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Abstract: Natural deep eutectic solvents (NADESs), as emerging green solvents, can efficiently
extract natural products from natural resources. However, studies on the extraction of phenolic
compounds from celtuce (Lactuca sativa var. augustana) leaves (CLs) by NADESs are still lacking.
This study screened the NADES L-proline-lactic acid (Pr-LA), combined it with ultrasound-assisted
extraction (UAE) to extract phenolic compounds from CLs, and conducted a comparative study on
the extraction effect with traditional extraction solvents. Both SEM and FT-IR confirmed that Pr-LA
can enhance the degree of fragmentation of cell structures and improve the extraction rate of phenolic
compounds. Molecular dynamics simulation results show that Pr-LA can improve the solubility of
phenolic compounds and has stronger hydrogen bonds and van der Waals interactions with phenolic
compounds. Single-factor and Box–Behnken experiments optimized the process parameters for the
extraction of phenolic compounds from CLs. The second-order kinetic model describes the extraction
process of phenolic compounds from CLs under optimal process parameters and provides theoretical
guidance for actual industrial production. This study not only provides an efficient and green method
for extracting phenolic compounds from CLs but also clarifies the mechanism of improved extraction
efficiency, which provides a basis for research on the NADES extraction mechanism.

Keywords: ultrasonic-assisted extraction; natural deep eutectic solvent; phenolic compounds; celtuce
(Lactuca sativa var. augustana) leaves; molecular dynamics

1. Introduction

Celtuce (Lactuca sativa var. augustana), also called stem lettuce, Chinese lettuce or
celtuce, is a cultivar of lettuce grown primarily for its thick stem and used as a vegetable
and medicinal plant. It is especially popular in China, but it is not commonly consumed in
European countries [1]. Celtuce is an abundant source of bioactive compounds, including
phenolic compounds, glycosylated flavonoids, sesquiterpene lactones (e.g., lactucin and
lactucopicrin), carotenoids, group B vitamins, ascorbic acid, and tocopherols [2]. Celtuce
leaves (CLs), a readily available and untapped byproduct, are rich in phenolic compounds
that display diverse biological properties that reduce the risk of cardiovascular disease,
cancer, chronic inflammation, and aging, as well as improve immunity and protect vi-
sion [1]. However, the traditional extraction procedure for plant leaves with conventional
solvents (methanol, ethanol, ethyl acetate, etc.) raises some concerns related to, for example
lower extraction yields, lower contents of active constituents in the extracts, higher energy
consumption, and lower environmental friendliness [3]. Therefore, it is urgent to develop
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highly efficient, green, and eco-friendly methods for the extraction of phenolic compounds
from CLs.

Today, the efficient extraction of natural products from biomass using green and en-
vironmentally friendly solvents is considered an important area of concern in the food,
pharmaceutical, and cosmetic industries. Natural deep eutectic solvents (NADESs) have
garnered significant attention as potential green solvents, attracting interest in various
industrial fields. NADESs are a generation of new and revolutionary green solvents, which
share characteristics with ionic liquids (ILs). Indeed, previous studies have highlighted
that ILs often exhibit poor biodegradability, and coupled with their potential toxicity, ILs
may create environmental hazards, affecting ecosystems and living organisms. ILs are
also associated with higher production costs, limiting their economic feasibility for certain
applications [4,5]. In contrast to ILs, NADESs offer several advantages that make them
well suited as extraction solvents, as follows: NADESs can be prepared using simple and
cost-effective methods and exhibit high solubility for a wide range of compounds [6–8].
NADESs are also considered environmentally friendly due to their natural and biodegrad-
able components, which is in line with the green concept of sustainable development [9,10].
The formation of NADESs usually involves of a hydrogen bond acceptor (HBA) and a hy-
drogen bond donor (HBD). The most commonly used HBAs currently are choline chloride,
proline, and betaine, which are all considered ecofriendly and biocompatible molecules [11].
HBDs often include polyols, amines, carboxylic acids, and sugars [12]. The diversity of
plants and the stochastic nature of NADESs contribute to the lack of versatility in using a
specific NADES for the extraction of natural products from plants. Given this variability,
customized NADESs are essential to optimize the extraction of phenolic compounds. By
customizing the composition of a NADES, we can improve the extraction efficiency of
phenolic compounds [13].

While using green-solvent NADESs to extract natural products, we also hope to com-
bine them with green extraction technology to minimize the impact on the environment
and reduce the use of harmful solvents or chemicals during the extraction process [14].
Traditional heating extraction (HE) often requires longer extraction times and higher extrac-
tion temperatures [15]. Compared with traditional extraction methods, green extraction
technologies take less time, use fewer harmful organic solvents, and have higher extrac-
tion rates [14]. Common green extraction methods include ultrasound-assisted extraction
(UAE), microwave-assisted extraction (MAE), supercritical fluid extraction (SFE), enzyme-
assisted extraction (EAE), and pressurized extraction (PEFE) [14,16]. Among them, MAE
generates excessive heat, which may lead to the thermal degradation and changes in the
structure and properties of biologically active substances [17]. SFE, EAE and PEFE all have
higher production or instrument maintenance costs, and they are not conducive to actual
large-scale production [14]. Compared with the above methods, UAE not only reduces the
use of solvents and shortens the extraction time but also destroys the structure of plant
cell walls and improves the mass transfer efficiency between the solvent and cell matrix,
thus improving the extraction rate of biologically active substances [18]. On the basis of the
recognized advantages of NADESs and UAE, this study combined NADESs with UAE to
extract phenolic compounds from CLs.

Therefore, this study screened out a green and efficient NADES solvent, L-proline
lactic acid (Pr-LA), and combined it with UAE to extract phenolic compounds from CLs.
SEM was used to observe the morphological changes of the sample powder before and
after extraction, and FT-IR was used to analyze the functional groups of the extracted
compounds. A molecular dynamics simulation was used to analyze the interactions
between phenolic compounds and solvent molecules in Pr-LA, revealing the potential
mechanism underlying the extraction of phenolic compounds by Pr-LA. Single-factor
experiments and Box–Behnken design were used to optimize the process parameters of
Pr-LA combined with UAE to extract TPC from CLs. Secondary kinetics research on
the extraction process provides theoretical guidance for actual industrial production. In
summary, this study aimed to establish an efficient and green method to extract phenolic
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compounds from CLs using NADES (Pr-LA) combined with UAE, and reveal the potential
mechanism of action between Pr-LA and phenolic compounds.

2. Results and Discussion
2.1. Screening of NADES

The components of NADESs are usually natural sources. Common HBAs include
quaternary ammonium salts and amino acids. Common HBDs include polyols, organic
acids, amides, and sugars. Two or more of these compounds combine with a certain
proportion of water to form an eutectic liquid [19]. As a component of NADES, water
not only reduces the viscosity of NADES and increases mass transfer efficiency of the
solvent [20], but also enables NADES to form a stronger hydrogen bond network [21].
In terms of the selection of HBAs, we chose the common choline chloride, L-proline and
betaine as the three major systems in this study [22]. Regarding the selection of HBDs,
the extraction rate of phenolic compounds by sugar-based NADES is lower than that of
polyol-based, organic acid-based and amide-based NADES [23]. Therefore, we selected
polyols, organic acids and amides as HBDs for NADESs. The molar ratios of HBA:HBD
of 1:1 and 1:2 are chosen by most studies [21]. However, in the betaine system, when
the molar ratio of Be-LA to Be-LevA is 1:1, a liquid cannot be formed. NADESs can be
formed as a uniform and transparent liquid when the molar ratio is 1:2 [24]. The same
situation also occurs in the choline chloride system. When the molar ratio of ChCl-LevA
is 1:2, the NADES can be formed as a uniform and transparent liquid [25]. In order to
screen out the NADES with the highest efficiency in extracting phenolic compounds from
CLs, we prepared 11 NADESs (Table 1). In addition to NADESs, 50% EtOH and water
were employed as traditional solvents for comparative analysis. The TPC served as a
pivotal metric for evaluating the extraction efficiency. Figure 1 illustrates the influence of
various solvent types on the TPC. Among them, DES8, DES9, DES10, and DES11 have
extraction rates for phenolic compounds from CLs exceeding 50% EtOH and water. The
hydrogen bond alkalinity of an NADES is higher, which allows it to better penetrate
plant cell walls and promote interaction between an NADES and plant cellulose chains,
thereby improving the mass transfer efficiency of the solvent and increasing its extraction
rate [21]. The extraction efficiencies of NADESs in the proline and betaine systems as
solvents significantly surpass those of the choline chloride system. This may be because
when an organic acid is introduced into the system, L-proline will be protonated as an HBA,
thereby forming a positively charged quaternary ammonium group and counter-anion [26].
The quaternary ammonium group can solvate phenolic compounds in the hydrogen bond
network, and the counter-anion and HBD provide an anhydrous solvation shell for phenolic
compounds, which together improve the solubility of phenolic compounds [27]. At the
same time, some studies have proven that organic acids can effectively dissolve lignin
and cellulose in plant matrices, thereby significantly enhancing the extraction efficiencies
of phenolic substances [28]. However, the Cl- in choline chloride may be wrapped by
the hydroxyl and carboxyl groups in lactic acid, thus hindering the interaction between
polyphenols and Cl−, thereby reducing the extraction yield of phenolic compounds [29].
Compared with the extraction effect of Be-LevA in the betaine system, Pr-LA shows a
slight advantage. Different NADESs have different physical properties, such as viscosity,
density, etc., which greatly affect the extraction of natural products. Viscosity is a key factor
affecting the extraction effect [30]. High viscosity will reduce the mass transfer rate of the
solvent and reduce the extraction efficiency of natural products [31]. Studies show that
the viscosity of Pr-LA is much lower than that of Be-LevA, which may be the reason for
the slight extraction advantage of Pr-LevA [32]. At the same time, the production cost
and raw materials of levulinic acid are high, the production output is low, and recycling
is difficult [32]. The high economic cost is not conducive to actual industrial production,
so we did not choose Be-LevA as the extraction solvent. From a safety standpoint, lactic
acid is deemed compatible with formulations in the food, pharmaceutical, and cosmetic
industries [25]. On the basis of the extraction efficiency of phenolic compounds and the
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safety of the extraction solvent, we selected proline-lactic acid (Pr-LA) as the NADES
solvent for extracting phenolic compounds from CLs.
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Figure 1. TPC in CLs extracted with different solvents. Different lowercase letters represent significant
differences in the TPC extracted from CLs with different extraction solvents.

Table 1. Composition of natural deep eutectic solvents (NADESs).

DES No. Abbreviation Component 1 Component 2 Molar Ratio

1 ChCl-EG Choline chloride Ethylene glycol 1:2
2 ChCl-1,4-But Choline chloride 1,4-Butanediol 1:2
3 ChCl-1,2-Pro Choline chloride 1,2-Propanediol 1:2
4 ChCl-Gly Choline chloride Glycerol 1:2
5 ChCl-LA Choline chloride Lactic acid 1:2
6 ChCl-LevA Choline chloride Levulinic acid 1:2
7 ChCl-Urea Choline chloride Urea 1:2
8 Pr-LA L-proline Lactic acid 1:2
9 Pr-LevA L-proline Levulinic acid 1:2
10 Be-LA Betaine Lactic acid 1:2
11 Be-LevA Betaine Levulinic acid 1:2

2.2. Microstructural Analysis

Solvents extract phenolic compounds from the cell matrix by destroying plant cells [33].
In order to explore the degree of damage to plant cells by different extraction solvents, scan-
ning electron microscopy (SEM) was utilized to examine and explain the microstructure of
CLs powder samples before and after extraction. The surface morphology of the sample
before undergoing UAE exhibited a very smooth texture, with no obvious damage to the
integrity of the cell walls. Its original structure was extremely well preserved (Figure 2).
However, the microstructure of the CLs powders changed significantly after extraction, and
the surface morphology of the samples incurred damage. In comparison to the untreated
sample, the water-treated sample exhibited no significant changes in appearance. After
extraction with 50% EtOH, the sample’s surface became rough with apparent wrinkles.
Notably, the sample extracted with Pr-LA displayed more obvious pore and crack struc-
tures. This observation suggests that Pr-LA is more effective in disrupting the cell structure
of the sample. Research indicates that direct contact between NADES solvents and intra-
cellular compounds can enhance solvent penetration, leading to an improved extraction
efficiency [34]. This study is consistent with the results reported by Wang et al., whereby
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NADESs can extract more phenolic compounds from partridge leaf tea by destroying the
cell structure of the tea leaves [35].
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2.3. FT-IR Analysis

In order to observe the effect of Pr-LA solvent on the structure of the extract and
compare it with the traditional extraction solvent of 50% EtOH and water, FT-IR scanning
of extracts was carried out (Figure 3). It is evident that the water, 50% EtOH, and Pr-
LA extracts exhibited expansive characteristic absorption peaks at around 3500 cm−1,
which is attributed to the stretching vibration of -OH phenolic hydroxyl [36]. These three
extracts displayed subtle variations at the wavenumbers 2900.81 cm−1, 2919.67 cm−1,
and 2908.06 cm−1, which may be attributed to the aromatic C-H stretching vibration
of the phenolic compounds. While in comparison, the Pr-LA extract showed a more
obvious peak shape [37]. The absorption peaks of the 50% EtOH extracts and the Pr-LA
extracts were observed at around 1700 cm−1. Notably, the peaks of the Pr-LA extracts at
1708.02 cm−1 displayed more pronounced fluctuations. These nearby fluctuations were
attributed to the stretching vibration of the C=O carbonyl group, suggesting higher contents
of phenolic substances in the Pr-LA extracts [38]. The absorption peak fluctuations at
1598.47 cm−1, 1545.50 cm−1, 1605.72 cm−1, and 1470.05 cm−1 were caused by the presence
of an aromatic-ring conjugated structure or the C=C double bond [39]. The water, 50%
EtOH, and Pr-LA extracts had strong specified peaks at 1401.84 cm−1, 1398.22 cm−1, and
1401.84 cm−1, which may be due to the presence of benzo-γ-pyrone structures in the
flavonoids, flavones, and isoflavones [40]. The observed fluctuations in the range of 1250 to
1050 cm−1 in the infrared spectrum describe the presence of C-O stretching vibrations [39].
The characteristic peak fluctuations observed in the FT-IR spectra of the three extracts
exhibited slight shifts. However, the overall shapes and positions remained essentially
similar. This consistency suggests that the three extracts share similar compositions and
all contain phenolic compounds. Some bands observed in the Pr-LA extracts exhibited
higher intensities, additional peaks, and peak shifts, which indicates that Pr-LA improves
the extraction effect of phenolic compounds to a certain extent.
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2.4. Mechanism Analysis of Pr-LA Extracting Phenolic Compounds from CLs
2.4.1. LC-MS Screening of Small Molecule Compounds in CLs

In order to better explore the mechanism of Pr-LA’s extraction of phenolic compounds,
we used LC-MS to identify the phenolic compounds in CLs. Li et al. reported that different
extraction methods will lead to different types of extracted phenolic compounds [22].
However, using the same extraction method, NADESs do not destroy the structure of the
compounds but only increase the extracted content of the compounds [41]. Therefore, we
selected the Pr-LA extract for the LC-MS identification analysis.

The mass spectrometer operates in two distinctive modes: positive ion and negative
ion. Because of the abundant presence of phenolic compounds in CLs, a tendency for
proton loss was observed in the negative ion mode. Consequently, the experimental
protocol was executed in the negative ion mode to capture and analyze ion fragments of
phenolic compounds.

As illustrated in Figure S1 and Table S1, our analysis successfully identified 10 dis-
tinct phenolic compounds. Compound 1, as depicted in the chromatogram, exhibited a
deprotonated ion [M–H]− with an m/z of 169.0131. Compound 1 was identified as gallic
acid by comparison with established standards. Peak 2 revealed a parent ion with an m/z
of 353.0867. The software conducted a structural analysis, suggesting a possible formula
of C16H18O9. Collision-induced dissociation in the secondary mass spectrum produced
an m/z of 191.0553, probably due to the molecular ion losing its C9H7O3 structure of m/z
162.0233. This clear pattern led to the identification of the compound as chlorogenic acid.
In peak 3, the primary mass spectrometry scanning detected [M–H]− parent ions with an
m/z of 289.0706. Based on the highest-scoring formula, the software assigned C15H14O6,
the same formula as catechin. The subsequent secondary mass spectrometry revealed the
presence of an m/z of 245.0819 and an m/z of 109.0284 ion fragments, further confirming
that these compounds were catechin [42,43]. In peak 4, a precursor ion with an m/z of
179.0339 was observed. Subsequent collision-induced dissociation in the secondary mass
spectrum led to the loss of a -CO2 group, resulting in a fragment ion peak at m/z 135.0439.
It can be inferred that the compound may be caffeic acid [44]. At the same time, compared
with the standard product, it was confirmed that the compound was caffeic acid. The
presence of rutin in the extract was identified by comparison with analytical standards.
During the mass spectrometry analysis of component 6, a deprotonated ion [M–H]− at m/z
462.0793 was observed, corresponding to the molecular formula C21H19O12. The literature
shows that isoquercitrin will lose glucoside and form an aglycone ion fragment of m/z
301.0265. At the same time, m/z 300.0280 is speculated to be the aglycone ion losing one H
to form a free radical aglycone ion fragment, and m/z 271.0252 may be the ion fragment
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obtained by removing COH from the free radical aglycone ion. The structural presentation
of this fragment exhibited remarkable consistency with that of isoquercitrin. Consequently,
component 6 was confidently identified as isoquercitrin [45,46]. In peak 7, a precursor ion
with an m/z of 193.0495 was identified. The software analysis suggested a possible molec-
ular formula of this substance is C10H10O4. Further examination in the secondary mass
spectrum revealed an explicit dissociation pattern, as follows: the parent ion underwent
collision-induced dissociation, causing the loss of one -CO2 group to generate a fragment
ion at an m/z of 149.0596. Additionally, the loss of one -CH3 group yielded a fragment ion
with an m/z of 178.0262. This fragmentation pattern is consistent with the cleavage process
observed in the ferulic acid literature [44,47], thus identifying the compound as ferulic acid.
By comparing the observed fragment ions with the primary mass spectrometry information
and secondary mass spectrometry information in the standard, peak 8 was preliminarily
identified as luteolin. In peak 9, the [M–H]− parent ion was identified with an m/z of
271.0618. After a database comparison, it was initially speculated that the compound was
naringenin. Further verification with secondary mass spectrometry revealed fragmentation
of the precursor ion, producing fragments with m/z values of 119.0489 and 151.0024. This
fragmentation pattern is fully consistent with the documented processes reported in the
naringenin literature [48,49]. The precursor ion peak of compound 10 was observed with an
m/z of 315.0499, and secondary fragmentation produced characteristic ions of m/z 193.0458
and m/z 165.0369. The fragmentation pattern correlates well with the rhamnetin process
reported in the literature. Therefore, compound 10 was identified as rhamnetin [50]. The
LC-MS results show that 10 phenolic compounds were identified in the CLs extract.

2.4.2. Molecular Dynamics Simulation Analysis

In order to reveal the mechanism by which Pr-LA extracts phenolic compounds from
CLs and to elucidate the reason for NADESs’ superior extraction efficiency over traditional
solvents, we performed molecular dynamics simulations. Previous studies showed that the
interaction between solvent molecules and solute molecules affects the solubility of solute
molecules in the solvent, thereby affecting the extraction yield of solute molecules [51].
In order to research the dissolution behavior of phenolic compounds in solvents from an
atomic perspective, we randomly selected a typical phenolic compound caffeic acid from
10 phenolic compounds, as a small molecule compound.

In this study, three different solvent systems, water, 50% EtOH, and Pr-LA, were
selected for dissolution behavior analysis. Figure 4A is a visual diagram of the dissolution
state of caffeic acid molecules in three different solvents at two time points of 0 ns and 100
ns. In water, caffeic acid molecules exhibit an aggregated state, indicating that caffeic acid
molecules have a tendency to aggregate in water. In 50% EtOH, only a portion of the caffeic
acid molecules assemble to form clusters. Notably, the distribution of caffeic acid molecules
appears more disordered and dispersed in Pr-LA. This phenomenon indicates that caffeic
acid molecules exhibit higher solubility in 50% EtOH and Pr-LA compared to water. Solvent
accessible surface area (SASA) is a measure of the effective contact area between solute and
solvent molecules in a solution. By analyzing the SASA of caffeic acid molecules in the
three solvent systems, the degrees of contact between caffeic acid molecules and water, 50%
EtOH, and Pr-LA can be quantitatively compared. As shown in Figure 4B, the dissolution
curve of caffeic acid molecules in water showed obvious fluctuations, indicating that the
solubility of caffeic acid molecules in water was poor. In comparison, the SASA values in
50% EtOH and Pr-LA showed a smoother curve. After 20‘ns, the caffeic acid molecules
in 50% EtOH and Pr-LA reached a stable dissolved state. The average SASA of caffeic
acid molecules in the three different solvents within 20 ns–100 ns is shown in Figure 4C.
Among them, the SASA of Pr-LA (140.84 nm2) was slightly higher than that of the SASA in
50% EtOH (135.28 nm2), and it significantly exceeded that of the SASA in water (110.97 nm2).
This observed trend is consistent with the intuitive state diagram of the dissolution of caffeic
acid molecules in the three systems. In Figure 4D, the dynamic evolution of hydrogen bond
formation by caffeic acid molecules with the solvent is illustrated over the 0 ns to 100 ns
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period. The tendency of caffeic acid molecules to form hydrogen bonds in the three solvents
becomes stable after 20 ns. Figure 4E shows the average hydrogen bonds formed between
caffeic acid molecules and three different solvent molecules between 20 ns and 100 ns. Caffeic
acid molecules form 147 hydrogen bonds in water, 163 hydrogen bonds in 50% EtOH, and
198 hydrogen bonds in Pr-LA. Caffeic acid molecules formed significantly more hydrogen
bonds with Pr-LA compared to 50% EtOH and water, indicating the existence of a strong
hydrogen bonding network between NADES and phenolic compounds. This strong network
promotes interactions between solute and solvent molecules to increase solubility [51].

Molecules 2024, 29, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 4. Study on the interaction of caffeic acid molecules with different solvents. (A) The intuitive 
state of caffeic acid molecules dissolved in different solvent systems at 0 and 100 ns, respectively, 
(B) Changes in the SASA of caffeic acid molecules in different solvents from 0 ns to 100 ns. (C) The 
average SASA of caffeic acid in different solvents from 20 ns to 100 ns. (D) The number of hydrogen 
bonds formed by caffeic acid molecules in different solvents changes from 0 ns to 100 ns. (E) The 
average number of hydrogen bonds formed by caffeic acid molecules in different solvents from 20 
ns to 100 ns. (F) Average noncovalent interactions (aNCI) analysis (The black arrow represents the 
blue area of caffeic acid molecules in Pr-LA). 

  

Figure 4. Study on the interaction of caffeic acid molecules with different solvents. (A) The intuitive
state of caffeic acid molecules dissolved in different solvent systems at 0 and 100 ns, respectively,
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average SASA of caffeic acid in different solvents from 20 ns to 100 ns. (D) The number of hydrogen
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to 100 ns. (F) Average noncovalent interactions (aNCI) analysis (The black arrow represents the blue
area of caffeic acid molecules in Pr-LA).
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Figure 4F shows the average noncovalent interactions (aNCI) between caffeic acid
molecules and three different solvent molecules. In the aNCI analysis, the dark blue
area represents the extremely attractive hydrogen bond interaction, the blue–green area
represents the π–hydrogen bond formed by the aromatic ring π electron area of the caffeic
acid and the solvent molecules, and the green area represents the strong van der Waals
force. The red area represents the steric hindrance effect. The caffeic acid molecule has
the largest blue area in the Pr-LA, indicating that the hydrogen bond interaction formed
between phenolic compounds and Pr-LA is the strongest. Studies showed that the stronger
the hydrogen bond interaction between phenolic compounds and solvent molecules, the
higher the solubility of phenolic compounds [52]. At the same time, the green area of caffeic
acid molecules in Pr-LA is much larger than the green area of the caffeic acid molecules in
50% EtOH and water, indicating that the van der Waals interaction formed between caffeic
acid molecules and Pr-LA is the strongest. Strong van der Waals interactions make solute
molecules in NADESs more stable. This enhanced stability helps to increase the solubility
of solute molecules in the solvent [53].

In summary, caffeic acid molecules exhibit higher SASA and more hydrogen bonds in
Pr-LA, indicating that caffeic acid molecules have higher solubility in NADES. At the same
time, the aNCI molecule reveals the interaction mechanism between caffeic acid molecules
and Pr-LA solvent molecules. Specifically, caffeic acid exhibits stronger hydrogen bonds
and van der Waals interactions in Pr-LA, which is the reason why the extraction efficiency
of Pr-LA is better than traditional solvents. Therefore, Pr-LA is a green solvent with greater
extraction potential than traditional solvents.

2.5. Optimization of the Extraction Process of TPC from CLs
2.5.1. Single-Factor Experiment for Extraction of TPC from CLs

To initially evaluate effects of different factors on TPC in CLs extract, a single-factor
experiment was designed. The remaining experimental parameters were kept unchanged
to specifically examine the influence of water content of NADESs on TPC in extract. The
experimental outcomes are depicted in the Figure 5A. A gradual increase in TPC was
observed with a gradual increase in the water content of the NADES. The NADES is a
relatively viscous extraction solvent. The addition of water greatly reduces the viscosity
of the solvent, thereby enhancing mass transfer effect [54]. Previous studies also pro-
vided evidence to support the view that the addition of water can effectively diminish
the viscosity of NADES, thereby increasing the solubility of phenolic compounds and
improving the extraction yield [55]. The TPC reached its peak when the water content of
NADES reached 40%. Thereafter, the extraction yield of TPC by NADES showed a declin-
ing trend. Water is considered an effective polar solvent. However, excessive addition of
water can weaken the hydrogen bonds in NADES and increase the polarity of NADES
excessively, which may be the reason for decrease in the extraction efficiency of NADES in
extracting TPC of CLs [56,57]. Therefore, 40% water content of NADES was selected for
subsequent experiments.

Figure 5B illustrates the impact of extraction time on the yield of TPC. The extraction
yield of TPC increased within the range of 10 to 40 min. This phenomenon can be attributed
to the gradual diffusion of phenolic compounds within the plant cell matrix into the solvent
over time [58]. At 40 min, the extraction yield of TPC reached the highest level. Following
this peak, the extraction yield of TPC began to stabilize and exhibited a slight decrease.
This is because when the mass transfer of NADES and phenolic compounds had essentially
reached equilibrium, the phenolic compounds will be exposed to the air for a long time,
which will cause a certain degree of degradation, and ultimately lead to a decrease in the
extraction yield of TPC [59,60]. The experimental results show that the optimal extraction
time for TPC from CLs is 40 min.
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(%); (B) extraction time (min); (C) extraction temperature (◦C); (D) liquid to solid. Different
lowercase letters represent significant differences in TPC extracted from CLs under different
experimental conditions.

The extraction temperature is another key factor that significantly affects TPC extrac-
tion. Its influence on TPC is depicted in Figure 5C. As the extraction temperature increased
from 10 ◦C to 30 ◦C, the TPC extraction yield increased continuously. Increased tempera-
tures reduce the strength and stability of plant cell walls, making the phenolic compounds
in plant cells more exposed to NADES [61]. At the same time, the increase in temperature
will reduce the viscosity of NADES and then increase the mass transfer rate between solute
and solvent molecules, which improves its extraction efficiency [62]. The extraction yield
of TPC reaches its peak when the temperature reaches 30 ◦C. However, as the temperature
increased to 50 ◦C, the extraction yield of TPC began to decrease. The occurrence of this
phenomenon can be attributed to the fact that high temperatures trigger the degradation of
phenolic compounds [63]. So the optimal extraction temperature is 30 ◦C.

In Figure 5D, it is obvious that the TPC gradually increased as the L/S ratio increases.
Because as the L/S ratio increased, the solubility of the phenolic compounds in the NADES
increased [64]. When the L/S ratio reached 70 mL/g, the extraction yield of the TPC
demonstrated a tendency to stabilize. Once the solubility of a target compound reaches
saturation, further increases in solvent volume cannot increase the solubility of the target
compound. The TPC even showed a slight downward trend when the amount of solvent
became excessive [39].

2.5.2. Optimize Experimental Parameters Using RSM

In order to explore the interaction between important factors affecting TPC extraction
and find the best conditions for process optimization, we conducted a Box–Behnken design
(BBD) experiment. From the single factor experiment, it can be seen that the water content
of NADES, extraction time, extraction temperature, and L/S ratio all have significant
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impacts on the extraction yield of the TPC. Therefore, these four influencing factors were
determined as independent variables in the BBD experiment. The experimental design is
shown in Table S2. After performing multiple regression analysis on the experimental data,
the model is represented by a second-order polynomial equation. The polynomial equation
with TPC as the response value is:

Y = 24.46− 1.33A + 0.5559B + 0.5826C + 1.59D − 1.19AB + 0.8880AC
+0.8453AD − 1.72BC − 0.4831BD + 0.0615CD − 3.50A2 − 1.87B2 − 0.6470C2 − 1.56D2 (1)

where Y is extraction yield of TPC (mg GAE/g DW), A is the water content of the NADES
(%), B is the extraction time (min), C is the extraction temperature (◦C), and D is the L/S
ratio (mL/g).

As shown in Table 2, the p-value of the “Model” item is <0.0001 (p < 0.0001), indicating
that the independent variables in the model had a significant impact on the response
variable as a whole, which means that the model was successfully established; the p-value
of the “Lack of Fit” item is not significant, signifying that the model had a good degree of
fit, which adapts well to the observation data, and there was no obvious lack of fitting; the
coefficient of determination (R2) of the model was 0.9602, demonstrating that the model can
fit the observation data well, and the model had strong predictive ability. The difference
between the adjusted R2 and the predicted R2 was less than 0.2, which indicates that the
difference in the model’s performance between the training data and the test data was
relatively small. It also means that the predictive capability of the model remains stable
across different datasets and is not prone to significant fluctuations due to data changes.
Simultaneously, the results from Table 2 reveal that the individual factors A and D exert
a highly significant influence on the response value (p < 0.0001), while factors B and C
exhibit a significant impact (p < 0.05). Among the model interaction terms, AB, AC, AD,
and BC demonstrate a significant effect (p < 0.05), and BD and CD do not exhibit significant
effects (p > 0.05). Additionally, all the quadratic terms, A2, B2, C2 and D2, exert a significant
effect (p < 0.05).

Table 2. The results of the analysis of variance (ANOVA).

Source Sum of
Squares df Mean Square F-Value p-Value

Model 177.56 14 12.68 24.11 <0.0001 significant
A 21.36 1 21.36 40.60 <0.0001
B 3.71 1 3.71 7.05 0.0188
C 4.07 1 4.07 7.74 0.0147
D 30.51 1 30.51 57.99 <0.0001

AB 5.69 1 5.69 10.81 0.0054
AC 3.15 1 3.15 6.00 0.0281
AD 2.86 1 2.86 5.43 0.0352
BC 11.79 1 11.79 22.42 0.0003
BD 0.9336 1 0.9336 1.77 0.2041
CD 0.0151 1 0.0151 0.0288 0.8677
A2 79.53 1 79.53 151.18 <0.0001
B2 22.79 1 22.79 43.33 <0.0001
C2 2.72 1 2.72 5.16 0.0394
D2 15.77 1 15.77 29.97 <0.0001

Residual 7.36 14 0.5260
Lack of Fit 5.98 10 0.5979 1.73 0.3155 not significant
Pure Error 1.39 4 0.3464
Cor Total 184.93 28

R2 0.9602
Adjusted R2 0.9204
Predicted R2 0.8021

C.V.% 3.43
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In order to express the interaction between factors affecting TPC extraction more
intuitively, we generated a three-dimensional response surface plot based on the regression
model equation. When creating these plots, we ensured that two of the influencing factors
were maintained at the middle level while observing the interaction of the remaining two
influencing factors on TPC extraction. In the three-dimensional response surface diagram,
the greater the curvature of the surface, the more obvious the interaction between the two
influencing factors.

Figure S2A–C exhibit a consistent increasing trend in TPC extraction yield with in-
creasing water content of the NADES. The inherently high viscosity of the NADES may
prevent the efficient interaction between the solvent and the sample. The viscosity of the
solvent can be weakened by introducing water into the NADES, thereby achieving the
purpose of improving the extraction yield of the target product. Nonetheless, excessive
addition of water hinders the interaction between the sample and solvent. Figure S2A,D,E
collectively illustrate a clear increasing trend in the TPC extraction yield as the extraction
time increased. The extension of the extraction time had a positive impact on the extraction
yield of the TPC. However, when the maximum value was surpassed, the effect of the
extraction time turned from positive to negative. The main reason behind this shift is that
long extraction times lead to extended exposure times of the target product, resulting in
a slight decrease in the yield. Figure S2B,D,F show that TPC extraction yield increases
with increasing temperature. The increase in temperature will increase the solubility of the
phenolic compounds and accelerate the mass transfer rate, thus increasing the extraction
yield of TPC. Likewise, excessively high temperatures can lead to the degradation of active
substances, resulting in reducing the extraction yield of TPC. Figure S2C,E,F show that
the TPC extraction yield had a clear increasing trend with an increasing L/S ratio. The
L/S ratio plays an important role in the conduction of active ingredients. Increasing the
amount of solvent reduces the concentration of ingredients around the sample, favoring
the diffusion of active compounds inside the cells into the solvent. However, adding too
much solvent not only causes waste but also increases nontarget components. Therefore,
when the L/S ratio reaches the maximum value, the TPC content will decrease slightly as
the L/S ratio increases.

On the basis of the regression model’s optimization, the optimal extraction conditions
for TPC are as follows: NADES water content of 41%, extraction time of 40 min, extraction
temperature of 36 ◦C, and L/S ratio of 76 mL/g. The predicted yield under these conditions
is 24.93 mg GAE/g DW. To validate the predicted yield results, three parallel experiments
were conducted under the optimal extraction conditions, and the experimental yield was
25.17 mg GAE/g DW TPC. The experimental and predicted values of 24.93 mg GAE/g DW
were very similar, and the difference between the predicted and experimental yields was
only 0.95% (less than 5%). This shows that the model can, indeed, be used to extract TPC
from CLs.

2.6. Extraction Kinetic Study

In order to verify the extraction advantages of NADES in the actual production process,
a kinetic study was conducted on the extraction process of TPC from CLs with water, 50%
EtOH and Pr-LA under the extraction conditions of 2.5.2. Apply Equation (5) to process the
experimental data and draw graphs. It can be seen from Figure 6A that the second-level
kinetic model has a good fit for the process of extracting TPC from CLs, indicating that
the second-level kinetic model can be used to describe the extraction process of TPC. The
second-order kinetic model parameters Cs, h, and k (Table S3) were calculated based on
the slope and intercept in the fitting equation in Figure 6A. “Cs” represents the saturation
concentration of TPC (mg GAE/g DW). The larger the Cs value, the higher the solubility of
phenolic compounds in the extraction solvent. “k” represents the extraction rate constant
(g·min−1·mg−1), and a larger rate constant means reaching extraction equilibrium in a
shorter time. From Table S3, it can be seen that during the extraction of TPC from CLs,
the Cs value: Pr-LA > 50% EtOH > water, which means that the solubility of phenolic
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compounds in Pr-LA is higher compared with water and 50% EtOH. Previous studies
have pointed out that the hydrogen bond network formed by hydrogen bond donors and
hydrogen bond acceptors in NADES may be the reason for increasing the solubility of
phenolic compounds [65]. However, the rate constant value “k” exhibits the order 50%
EtOH > Water > Pr-LA. The solvent Pr-LA has a higher viscosity compared to 50% EtOH
and water. High viscosity may reduce the mass transfer rate of phenolic compounds within
the Pr-LA solvent system, which may be responsible for the difference in rate constants [66].
In Figure 6B, the inflection point of the fitting curve reflects the rate constant k. The earlier
the inflection point occurs, the larger the rate constant k. This is consistent with the order of
k values in Table S3. After the inflection point, the curve will become flat, which means that
the TPC value reaches the saturation value, which also confirms the order of the Cs value.
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The extraction kinetics study not only proves that Pr-LA can improve the extraction
yield of TPC in actual industrial production, but also provides theoretical guidance for
actual industrial production.

3. Materials and Methods
3.1. Materials and Chemicals

Celtuce leaves (CLs) were procured from a local farmers market situated in Shanghai
in December. CLs were carefully washed by hand and stored in a refrigerator at −18 ◦C for
2 days, then subjected them to freeze-drying process in a freeze dryer (TF-FD-1, Shanghai
Zhefen Machinery Co., Ltd., Shanghai, China). Subsequently, the dried leaves were crushed
into fine powder using an 800 Y mill (Wuyi Haina Co., Ltd., Jinhua City, China), and sifted
through a 50-mesh sieve. The resulting dry sample powder was carefully stored at 4 ◦C for
future use.

All analytical standards were provided by Shanghai yuanye Bio-Technology Co., Ltd.
(Shanghai, China). Acetonitrile and formic acid were provided by Macklin Company
(Shanghai, China). Choline chloride, L-proline, lactic acid and other chemical reagents
were purchased from Alladdin (Shanghai, China).

3.2. Preparing and Screening of DESs

According to Table 1, Prepare 11 different NADES using the heating and stirring
methods described above, mix HBA and HBD, then stir and heat at 80 ◦C, and add 30%
water until a transparent and uniform stable state [3,67].

For preliminary evaluation of NADES, 0.5 g of CLs dry powder was added to 12.5 mL
of NADES prepared above. Subsequently, the extraction was performed using a KQ-250DB
ultrasonic instrument (Kunshan, Jiangsu, China) with an extraction time of 30 min, an
extraction temperature of 30 ◦C, and a power of 200 W, followed by centrifugation at
10,000× g for 10 min. The resulting supernatant was carefully collected and subsequently



Molecules 2024, 29, 2385 14 of 20

diluted tenfold in preparation for subsequent analysis. Figure 7 shows the sample process-
ing steps before extracting phenolic compounds from CLs.
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3.3. Determination of Total Phenolic Content (TPC)

Total phenolic content (TPC) was determined following previously established method-
ologies with slight modification [68]. Briefly, 1 mL of the diluted extract was combined
with 2.5 mL of a 10% (v/v) Folin-Ciocalteu solution, 7.5% (w/v) Na2CO3 solution was
introduced, the mixture was then incubated in a dark environment at room temperature for
120 min. The resulting mixture was measured using a microplate reader at 760 nm and the
results were expressed as gallic acid equivalents per gram of CLs dry weight (mg GAE/g
DW). Gallic acid was used as the reference standard. The standard curve equation for gallic
acid is Y = 0.009676 × X + 0.01791 (R2 = 0.9990).

3.4. Traditional Solvent Extraction of TPC from CLs

In this experiment, 0.5 g of CLs sample was mixed with 12.50 mL of conventional
solvent (50% EtOH and water) in a 50 mL tube. Extraction conditions followed the exper-
imental parameters outlined in Section 3.2. After centrifugation at 10,000× g for 10 min,
the resulting supernatant was collected. Subsequently, a comparative analysis of TPC was
performed on the extracted CLs extracts.

3.5. Scanning Electron Microscopy (SEM)

The extracted sample residues of three samples were washed alternately with ethanol
and water until there was no ethanol smell. Then three extracted sample residues were
dried. The experimental conditions were set to voltage of 3 KV, 60 µm objective aperture,
and 6.8 mm working distance. The dried sample was firmly mounted on a silicon wafer,
and prayed with gold using a sputtering coater for 45 s with a gold spraying temperature
of 10 mA (Quorum SC7620, San Jose, CA, USA). The microstructure of the samples before
and after extraction with different solvents (NADES, 50% EtOH, and water) were observed
using a field emission scanning electron microscope (Hitachi, Tokyo, Japan). Samples were
viewed at magnifications of 1000, 2000, and 5000.

3.6. Fourier Transforms Infrared Spectra (FT-IR)

The extract was freeze-dried for 48 h and ground into powder. KBr and the extract are
mixed evenly and then pressed into thin sheets. The experimental parameters were set to
scan 16 times. Subsequently, an FT-IR spectrometer (Thermo Fisher Scientific, Waltham,
MA, USA) was used to scan in the wavenumber range of 4000–400 cm−1. The data were
assessed using Omnic 9.0 software (OMNICTM Series, Thermo Scientific, USA) once all the
spectra were collected.
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3.7. Mechanism of Extraction of Phenolic Compounds from CLs
3.7.1. Identification of Phenolic Compounds in Pr-LA Extracts by LC-MS

Qualitative analysis of phenolic compounds in Pr-LA extracts was performed using
Ultimate 3000 UHPLC-Q Exactive (ThermoFisher Scientific, USA). An Eclipse Plus C18
chromatographic column (100 mm × 4.6 mm, 3.5 µm) was used for separation. The
mobile phase contained acetonitrile (A) and a 0.1% aqueous solution of formic acid (v/v)
(B). Gradient elution was used: 0–2 min, 95% B; 2–4 min, 80–95% B; 4–12 min, 80–85%
B; 12–14 min, 50–85% B; 14–26 min, 0–50% B; 26–28 min, 0% B; 28–29 min, 0–95% B;
29–30 min, 95% B. Briefly, electrospray ionization (ESI) in negative ion mode was used,
and the analysis included a first-level full scan and a second-level automatic scan. The
ion source voltage was set to −4 kV, the capillary temperature was strictly controlled at
320 ◦C, and the working temperature of the auxiliary device was 300 ◦C. We used the
software Xcalibur (XcaliburTM 2.0.7, Thermo Scientific) to analyze these data. For the
accuracy of the results, we compared and analyzed the molecular ion peak and secondary
fragmentation information simultaneously with analytical standards and data results from
previous studies.

3.7.2. Molecular Dynamic Simulation

Use the Pubchem website to collect and draw the original structures of molecules
such as Caffeic Acid, L-proline, lactic acid, ethanol, etc. Use the OPLSAA force field online
website to generate topological information for small molecules.

Boxes with dimensions of 10 nm × 10 nm × 10 nm containing caffeic acid molecules
and different solvent molecules (proline-lactic acid and water, ethanol and water, water)
were constructed using the Gromacs built-in inserter. Three solvent boxes containing
caffeic acid were constructed: a solvent box using Pr-LA as solvents, and 1000 proline
ions, 500 lactic acid molecules, 8309 water molecules, and 40 caffeic acid molecules were
randomly added in proportion, the water molecules adopt the commonly used and accurate
SPCE water model (the same below). For the solvent box with a solvent of 50% EtOH,
2000 ethanol molecules, 4755 water molecules, and 40 caffeic acid molecules were randomly
added. In the solvent box using water as the solvent, a total of 16,581 water molecules and
40 caffeic acid molecules were randomly introduced.

Each simulation process was performed using the Oplsaa force field at 338.15 K and
1 atm, and the conjugate gradient method combined with the steepest descent method
was used for energy minimization. Then, the system was initially equilibrated for 10 ns
in constant pressure–constant temperature (NPT) simulation conditions. Finally, a final
simulation process of 100 ns was performed under a constant NPT system.

This study used VMD 1.9.3 software (https://www.ks.uiuc.edu/Research/vmd/,
accessed on 2 December 2022) and its own Tcl language to visualize and statistically analyze
the simulation results. Statistical drawings were created using Origin 2021 software.

3.8. Design of Experiments
3.8.1. Single-Factor Experiment

The experimental design was carried out according to previously established methods
with certain modifications [69]. After selecting the NADES with the best extraction effect,
a single-factor experiment was conducted to study the impact of each extraction factor
on TPC. These single factors include the water content of NADES (10–50%), extraction
time (20–60 min), extraction temperature (10–50 ◦C), and liquid-to-solid ratio (L/S ratio)
(20–80 mL/g). In order to improve the accuracy of the experiments, all experiments were
performed three times.

3.8.2. RSM Experiments

Response surface methodology (RSM) is often used to optimize experimental param-
eters in extraction experiments [70,71]. The experimental design adopted a four-factor,
three-level Box–Behnken design (BBD) with the goal of maximizing TPC. The four main

https://www.ks.uiuc.edu/Research/vmd/
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influencing variables are water content of NADES, extraction time, extraction temperature
and L/S ratio. Notably, all experiments were performed in triplicate. The response value
TPC is expressed using a second-order polynomial equation, the equation of which is
as follows:

Y = β0 +
k

∑
i=1

βiXi +
k

∑
i=1

βiiX2
i +

k

∑
i=1

k−1

∑
j=i+1

βijXiXj + ε (2)

In the equation provided, “Y” signifies the response variable; “Xi” and “Xj” represent
the independent variables; The coefficients β0, βi, βii, and βij correspond to the regression
coefficients for the intercept, linear, quadratic, and interaction terms, respectively; ε is a
random error.

3.9. Kinetic Model

The extraction process can be regarded as the reverse process of the adsorption process.
Therefore, the basic principles of the adsorption kinetic equation are suitable for application
in the field of extraction. Second-order kinetics have been effectively applied to elucidate
the extraction kinetics of NADES [72–74]. The kinetic study of TPC extraction from CLs
by NADES was conducted under RSM optimization conditions, which included a water
content of the NADES of 41%, extraction time of 40 min, extraction temperature of 36 ◦C,
and L/S ratio of 76 mL/g. Similarly, kinetic studies of TPC extraction were performed
using water and 50% EtOH under the same UAE conditions as using NADES extraction.
Extracts were collected at specific time intervals and subsequently analyzed for TPC yield.
According to previous studies, the dissociation rate of TPC from CLs can be calculated by
the following Equation (3):

dCt
dt

= k(Cs − Ct)2 (3)

In the equation provided, “Ct” represents the TPC yield (mg GAE/g DW) expressed
in “t” (minutes), “Cs” represents the saturation concentration of TPC in CLs (mg GAE/g
DW), and “k” represents the extraction rate constant (g·min−1·mg−1). Integrating the rate
law of this second-order model over time “t” from 0 to “t” and concentration “Ct” from 0
to “Ct” leads to the formulation of Equation (3). This equation can then be converted into a
linearized representation, expressed as Equation (4).

Ct =
ktC2s

1 + ktCs
(4)

t
Ct

=
1

kC2s
+

t
Cs

(5)

3.10. Statistical Analysis

All experiments were performed three times to ensure the reliability of the results.
GraphPad Prism 8.0.2 software was used to generate graphs of the experimental data.

4. Conclusions

This study provides a novel, green, and efficient method of extracting phenolic com-
pounds from CLs using ultrasound-assisted technology combined with Pr-LA. Compared
with traditional solvents, Pr-LA is the most advantageous extraction solvent for extracting
phenolic compounds from CLs. SEM and FT-IR both confirmed that Pr-LA can enhance the
degree of fragmentation of cell structures and improve the extraction yield of phenolic com-
pounds. Molecular dynamics simulation results show that Pr-LA can improve the solubility
of phenolic compounds and have stronger hydrogen bonds and van der Waals interactions
with phenolic compounds, which also explains why the extraction efficiency of Pr-LA is
higher than that of traditional solvents. The Box–Behnken design was used to optimize
the extraction process of TPC from CLs using ultrasound-assisted combination with Pr-LA.
Under the optimal conditions of a NADES water content of 41%, extraction time of 40 min,
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extraction temperature of 36 ◦C, and L/S ratio of 76 mL/g, the optimal extraction yield was
predicted to be 24.93 mg GAE/g DW, and the actual extraction yield was 25.17 mg GAE/g
DW, the experimental results are in good agreement with the predicted results. Finally,
the kinetic analysis of the extraction process was performed, and the results show that
the second-order kinetic model can be used to describe the extraction process of phenolic
compounds from CLs, providing theoretical guidance for actual industrial production. In
summary, ultrasound-assisted extraction combined with Pr-LA is a green, efficient, and
economical method to extract phenolic compounds from CLs. However, this study needs
to conduct further pilot scale-up experiments in the future and then apply the experiments
to actual industrial-scale production. Of course, the safety of Pr-LA and Pr-LA CL extracts
still need to be verified in the future so that it can be used more safely in food, medicine,
cosmetics, and other fields.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29102385/s1, Figure S1: LC-MS total ion chromatogram
of Pr-LA extract in the negative ion mode; Figure S2: Interactive effects of independent variables on
TPC in extracted CLs; Table S1: 10 Phenolic compounds in Pr-LA extract identified by the LC-MS
method; Table S2: Box–Behnken design and results for the UAE of TPC from CLs; Table S3: Kinetic
parameters of the second order kinetic model for extraction.
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