J = 7.9 Hz, 1H), 7.32 (d, J = 8.2 Hz, 2H), 7.28 (d, J = 8.2 Hz, 1H), 7.23–7.16 (m, 1H),
7.10–7.01 (m, 1H), 6.78 (s, 1H), 4.12 (s, 2H), 3.71 (s, 3H). 13C NMR (151 MHz, CDCl3) δ
147.3, 137.3, 132.2, 129.4, 127.6, 127.4, 121.9, 119.2, 119.1, 119.0, 112.4, 109.7, 109.4, 32.7, 31.7.
HRMS (ESI) exact mass calcd for C17H15N2 [M+H]+ m/z 247.1235, found 247.1240.

4-((2-methyl-1H-indol-3-yl)methyl)benzonitrile (3c): The desired pure product was ob-
tained in 76% yield as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.87 (s, 1H), 7.45 (d,
J = 8.1 Hz, 2H), 7.31–7.21 (m, 4H), 7.10 (t, J = 7.5 Hz, 1H), 7.02 (t, J = 7.4 Hz, 1H), 4.06 (s,
2H), 2.31 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 147.5, 135.4, 132.2, 132.2, 129.1, 128.5, 121.3,
119.5, 119.3, 118.0, 110.5, 109.4, 108.9, 30.4, 11.7. HRMS (ESI) exact mass calcd for C17H15N2
[M+H]+ m/z 247.1235, found 247.1229.

4-((5-methoxy-1H-indol-3-yl)methyl)benzonitrile (3d): The desired pure product was
obtained in 75% yield as a white solid. 1H NMR (600 MHz, CDCl3) δ 7.98 (s, 1H), 7.54 (d,
J = 8.2 Hz, 2H), 7.36 (d, J = 8.2 Hz, 2H), 7.26 (d, J = 8.8 Hz, 1H), 6.93 (d, J = 0.9 Hz, 1H),
6.89–6.85 (m, 1H), 6.84 (d, J = 2.3 Hz, 1H), 4.13 (s, 2H), 3.79 (s, 3H). 13C NMR (151 MHz,
CDCl3) δ 154.1, 146.9, 132.2, 131.6, 129.3, 127.5, 123.4, 119.1, 113.6, 112.3, 112.0, 109.7, 100.9,
55.9, 31.8. HRMS (ESI) exact mass calcd for C17H15N2O [M+H]+ m/z 263.1184, found
263.1185.

4-(4-methoxybenzyl)benzonitrile (3e): The desired pure product was obtained in 41%
yield as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.56 (d, J = 8.0 Hz, 2H), 7.28 (s, 2H),
7.08 (d, J = 8.3 Hz, 2H), 6.85 (d, J = 8.4 Hz, 2H), 3.97 (s, 2H), 3.79 (s, 3H). 13C NMR (151 MHz,
CDCl3) δ 158.3, 147.2, 132.2, 131.4, 129.9, 129.5, 119.0, 114.1, 109.9, 55.3, 41.1. HRMS (ESI)
exact mass calcd for C15H14NO [M+H]+ m/z 224.1075, found 224.1079.

4-(3,4-dimethoxybenzyl)benzonitrile (3f): The desired pure product was obtained in 83%
yield as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.57 (d, J = 8.1 Hz, 2H), 7.28 (d,
J = 7.8 Hz, 2H), 6.82 (d, J = 8.1 Hz, 1H), 6.72–6.69 (m, 1H), 6.66 (s, 1H), 3.98 (s, 2H), 3.86
(s, 3H), 3.83 (s, 3H). 13C NMR (151 MHz, CDCl3) δ 149.1, 147.8, 147.0, 132.2, 131.8, 129.5,
121.0, 119.0, 112.2, 111.4, 110.0, 55.9, 55.9, 41.5. HRMS (ESI) exact mass calcd for C16H16NO2
[M+H]+ m/z 254.1181, found 254.1187.

4-(benzo[d][1,3]dioxol-5-ylmethyl)benzonitrile (3g): The desired pure product was ob-
tained in 79% yield as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.56 (d, J = 7.9 Hz, 2H),
7.26 (d, J = 7.8 Hz, 2H), 6.75 (d, J = 7.8 Hz, 1H), 6.62 (d, J = 11.4 Hz, 2H), 5.92 (s, 2H), 3.93
(s, 2H). 13C NMR (151 MHz, CDCl3) δ 147.9, 146.9, 146.3, 133.0, 132.3, 129.5, 121.9, 119.0,
110.1, 109.3, 108.4, 101.0, 41.6. HRMS (ESI) exact mass calcd for C15H12NO2 [M+H]+ m/z
238.0868, found 238.0859.

4-(1-(6-methoxynaphthalen-2-yl)ethyl)benzonitrile (3h): The desired pure product was
obtained in 36% yield as a white solid. 1H NMR (400 MHz, CDCl3) δ 7.70 (d, J = 8.9 Hz,
1H), 7.66 (d, J = 8.5 Hz, 1H), 7.60 (s, 1H), 7.57 (d, J = 8.0 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H),
7.20 (d, J = 8.9 Hz, 1H), 7.17–7.13 (m, 1H), 7.11 (s, 1H), 4.33 (q, J = 7.2 Hz, 1H), 3.91 (s, 3H),
1.72 (d, J = 7.2 Hz, 3H). 13C NMR (151 MHz, CDCl3) δ 157.6, 152.0, 139.7, 133.3, 132.2, 129.2,
128.9, 128.5, 127.2, 126.8, 125.4, 119.0, 109.9, 105.6, 55.3, 44.8, 21.4. HRMS (ESI) exact mass
calcd for C20H18NO [M+H]+ m/z 288.1388, found 288.1382.
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3.3. General Procedure for Light-Promoted Decarboxylative Cross-Coupling Reaction between
3-Indoleacetic Acid and Nitriles

3-indoleacetic acid (1a, 0.2 mmol), nitriles (2, 0.1 mmol), K2CO3 (1 equiv.) and fac-
Ir(ppy)3 (2 mol%) were successively added to a dried reaction tube (10 mL) with a magnetic
stirring bar. Air was then withdrawn and backfilled with argon 3 times. Subsequently,
degassed DMSO (1 mL) was injected into the tube by syringe. Then, the resulting reaction
mixture was performed at room temperature under blue LED (6 W) irradiation for 3 h.
The reaction progress was monitored by TLC. After the reactions were completed, the
reaction mixture was diluted with water (10 mL) and washed with EA (3 × 10 mL). The
combined organic layers were dried over anhydrous Na2SO4 and concentrated under
reduced pressure. The residue was purified by column chromatography to afford the
desired compounds 4 (ethylacetate/n-Hexane = 1:3 to 1:10).

4-((1H-indol-3-yl)methyl)-2-methylbenzonitrile (4a) and 4-((1H-indol-3-yl)methyl)-3-methyl
benzonitrile (4a’): The desired pure product was obtained in 80% yield as a white solid
(rr = 4:5). 1H NMR (400 MHz, CDCl3) δ 8.07 (s, 1H), 7.53–7.39 (m, 2H), 7.36 (d, J = 3.6 Hz,
1H), 7.26–7.11 (m, 3H), 7.11–7.02 (m, 1H), 6.94 (s, 0.4H), 6.75 (s, 0.5H), 4.10 (d, J = 6.7 Hz,
2H), 2.46 (s, 1.3H), 2.35 (s, 1.7H). 13C NMR (151 MHz, CDCl3) δ 146.9, 145.1, 141.9, 137.9,
136.5, 133.4, 132.5, 130.5, 129.9, 129.8, 127.2, 127.2, 126.6, 122.6, 122.3, 122.3, 119.6, 119.4,
118.9, 118.8, 118.5, 114.0, 113.2, 111.3, 111.3, 110.1, 109.8, 31.7, 29.5, 20.5, 19.4. HRMS (ESI)
exact mass calcd for C17H15N2 [M+H]+ m/z 247.1235, found 247.1240.

3-(pyridin-4-ylmethyl)-1H-indole (4b): The desired pure product was obtained in 72%
yield as a white solid. 1H NMR (400 MHz, CDCl3) δ 8.85 (s, 1H), 8.47 (d, J = 5.0 Hz, 2H),
7.43 (d, J = 7.8 Hz, 1H), 7.34 (d, J = 8.1 Hz, 1H), 7.18 (t, J = 6.7 Hz, 3H), 7.07 (t, J = 7.4 Hz,
1H), 6.96 (s, 1H), 4.10 (s, 2H). 13C NMR (151 MHz, CDCl3) δ 150.8, 149.4, 136.6, 127.2, 124.2,
122.9, 122.2, 119.5, 118.8, 113.0, 111.4, 31.1. HRMS (ESI) exact mass calcd for C14H13N2
[M+H]+ m/z 209.1079, found 209.1082.

3-((2-fluoropyridin-4-yl)methyl)-1H-indole (4c): The desired pure product was obtained
in 71% yield as a white solid. 1H NMR (400 MHz, CDCl3) δ 1H NMR (400 MHz, CDCl3) δ
8.18 (s, 1H), 8.08 (d, J = 5.1 Hz, 1H), 7.46–7.31 (m, 2H), 7.24–7.19 (m, 1H), 7.14–7.06 (m, 2H),
7.02 (s, 1H), 6.80 (s, 1H), 4.14 (s, 2H). 13C NMR (151 MHz, CDCl3) δ 164.2 (d, J = 238.2 Hz),
156.6 (d, J = 7.6 Hz), 147.2 (d, J = 15.1 Hz), 136.4, 127.0, 122.7, 122.5, 121.7 (d, J = 3.9 Hz),
119.8, 118.7, 112.6, 111.3, 109.2 (d, J = 37.0 Hz), 30.9, 30.9. HRMS (ESI) exact mass calcd for
C14H12FN2 [M+H]+ m/z 227.0985, found 227.0989.

3-((2-chloropyridin-4-yl)methyl)-1H-indole (4d): The desired pure product was obtained
in 74% yield as a white solid. 1H NMR (400 MHz, CDCl3) δ 8.31 (s, 1H), 8.24 (d, J = 5.1 Hz,
1H), 7.47–7.36 (m, 2H), 7.22 (t, J = 7.5 Hz, 2H), 7.15–7.06 (m, 2H), 7.00 (s, 1H), 4.09 (s, 2H).
13C NMR (151 MHz, CDCl3) δ 154.0, 151.6, 149.4, 136.4, 126.9, 124.2, 122.8, 122.8, 122. 5,
119.8, 118.7, 112.5, 111.3, 30.8. HRMS (ESI) exact mass calcd for C14H12ClN2 [M+H]+ m/z
243.0689, found 243.0683.

3-((3-chloropyridin-4-yl)methyl)-1H-indole (4e): The desired pure product was obtained
in 79% yield as a white solid. 1H NMR (400 MHz, CDCl3) δ 8.59 (s, 1H), 8.55 (d,
J = 2.3 Hz, 1H), 8.30 (d, J = 5.0 Hz, 1H), 7.48 (d, J = 7.9 Hz, 1H), 7.39 (d, J = 8.1 Hz,
1H), 7.22 (d, J = 7.2 Hz, 1H), 7.16–7.10 (m, 1H), 7.08 (d, J = 5.0 Hz, 1H), 7.03 (d, J = 2.1 Hz,
1H), 4.23 (s, 2H). 13C NMR (151 MHz, CDCl3) δ 148.9, 148.0, 147.5, 136.4, 132.1, 127.1, 125.0,
123.2, 122.4, 119.7, 118.8, 111.4, 111.4, 28.5. HRMS (ESI) exact mass calcd for C14H12ClN2
[M+H]+ m/z 243.0689, found 243.0692.

3.4. Scale-Up Experiment

3-Indoleacetic acid (1a, 15 mmol), 1,4-dicyanobenzene (2a, 7.5 mmol), K2CO3 (7.5 mmol)
and fac-Ir(ppy)3 (1 mol%) were successively added to a dried reaction tube (100 mL) with a
magnetic stirring bar. Air was then withdrawn and backfilled with argon 3 times. Subse-
quently, degassed DMSO (25 mL) was injected into the tube by syringe. Then, the resulting
reaction mixture was performed at room temperature under blue LED (6 W) irradiation
for 15 h. After the reaction was completed, the reaction mixture was diluted with water



Molecules 2024, 29, 2156 10 of 12

(50 mL) and washed with EA (3 × 50 mL). The combined organic layers were dried over
anhydrous Na2SO4 and concentrated under reduced pressure. The residue was purified by
column chromatography (ethylacetate/n-Hexane = 1:8) to afford the desired compound 3a
(1.2056 g, 69%).

3.5. The Light On/Off Experiment

Following the literature procedure [53], to a dried reaction tube (10 mL) with a mag-
netic stirring bar were added 3-Indoleacetic acid (1a, 0.2 mmol), 1,4-dicyanobenzene (2a,
0.1 mmol), K2CO3 (1 equiv.) and fac-Ir(ppy)3 (2 mol%) successively. Air was then with-
drawn and backfilled with argon 3 times. Subsequently, degassed DMSO (1 mL) was
injected into the tube by syringe. Then, the resulting reaction mixture was performed at
room temperature under blue LED (6 W) irradiation. eight identical reactions were carried
out simultaneously and yield was determined by 1H NMR of the crude mixture using 1,3,5-
trimethylbenzene (13.9 µL, 0.10 mmol, 0.5 equiv.) as internal standard. The experiments
with continuous intervals of irradiation and dark periods led to total interruption of the
reaction proceed in the absence of light, and reactivity is restored under further light (The
details are in the Supplementary Materials). These results indicated that light is an essential
component of the reaction.

4. Conclusions

In summary, we have described a photoredox-catalyzed decarboxylative cross-coupling
reaction of aryl acetic acids and aryl nitriles achieved under an argon atmosphere in high
yields. A tentative radical mechanism has been proposed. Further studies of the detailed
reaction mechanism and application are underway in our laboratory.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules29092156/s1, Part 1, Experimental Section; Part 2,
Scale-up experiment; Part 3, The light on/off experiment; Part 4, Characterizations of compounds;
Part 5, NMR spectra of the products.
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