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Abstract: Monitoring hydrogen sulfide (H2S) in living organisms is very important because H2S acts
as a regulator in many physiological and pathological processes. Upregulation of endogenous H2S
concentration has been shown to be closely related to the occurrence and development of tumors,
atherosclerosis, neurodegenerative diseases and diabetes. Herin, a novel fluorescent probe HND
with aggregation-induced emission was designed. Impressively, HND exhibited a high selectivity,
fast response (1 min) and low detection limit (0.61 µM) for H2S in PBS buffer (10 mM, pH = 7.42).
Moreover, the reaction mechanism between HND and H2S was conducted by Job’s plot, HR-MS, and
DFT. In particular, HND was successfully employed to detect H2S in HeLa cells.
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1. Introduction

H2S is considered to be an important endogenous gaseous transmitter and plays a cru-
cial role in the regulation of intracellular redox status, angiogenesis and anti-inflammatory
effects in living organisms [1–3]. It is generated from L-cysteine or catalyzed by cysteine
sulfide β-synthases and cysteine sulfide γ-lyase [4]. Evidence showed that the upregula-
tion of H2S concentration is closely related to the occurrence and development of tumors,
atherosclerosis, neurodegenerative diseases, diabetes and so on [5–9]. Therefore, it is nec-
essary to construct a new H2S instantaneous detection method with high sensitivity and
selectivity to evaluate H2S levels in biological systems.

Currently, many H2S-activatable small-molecule fluorescent probes have been devel-
oped based on different reaction mechanisms, such as the removal of copper ion via copper
sulfide precipitation, nucleophilic addition or the reduction of azides/or nitros to amines
mediated by the thiolysis of dinitrophenyl ether [7,10–15]. However, some of them are
based on hydrophobic organic fluorescent groups, which have the disadvantage of poor
water solubility and easy aggregation to form precipitates in aqueous solutions, thereby
reducing the responsivity to the analyte and limiting the practical application of organic
fluorescent molecular probes in biological imaging. Due to the advantages of excellent pho-
tostability and biocompatibility of aggregation-induced emission (AIE), a lot of fluorescent
probes with AIE effect for H2S have been synthesized. However, most of the fluorescent
probes with AIE effect are based on the molecular skeleton of tetrastyrene (TPE) [16,17]
and have relatively complex molecular structures, which increases the difficulty of AIE
molecular design and synthesis. Therefore, the design of efficient AIE bioluminescent
materials with simple molecular structures and simple synthesis remains a challenge.

In this paper, a novel AIE activity fluorescent probe, named 2-hydroxy-1-naphthalaldehyde
N-(dimethylamino)benzaldehyde (HND) was conducted. The mechanism was tested by
Job’s plot, HR-MS, and DFT, and revealed that the two C=N double bonds in the structure of
HND were used to provide a receptor unit for H2S. Compared with early reports (Table S1),
HND exhibits a comparable limit of detection and a fast response. Furthermore, HND
realized the detection of H2S in HeLa cells.
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2. Results and Discussion
2.1. AIE Effect of HND in Solution

To better understand the AIE effect of HND, the fluorescence properties of HND
in a mixed solvent system of DMSO and H2O were first investigated. As an exception,
HND showed no fluorescence signal when dissolved in the good solvent DMSO, while the
fluorescence signal at 536 nm could be turned on and gradually increased with the increase
in water volume fraction; an 8.23-fold increase was observed when the water volume
fraction increased to 60% (as shown in Figure 1a). With the water volume fraction increased
from 60% to 100%, the fluorescence signal reduced slightly. The photographs given in
Figure 1d show the color change in HND with increasing water content. A clear yellow
fluorescence was observed under a 365 nm lamp. These results indicated that the compound
HND is a typical aggregation-induced emission (AIE) active compound in the aqueous
medium [18]. Herein, DMSO is a good solvent and water is a poor solvent for HND [19].
The reason for the fluorescence enhancement of HND in DMSO is because the radiation
channel was opened, leading to an increase in fluorescence intensity due to the restricted
intramolecular rotations (RIRs) of the coumarin matrix and thiosemicarbazide [20].

Molecules 2024, 29, x FOR PEER REVIEW 2 of 10 
 

 

reports (Table S1), HND exhibits a comparable limit of detection and a fast response. Fur-
thermore, HND realized the detection of H2S in HeLa cells. 

2. Results and Discussion 
2.1. AIE Effect of HND in Solution 

To better understand the AIE effect of HND, the fluorescence properties of HND in 
a mixed solvent system of DMSO and H2O were first investigated. As an exception, HND 
showed no fluorescence signal when dissolved in the good solvent DMSO, while the flu-
orescence signal at 536 nm could be turned on and gradually increased with the increase 
in water volume fraction; an 8.23-fold increase was observed when the water volume frac-
tion increased to 60% (as shown in Figure 1a). With the water volume fraction increased 
from 60% to 100%, the fluorescence signal reduced slightly. The photographs given in Fig-
ure 1d show the color change in HND with increasing water content. A clear yellow fluo-
rescence was observed under a 365 nm lamp. These results indicated that the compound 
HND is a typical aggregation-induced emission (AIE) active compound in the aqueous me-
dium [18]. Herein, DMSO is a good solvent and water is a poor solvent for HND [19]. The 
reason for the fluorescence enhancement of HND in DMSO is because the radiation channel 
was opened, leading to an increase in fluorescence intensity due to the restricted intramo-
lecular rotations (RIRs) of the coumarin matrix and thiosemicarbazide [20]. 

  

 
 

Figure 1. (a) Fluorescence spectra of HND (5.0 µM) in DMSO/water mixtures with different water 
fractions, pH 7.4. (b) Particle size analysis of HND in DMSO and PBS. (c) Fluorescence spectra of 
HND (5.0 µM) in CH3OH/glycerin mixtures with different glycerin fractions, λex = 420 nm. (d) The 
corresponding fluorescence images of HND under 365 nm UV lamp illumination ((i) different 
PBS/DMSO mixtures; (ii) different CH3OH/glycerin mixtures). 

Figure 1. (a) Fluorescence spectra of HND (5.0 µM) in DMSO/water mixtures with different water
fractions, pH 7.4. (b) Particle size analysis of HND in DMSO and PBS. (c) Fluorescence spectra
of HND (5.0 µM) in CH3OH/glycerin mixtures with different glycerin fractions, λex = 420 nm.
(d) The corresponding fluorescence images of HND under 365 nm UV lamp illumination ((i) different
PBS/DMSO mixtures; (ii) different CH3OH/glycerin mixtures).



Molecules 2024, 29, 2386 3 of 10

Particle size analysis was a useful method to further verify the formation of aggregates
of HND. As shown in Figure 1b, the average particle size of HND (5.0 µM) in DMSO
solution was 45.69 nm, while the average diameter in PBS (10 mM, pH = 7.40) was ap-
proximately 128.52 nm, indicating that HND does indeed have aggregates in aqueous
solutions. Furthermore, the diameter of HND was supplemented by transmission electron
microscopy (TEM). The TEM results showed that the particle size of HND is approximately
100 nm, which is consistent with the results of particle size analysis (128.52 nm). In addition,
TEM showed that the morphology of HND was almost elliptical and it had a structural
feature with a darker color in the center and a thin film coating at the periphery (Figure S4).

To better understand the properties of AIE, we conducted analyses of the fluorescence
spectra of HND (5.0 µM) in different CH3OH/glycerin mixtures. As shown in Figure 1c, the
fluorescence intensity at 536 nm increased with the increase in glycerol fractions. The results
indicated that the sticky glycerin could block the nonradiative intramolecular rotation [18].
This means that HND is a typical AIE compound [13,19].

2.2. Selectivity and Competition

Many H2S probes based on nucleophilic addition reaction have been reported in recent
years [15,21–24]. To identify the interaction between HND and H2S (Na2S was employed
as H2S donor), as shown in Figure 2a, an extremely strong yellow fluorescence with
λmax = 536 nm was observed in PBS buffer solution (10 mM, pH = 7.40). However, the
fluorescence intensity of HND (5.0 µM) was dramatically reduced after the addition of
100 eq. H2S in PBS buffer solution (10 mM, pH = 7.40). The fluorescence intensity of HND
was decreased to almost no fluorescence. There are other biologically relevant reactive
sulfurs (RSS), such as Na2SO4, Na2SO3, NaHSO4, NaHSO3, Na2S2O3, L-Cys and GSH,
which could react with HND; here, it is necessary to verify the specificity of HND. In
addition, many anions and cations, such as PO4

3−, HCO3
−, NO2

−, Br−, NO3
−, F−, CO3

2−,
Cl−, C2O4

2−, I−, etc., were also investigated. The results indicated that no detectable
responses were observed when 100 eq. of other RSS or many anions were added to HND,
respectively. The response of HND to H2O2 was also conducted; it was found that H2O2
could not respond to HND.
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Figure 2. (a) Selectivity profile of 5.0 µM HND toward the RSS, various anions and H2O2 (500 µM)
in PBS buffer (10 mM, pH 7.4), λex = 420 nm. (b) Fluorescence intensity changes of 5.0 µM HND
upon addition of 100 equiv. H2S and 100 equiv. of the RSS, various anions and H2O2, λem = 536 nm
(1–18: HND, Na2S2O3, NaHSO3, Na2SO4, Na2SO3, L-Cys, GSH, H2O2, Na3PO4, NaI, NaF, NaCl,
NaBr, Na2CO3, NaHCO3, Na2C2O4, NaNO3, NaNO2).
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In addition, a lot of metal ions, such as Mn2+, Cu2+, Ag+, Co3+, Fe3+, Al3+, Ca2+, K+,
Ni2+, Cd2+, Cr3+ and so on, which coexist in the human body, were also investigated; except
for Cu2+, all other tested metal ions have no interference with HND (Figures S5 and S6).
All of the results showed that HND has high selectivity for H2S.

To further demonstrate the ability of HND to respond to H2S in the presence of other
biologically relevant reactive RSS, anions and H2O2, the competition of HND was also
examined (Figure 2b). It was found that HND could also respond to H2S in the presence of
other biologically relevant reactive RSS, anions and H2O2, and the fluorescence intensity
was similar to that of HND directly responding to H2S. This informed us that the RSS,
anions and H2O2 tested had a negligible interfering effect on the detection of H2S by HND.
Similarly, when metal ions and H2S coexisted, the decrease in fluorescence intensity of
HND was also observed (Figure S6).

2.3. H2S Response by Probe HND

Figure 3a shows the relationship between HND and the concentrations of H2S. The
fluorescence intensity of HND in PBS buffer solution (10 mM, pH = 7.40) at 536 nm
decreased with the gradual addition of H2S at different concentrations. When 435 µM
H2S was added, a 5.71-fold quenching of the fluorescence was observed. The fluorescence
color changed from light yellow to colorless (shown in Figure 3a inset). A good linear
relationship was observed between the fluorescence intensities at 536 nm, as well as the
H2S concentration from 25 to 210 µM; moreover, the value of the linear correlation R2 was
0.9862 (Figure 3a inset). Followed by the equation LOD = K × Sb1/S [25], the detection
limit for H2S was estimated to be 0.61 µM. Compared with the early results (as shown in
Table S1), the LOD value is consistent with the reports by Lu and Jose [26–28] and good
compared with the reports by Zhang [29,30]. Additionally, the pH-dependent responses of
probe HND and HND to H2S were carried out. From Figure S7, it can be seen that probe
HND could only respond to H2S at pH 7.42. At other pH values, such as 4.00, 6.86, 9.18 and
10.01, HND could not respond to H2S. Therefore, PBS buffer (10 mM, pH 7.4) was chosen
as the reaction system.

CIE chromaticity was used to better understand the chromaticity changes in the
fluorescence spectra of HND upon the addition of H2S [31]. CIE chromaticity coordinates
were also calculated from the emission spectrum [32]. A two-dimensional space (XY plane)
could be found in the CIE where each point of the chromaticity map stands for a particular
color. From Figure 3b, the CIE chromaticity of HND was found to be x = 0.3818, y = 0.5219,
while after the addition of H2S, the CIE chromaticity was converted to be x = 0.3618,
y = 0.4174. This is an indication of a gradual shift in the color (Figure S8).

Response time is one of the most important parameters for a sensor. Therefore, kinetic
studies were conducted to investigate the response time. A total of 10 eqiv. of H2S was
added to HND (5.0 µM) and the fluorescence intensity at 536 nm was monitored over time
until the spectrum became constant (Figure 3c). The results showed that it takes almost
1 min for HND to react completely with H2S. This is a fast reaction rate compared to the
first report [13,28,33,34].

Furthermore, the absorption spectra of HND (15 µM) treated with different concen-
trations of H2S in PBS buffer solution (10 mM, pH = 7.40) were recorded. As shown in
Figure 3d, four peaks at 457 nm, 427 nm, 404 nm and 355 nm were observed; with the
addition of H2S, the peaks at 457 nm, 427 nm, 404 nm and 355 nm were decreased and two
new peaks at 438 nm and 326 nm appeared and gradually increased. An isoabsorption
point at 329 nm was found. The isoabsorptive point indicated that a new compound was
formed between HND and H2S [31,35].
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Figure 3. (a) The fluorescence titration curve of 5.0 µM HND in the presence of different concentra-
tions of H2S. Inset: (i) The corresponding fluorescence images of HND and HND mixed with H2S
under 365 nm UV lamp illumination. (ii) Changes in emission intensity at 536 nm with incremental
additions of H2S. (b) CIE diagram of the HND in PBS buffer solution (10 mM, pH = 7.40). (c) Changes
in emission intensity of HND (5.0 µM) at 536 nm in the presence of 10 equiv. of H2S as the function
of time. (d) Absorption spectra of HND (15 µM) treated with different concentrations of H2S.

2.4. Mechanism Investigation

HR-MS was used to further investigate the mechanism involved in the fluores-
cence quenching between HND and Na2S. The HR-MS of HND shows a strong peak at
m/z = 318.1606 [HND + H] + (Figure S2). After the addition of an excess of Na2S, a new
peak appears at m/z = 418.1619 [HND -HS + CH3OH + H]+, which indicates clearly that
the C=N of HND were formed through nucleophilic addition by H2S in aqueous solution
(Figure 4). The recognition mechanism is similar to the other reports [36–39].

DFT with B3LYP/6-31G(d) (the Gaussian 09) was carried out to further investigate
the electron distributions and orbital energies of HND and H2S [40,41]. From Figure 5,
we find that the highest occupied molecular orbitals (HOMOs) and the lowest occupied
molecular orbitals (LOMOs) of HND were mainly distributed over the whole molecule, so
HND showed a strong fluorescence due to the absence of electron transfer. The HOMOs
and LUMOs of HND -HS were mainly distributed on the 2-hydroxy-1-naphthylaldehyde
group. The HOMO-LUMO energy gaps of HND and HND -HS were 9.1417 ev and
10.3809 ev, respectively. The HOMO-LUMO band gap of HND -HS was higher than that of
HND, which could be clearly explained by the blue shift in the emission maxima of HND
-HS [32,42].
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2.5. Fluorescence Imaging

The applicability of HND in biological systems was investigated by analyzing H2S
imaging in living cells. Bright yellow fluorescence was obtained when HeLa cells were
incubated with 20 µM of HND for 20 min. However, the bright yellow fluorescence of
HeLa cells was gradually quenched when the cells were treated with HND for 20 min and
then treated with H2S (the concentrations of H2S were 20 µM and 40 µM, respectively) for
another 20 min (Figure 6b,c). The results indicated that HND has good biocompatibility
and is able to image different concentrations of H2S in living cells.
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Figure 6. Fluorescence microscopy images of HeLa cells. (a,d,g) HeLa cells incubated with HND
(20 µM) for 20 min. (b,e,h) HeLa cells pretreated with HND (20 µM) and then treated with H2S
(20 µM) for 20 min. (c,f,i) HeLa cells pretreated with HND (20 µM) and then treated with H2S
(40 µM) for 20 min.

3. Materials and Methods
3.1. Materials

All reagents were purchased through a commercial method and used without further
purification. 1H-NMR was obtained using a Bruker DRX 400 spectrometer with TMS as
the internal standard. High-resolution mass spectrometry (HR-MS) was performed on a
Triple TOF TM 5600+ system. Fluorescence spectra were obtained at room temperature
using a CRT-970 fluorescence spectrophotometer. The absorption spectra were measured
by Shimadzu UV1800. Imaging of probe HND and HND with Na2S was conducted on a
confocal laser scanning microscope L700 with HeLa cells.

3.2. The Synthesis Process

As shown in Scheme 1, first, the mixture of ethanol (30 mL), 2-hydroxynaphthalene-1-
carbaldehyde (0.344 g, 2.0 mmol) and hydrazine hydrate (400 µL) were first refluxed in a
flask. After 10 h, the reaction was stopped by TLC. Yellow solids were obtained, named
2-hydroxynaphthalene-1-carbaldehyde hydrazone (1). Next, 1 (0.279 g, 1.5 mmol) and
4-(dimethylamino)benzaldehyde (0.1491 g, 1.0 mmol) were mixed in 30 mL ethanol, a
few drops of DMF was added as a catalyst, and then the above mixture was heated and
refluxed for 24 h. The yellow powder HND was obtained after the mixture was cooled and
washed by ethanol three times; then, it was recrystallized by CH3CH2OH. Yield, 0.17 g
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(54%). 1H-NMR (400 MHz, DMSO-d6) δ 12.90 (s, 1H), 10.01 (s, 1H), 8.66 (d, J = 8.6 Hz, 1H),
8.05 (d, J = 8.9 Hz, 1H), 7.93 (d, J = 7.3 Hz, 1H), 7.63 (t, J = 7.7 Hz, 1H), 7.45 (t, J = 7.1 Hz,
1H), 7.29 (d, J = 9.0 Hz, 1H), 1.23 (s, 6H) (Figure S1). HR-MS: m/z = 318.1606 [HND + H]+,
[HND + H]+ found 318.1606 (Figure S2). HND showed the yellow fluorescence in the solid
under 365 nm UV lamp illumination (Figure S3).
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3.3. Fluorescence Spectral Property

Na2S was dissolved in water and used as the donor of H2S [36]. Stock solution of
probe HND (10−3 M) was prepared in DMSO. The fluorescence spectra of HND with H2S
were obtained by the addition of various concentrations of Na2S to HND (5.0 µM) in PBS
buffer (10 mM, pH 7.4). The fluorescence spectra were excited by 420 nm.

4. Conclusions

In conclusion, a novel fluorescent probe HND with AIE activity was synthesized.
The results showed that HND could be used for the detection of H2S in aqueous solution
and HeLa cells. HND exhibited obvious fluorescence quenching and excellent selectiv-
ity/competitiveness toward H2S with a limit of detection of 0.64 µM and a response time
of 1 min. We assumed that H2S reacted with HND through nucleophilic addition reaction
and the mechanism was proven by HR-MS and DFT calculations. In addition, HND was
successfully applied to image the H2S in HeLa cells.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29102386/s1, Figure S1: 1H-NMR of HND. Figure S2: HR-MS of
HND. Figure S3: The color of HND as a solid. (Right) under 365 nm UV lamp illumination; (left)
under visible light. Figure S4: TEM of HND (5.0 µM) in 100% PBS. Figure S5: Selectivity profile
of 5 µM HND toward various metal ions (500 µM) in PBS buffer (10 mM, pH 7.4), λex = 420 nm.
Figure S6: Fluorescence intensity changes of 5.0 µM HND upon addition of 100 equiv. H2S and
100 equiv. of various metal ions, λem = 536 nm. Figure S7: The pH-dependent responses of probe
HND and HND to H2S. Figure S8: CIE diagram of the HND -HS in PBS buffer solution (10 mM,
pH = 7.40). Figure S9: Time-dependent fluorescence intensity of HND (5.0 µM) in PBS (pH 7.4,
10 mM). Table S1: Comparison of HND for the detection of H2S. References [43–45] are cited in
Supplementary Materials.
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