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Abstract: Quantum tunneling in a two-dimensional integrable map is studied. The orbits of the
map are all confined to the curves specified by the one-dimensional Hamiltonian. It is found that
the behavior of tunneling splitting for the integrable map and the associated Hamiltonian system
is qualitatively the same, with only a slight difference in magnitude. However, the tunneling tails
of the wave functions, obtained by superposing the eigenfunctions that form the doublet, exhibit
significant differences. To explore the origin of the difference, we observe the classical dynamics in
the complex plane and find that the existence of branch points appearing in the potential function
of the integrable map could play the role of yielding non-trivial behavior in the tunneling tail. The
result highlights the subtlety of quantum tunneling, which cannot be captured in nature only by the
dynamics in the real plane.
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1. Introduction

Quantum tunneling is a subtle phenomenon because it cannot be captured by any
power series, such as the WKB (Wentzel–Kramers–Brillouin) expansion, in terms of the
Planck constant. This unique aspect can also be understood by recognizing that the
power series expansion diverges, meaning that the tunneling effect is fundamentally non-
perturbative [1].

Recent advances in resurgence theory have revealed that divergent series contain a
wealth of information, even though they are divergent, and have provided a mathematical
framework for dealing with exponentially small quantities [1–5]. Historically, the instanton
method, proposed in the field theory and the theory of chemical reactions, is established
when describing the tunneling effects of the system with a single degree of freedom [6–20].
The instanton is a path running along the imaginary time, so it is not the solution in the
real plane. Along the same lines, it has long been recognized that it is necessary to consider
complex paths in order to treat exponentially small effects. In resurgence theory, complex
paths, including the instanton path, can be formulated as singularities in the Borel plane,
which is obtained by applying the Borel transform to a given divergent series [1–5].

This paper discusses the subtlety of tunneling effects in a class of integrable maps for
which one would expect nothing special since they are completely integrable. However,
as shown below, this is not necessarily the case. The work presented here can be regarded
as one of a series of studies on tunneling effects in nonintegrable systems based on the
complex semiclassical analysis [21–23]. Since not only energetic barrier tunneling but also
dynamical tunneling [24–26] are exponentially small effects, the importance of complex
paths is obvious and the use of complex orbits is unavoidable if one intends to extract
components originating from tunneling effects. The integrable map studied here shares a
certain characteristic with nonintegrable maps, although it is integrable.
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To study tunneling effects in nonintegrable systems, discrete-time dynamical systems,
commonly referred to as maps, are often used as model systems. This is supported by
several reasons, among which is that the behavior of complex paths has been well studied
for discrete-time dynamical systems compared to continuous-time (Hamiltonian) dynam-
ical systems [27–29]. However, we should keep in mind that it is not immediately clear
whether the results derived for discrete-time dynamical systems, especially those based on
complex dynamics, are applicable to continuous-time flow systems. The difficulty arises
from the lack of a formal connection between the complex dynamics of the maps and
continuous-time flow systems in which time is complexified.

On the other hand, one can find nonlinear integrable Hamiltonian flow systems, while
nonlinear integrable maps are rather rare. The instanton is a path describing the tunneling
transition in continuous Hamiltonian flow systems, and it is sometimes used as a reference
when comparing the behavior of tunneling in integrable and nonintegrable systems [30–32].
In contrast, to the authors’ knowledge, there has not yet been an analysis of the tunneling
effect for the map that is obtained by perturbing an integrable map. In most analyses,
a continuous-time Hamiltonian system is taken as the integrable limit [33,34]. Such a
treatment is somewhat self-inconsistent, and it is advisable to seek alternative solutions,
if possible.

To fill this gap, here we study tunneling for a class of integrable maps found by
Suris [35,36]. The integrability of the map is defined similarly to the case of continuous-
time Hamiltonian systems. In particular, to verify the integrability of the two-dimensional
symplectic map, it is sufficient to find a constant of motion under the discrete-time evo-
lution. In Ref. [35], it was also shown that the maps with different types of potential
functions provide ‘Hamiltonians’, and it is easy to check that they are conserved under the
time evolution.

Here, we compare quantum tunneling for the integrable map and the associated
‘Hamiltonian’. We quantize the map as usual by introducing the one-step unitary operator,
while Weyl quantization is applied to the continuous Hamiltonian. For a given classical
Hamiltonian, recall that there are infinitely many quantizations resulting from the choice
of the operator ordering. The differences are known to be of the order of h̄2, which is
larger than exponentially small effects. Thus, even within quantizations of a continuous
Hamiltonian, each of which is determined by the chosen operator ordering, tunneling
effects are, in principle, uncontrollable. It is, therefore, not surprising that the difference in
quantization between integrable maps and the associated integrable Hamiltonian systems
can lead to different tunneling properties.

Our strategy in this paper is to perform high-precision numerical calculations of
quantum systems and to observe the behavior of the complex dynamics generated by both
the integrable map and the corresponding Hamiltonian flow. We compare the complex
classical dynamics with the phase space profile of the time-evolved wave packet and reveal
non-trivial signatures in the tunneling components, even though the map is integrable. We
do not perform a semiclassical analysis here but explain significant features of the complex
dynamics that lead to the semiclassical analysis in future studies.

Recently, the ultra-near integrable system has been studied in order to explore the
difference in tunneling between integrable and nonintegrable systems [23,37]. Ultra-near
integrable systems are defined as those systems in which the classical phase spaces do not
exhibit any invariant structures inherent in nonintegrability in the size of the Planck cell.
Even without islands of stability or chaotic seas, the tail of the wave function generates
non-monotonic step structures [37], and the ergodicity of complex dynamics has been
shown to play a key role in reproducing non-trivial tunneling behavior in nonintegrable
maps [23]. Since there are no symptoms in the real phase space, the origin of the non-trivial
tunneling tails comes down to the question of how chaos is born in the complex plane. The
study of the integrable map is expected to be helpful in understanding this question.

The organization of this paper is as follows. In Section 2, we introduce the symplectic
map which was found to be integrable by Suris [35], together with the Hamiltonian to
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which the orbits generated by the map are confined. We then define the unitary operator
that provides the quantum dynamics for the map. Section 3 provides numerical results
showing the difference in tunneling signatures between the integrable and the correspond-
ing Hamiltonian system. Although the tunneling splitting exhibits only a tiny difference,
the tunneling tails for the localized states constructed from the eigenfunctions forming
the doublet differ significantly. In Section 4, we observe the behavior of the classical dy-
namics in the complex plane. This is only a preliminary study toward the semiclassical
understanding of the non-trivial tunneling revealed in the integrable map, but the result
provides important implications for understanding the observed phenomenon. What
distinguishes the two systems is the fact that the solution of the Hamiltonian flow has
no singularities in the complex plane, while the derivative of the potential function has
branch points, which lead to multivalued dynamics in the integrable map. We also discuss
issues that are expected to arise in the development of semiclassical analysis in the complex
domain. Section 5 summarizes the results obtained in the present paper and provides some
arguments, especially in relation to quantum tunneling in nonintegrable systems.

2. Model

To begin with, we introduce a two-dimensional area-preserving map f : T2 → T2,

f :

qk+1

pk+1

 =

qk + pk − V′(qk)

pk − V′(qk)

. (1)

Suris [35] has shown that there exists a conserved quantity for the map:

H(qk+1, pk+1) = H(qk, pk), (2)

for some specific choices of the potential function V(q). Among several possibilities, here,
we take a potential function defined by [38]

Vλ(q) :=
1
π

∫ q

0
arctan

(
λ sin 2πq′

1 + λ cos 2πq′

)
dq′. (3)

Note that the potential function Vλ(q) is periodic with period 1. For this potential,
the Hamiltonian

Hλ(q, p) := − cos 2πp − λ[cos 2πq + cos 2π(q − p)], (4)

satisfies the condition (2) for any λ. Below, we denote the map with the potential (3) by fλ

to specify the map depends on the parameter λ. In this paper, the integration of Vλ(q) is nu-
merically evaluated by “double exponential quadrature” [39] implemented in Mathematica
until numerical convergence is achieved to at least with 200 digits of mantissa.

Since the condition (2) holds for k ∈ Z, Hλ can be regarded as a conserved quantity
(Hamiltonian) for the map fλ. In addition, the Hamiltonian flow Fλ(q(t), p(t)) generated
by the Hamiltonian equations of motion,

q̇(t) =
Hλ(q, p)

∂p
, ṗ(t) = −Hλ(q, p)

∂q
, (5)

is obviously integrable. Therefore, the map fλ does not exhibit chaotic motion and can be
said to be integrable. In this paper, we refer to fλ as the Suris’s integrable map.

Figure 1a shows the functions V′
λ(q) and Vλ(q) for different values of λ The profile

of V′
λ(q) for |λ| < 1 looks like a “skewed” sine function. As λ → ±1, V′

λ(q) tends to a
piecewise linear function, which is discontinuous at q = 1/2 for λ = 1 and q = 0 for
λ = −1. A fixed point (q, p) = (0, 0) is elliptic-type if λ > 0 and hyperbolic if λ < 0.
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For |λ| > 1, there are several discontinuous points in q ∈ [0, 1). In this paper, we take
λ ∈ (−1, 0).

Figure 1b,c give phase space portraits for λ = −1/3 and −2/3. Each dot and solid
curve of the same color represents a single orbit { f k

λ(q0, p0)}k∈N starting from an initial
condition (q0, p0) and the corresponding contour curves of Hλ(q, p) = Hλ(q0, p0), respec-
tively. There are stable fixed points at (q, p) = (±1/2, 0) and an unstable fixed point
at (q, p) = (0, 0). In addition, the map has stable periodic points with a period of 2
at (q, p) = (∓ arccos(− λ

2 )/2π,± arccos( λ2

2 − 1)/2π) and unstable periodic points with
a period of 2 at (q, p) = (0,±1/2) (when we take mod 1 for q). Separatrices starting
from (q, p; E) = (0, 0;−1 − 2λ) and (q, p; E) = (0, 1/2; 1) are shown in black dashed and
black dash-dotted curves, respectively. As expected, the orbits { f k

λ(q0, p0)}k∈N for any
(q0, p0) ∈ R2 lie on the contour curves of Hλ(q, p) = Hλ(q0, p0).
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-0.05

0.00

-0.5

0

0.5

(a)

0.5 0.0 0.5
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(b) λ= − 1/3

0.5 0.0 0.5

q

0.5

0.0

0.5

p

(c) λ= − 2/3

Figure 1. (a) Plot of the functions V′
λ(q) (upper) and Vλ(q) (lower) for λ = −1/3, −2/3, and −1.

Phase space portrait for (b) λ = −1/3 and (c) λ = −2/3. In (b,c), dots and solid curves represent
the orbits for fλ and the associated contour curve Hλ(q, p), respectively. Black dashed and black
dash-dotted curves represent the separatrix starting from (q, p) = (0, 0) and (0,±1/2), respectively.

We next introduce the quantum dynamics associated with the classical map fλ. Here,
we assume the periodic boundary condition for both q- and p-directions, which leads
to the finite-dimensional Hilbert space whose dimension is given by, say, N, and apply
the canonical quantization to the one-step time evolution, which gives the quantum map
Û : |ψ⟩k 7→ |ψ⟩k+1 [40,41],

Ûλ := e−
i
h̄ p̂2

e−
i
h̄ Vλ(q̂). (6)

Floquet theorem leads to the eigenvalue equation,

Ûλ|ψn⟩ = e−
i
h̄ En |ψn⟩. (7)

Correspondingly, we introduce the quantized Hamiltonian Ĥλ(q̂, p̂) by adopting the canon-
ical quantization for the classical Hamiltonian (4). Note here that we take the Weyl’s
ordering for the product of q and p. The eigenvalue equation for Ĥλ then reads

Ĥλ|Ψn⟩ = En|Ψn⟩. (8)

In the following, the quantum number m of the quasi-eigenstate |ψm⟩ is determined by the
quantum number of the eigenstates |Ψn⟩ attaining the maximal overlap |⟨ψm|Ψn⟩|2.

In this paper, numerical computations for the quantum map are performed by using
arbitrary precision arithmetics implemented in Mathematica, MATLAB 5.2.5.15470, with the
ADVANPIX toolbox [42].
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3. Discrepancy between the Wave Function |ΨL⟩ and |ψL⟩
The discrete map fλ and the continuous Hamiltonian flow Fλ share the same constant

of motion Hλ(q, p), but the quantization procedures are different: the former is quantized
by introducing the single-step unitary operator Ûλ, while Weyl’s quantization is applied
to the Hamiltonian Hλ. Thus, it is by no means obvious whether the eigenvalues and
eigenfunctions are identical and have the same properties.

In particular, we are interested here in tunneling effects, so the difference in quantiza-
tion can be crucial. This is because, as mentioned above, exponentially small effects slip
through ordinary semiclassical arguments, which are made by expressing related quantities
in terms of the expansion of h̄. Even within quantizations for the Hamiltonian Hλ, there is
ambiguity about the operator ordering, leading to an uncertainty of the order of O(h̄2), so it
is all the more unclear what will happen if the quantization method differs from each other.

Here, we examine tunneling splittings generated in the nearly degenerate energy
levels of the quantum map (6). To obtain a double-well-like setting, we impose the periodic
boundary condition on the phase space region (q, p) = [−1, 1)× [−1/2, 1/2). The period-
icity of V(q) leads to the point-symmetric phase space around (0, 0) (see Figure 1), and the
‘libration’ motion appears for −1 + 2λ < Hλ(q, p) < −1 − 2λ. Due to the symmetry with
respect to the origin, the energy levels of the quantum map produce tunneling splittings,
similar to the one-dimensional double-well potential system.

Figure 2a shows some eigenfunctions ψn(q) and Ψn(q) for h̄ = 1/200π in semi-
logarithmic scale, and Figure 2b shows the corresponding Husimi representation for |Ψn⟩
in normal scale. There is no noticeable difference between ψn(q) and Ψn(q), and the Husimi
representation has support on the contour curves Hλ(q, p) = En. Figures 3a(i,ii) plot the
tunneling splitting defined by

∆E0 = |E1 − E0|, ∆E0 = E1 − E0, (9)

as a function of 1/h̄ and −λ, respectively. In contrast to the almost perfect agreement of
the eigenfunctions shown in Figure 2a, we can find a few orders of magnitude difference
between the tunneling splittings ∆E0 and ∆E0 [see also Figures 3b(i,ii)], while the parameter
dependence of ∆E0 and ∆E0 on 1/h̄ and −λ is qualitatively the same; both are expected
from the semiclassical analysis for integrable systems.

A tiny difference in the magnitude implies that some discrepancy should be hidden in
the eigenfunctions. Figure 3c plots the magnitude 1− |⟨ψn|Ψn⟩|2 as a function of −λ, which
shows that the difference between |ψn⟩ and |Ψn⟩ does indeed exist, although it is expo-
nentially small, less than 10−8 for λ ∈ (−1, 0). Note also that the difference 1 − |⟨ψn|Ψn⟩|2
increases as −λ tends to 1.

The tunneling splitting appears as a result of the overlap of the wave function localized
at the left (q < 0) and the wave function localized at the right (q > 0):

|ψL(R)⟩ :=
1√
2
(|ψ1⟩ ± |ψ0⟩), |ΨL(R)⟩ :=

1√
2
(|Ψ1⟩ ± |Ψ0⟩). (10)

Figure 4a,b present the wave functions ΨL(q) and ψL(q) and the corresponding Husimi rep-
resentation, respectively. Let q×− and q×+ be the turning points of the manifold Hλ(q, p) = E0
projected onto the q-axis. As seen in Figure 4a, |ΨL(q)|2 has an exponentially decaying
tunneling tail in the region q ∈ (q×−, q×+), as predicted by the WKB argument.

The Husimi representation provides more detailed information. As shown in Figure 4b(i),
the amplitude of the Husimi representation for |ΨL⟩ decays exponentially along the instanton
curve. The instanton curve is obtained here by the purely imaginary time evolution t ∈ iR of
the Hamiltonian flow Fλ starting from the turning point q×−.
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Figure 2. (a) Eigenstates ψn(q) (cyan) and Ψn(q) (black) with h̄ = 1/200π for (i) n = 0, (ii) n = 50,
(iii) n = 150, and (iv) n = 199. (b) Husimi representation of ψn(q) in normal scale for (i) n = 0,
(ii) n = 50, (iii) n = 150, and (iv) n = 199. The intensity of Husim representations is indicated by a
yellow-red color scheme shown in the right panel. The black dotted curve shows the contour curve
with Hλ(q, p) = En. The black broken curve shows the separatrix starting from (q, p) = (0, 0).
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Figure 3. (a) Plots of the tunneling splittings ∆E0 (solid) and ∆E0 (dashed) as a function of (i) 1/h̄
and (ii) −λ. (b) Plots of the ratio ∆E0/∆E0 as a function (i) 1/h̄ and (ii) −λ. (c) Plot of 1 − |⟨ψ0|Ψ0⟩|
vs. −λ.



Entropy 2024, 26, 414 7 of 16

0.5 0.0 0.5 1.0
q

400

300

200

100

0

lo
g

1
0
|ψ
L
(q

)|
2

(a)

1/ = 200π

1/ = 400π

1/ = 600π

1/ = 800π

1/ = 1000π

-1 -0.5 0 0.5 1

q

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

p

(b i)

-80

-70

-60

-50

-40

-30

-20

-10

0

-0.5 0 0.5 1

q

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

p

(b ii)

-60

-50

-40

-30

-20

-10

Figure 4. (a) Wave functions ψL(q) (solid curves) and ΨL(q) (dashed curves) for different values
of 1/h̄. The “⋆” mark is put to indicate the deviation point q⋆−. (b) Husimi representation of
(i) ΨL(q) and (ii) ψL(q) for 1/h̄ = 200π in the log10 scale. The dashed gray curve represents the
separatrix. Closed cyan curves show the contour curve associated with the ground state energy level
E0 = −1.639 057 02. Black and white “×” symbols indicate the position of the turning points for
q(t); (q, p) = (±0.450 847,±0.012 215), respectively. (i) The cyan curve connected to the two turning
points shows the instanton curve projected onto the (Re q, Re p)-plane.

|ψL(q)|2 also shows an exponentially decaying tunneling tail from q = q×− down to
q = 0. However, |ψL(q)|2 stops decaying just beyond q = 0 and then forms a plateau with
an oscillatory pattern in the region q > 0. As shown in Figure 4b(ii), the Husimi represen-
tation of |ψL⟩ tells us that the localization along the separatrix starting at (q, p) = (0, 0) is
responsible for the oscillatory plateau observed in the plot of |ψL(q)|2.

The plateau found in |ψL(q)|2 and the localized component along the separatrix
are reminiscent of “tunneling across the separatrix”. Note that its importance for our
understanding of the anomalous enhancement of the tunneling probability has been pointed
out in Ref. [34]. However, they are not necessarily the same phenomenon. The main
difference is that similar oscillation patterns in nonintegrable systems penetrate into the
region q < 0, while the plateau found in the Suris’s integrable map does not. To confirm
this, we examine the interval [q⋆−, q⋆+] in which |ψL(q)|2 is 10 times larger than |ΨL(q)|2.
Here, the edges q⋆− and q⋆+ are defined by

q⋆− := min

{
q ∈ [−1, 1) : log10

∣∣∣∣ ψL(q)
ΨL(q)

∣∣∣∣2 > 1

}
, (11)

q⋆+ := max

{
q ∈ [−1, 1) : log10

∣∣∣∣ ψL(q)
ΨL(q)

∣∣∣∣2 > 1

}
. (12)

Figure 5 plots q⋆− as a function 1/h̄. Dots and a black dashed curve in Figure 5 indicate
numerical data from q⋆− and a linear fit to the obtained data, respectively. The plot shows
that the value of 1/q⋆− increases linearly with 1/h̄, meaning that q⋆− → 0 for 1/h̄ → ∞.
Note in particular that the decay rate of 1/q⋆− with 1/h̄ is extremely slow compared to
nonintegrable cases [34].
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Figure 5. The dots represent the deviation point q⋆− vs. 1/h̄ for λ = −1/3 on (a) the double
logarithmic scale and (b) the normal scale. The dashed line is obtained by applying linear regression
to the plot of (a) whose slope is obtained as −0.974 180 81. The dotted-dashed line with slope −1 in
(a) is shown just for reference. The black horizontal line in (b) represents q⋆− = 0 as a guide.

4. Toward Semiclassical Understanding for Plateau with Oscillatory Pattern

While the WKB (semiclassical) analysis for eigenstates of integrable Hamiltonian sys-
tems is well established [43], there is no semiclassical prescription to analyze eigenstates of
nonintegrable systems. On the other hand, the semiclassical analysis in the time domain is
available even for nonintegrable systems, and the methodology incorporating the complex
domain is now in a usable state [22,44–47]. Here, we discuss the origin of the plateau
accompanied by oscillations observed in the quantum Suris’s integrable map by taking the
time-domain semiclassical approach.

Among possible options for initial conditions, we choose state |ΨL⟩ since we are
particularly interested in the discrepancy between |ψL⟩ and |ΨL⟩. Figure 6a,b illustrate
the propagation of the wave function Ûk

λ|ΨL⟩ in the q-representation and the Husimi
representation, respectively. We can see that the amplitude of the wave function Ûk

λ|ΨL⟩
for q ∈ [q⋆−, q⋆+] increases rapidly with time, and after four steps, it already reaches a profile
similar to ψL(q). Note that the saturated amplitude of Ûk

λ|ΨL⟩ in the interval q ∈ [q⋆−, q⋆+] is
slightly higher than the amplitude of ψL(q).
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Figure 6. Plot of Ûk
λ|ΨL⟩ (a) in the q-representation and (b) in the Husimi representation. The dashed

gray curve in (b) represents the separatrix starting from (q, p) = (0, 0)
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The Husimi representation shows us an explicit wave packet propagation in phase
space. As time evolves, the dominant part of the wave function Ûk

λ|ΨL⟩ passes through
the fixed point (q, p) = (0, 0) and propagates along the separatrix. After five steps, the am-
plitude spreads almost uniformly along the separatrix. This tells us that the plateau with
oscillation observed in ψL(q) appears as the result of the tunneling transport along the
separatrix associated with the fixed point (q, p) = (0, 0).

4.1. Complex Dynamics of Fλ and fλ

In this section, we explore the classical dynamics Fλ and fλ in the complex domain.
To do this, we introduce notations for the real and imaginary parts as q = Re q + i(Im q),
and p = Re p + i(Im p), respectively.

First, we observe the solution curves in the complex plane under the flow Fλ. They lie
on the equi-energy surface specified by the condition Hλ = En ∈ R. To obtain these curves,
we first find the turning points q×±, marked by the black “×” in Figure 7, and then solve the
equations of motion for the Hamiltonian Hλ along the imaginary time axis iR to connect
the turning points q×± ∈ R. Recall that this solution curve, shown by the thick black curve,
is nothing more than the instanton. Along the instanton curve, we place equally spaced
initial conditions, from each of which we solve the equations of motion along the real-time
axis R, yielding a set of closed curves shown in green.

1.0

0.5

0.0

0.5

1.0

Re q

0.5

0.0

0.5

Rep

0.0

0.1

0.2

0.3

0.4

0.5

Imp

(a)

∞
↑

0.5 0.0 0.5
Re q

0.5

0.0

0.5

Rep

(b)

Figure 7. The solution curves obtained under the continuous Hamiltonian flow Fλ. They are confined
in the equi-energy surface given by the condition Hλ = E0 = −1.639 057 02. The curves are projected
onto (a) the (Re q, Re p, Im p)-space and (b) the (Re q, Re p)-plane. In (a,b) the black closed curve and
the black semicircular curve represent the equi-energy curves in the real plane and the instanton
curve, respectively. The symbol “×” stands for the turning point of Re q(t). (a) The cyan line tending
to infinity shows a solution curve of Hλ starting from the point (Re q, Re p) = (0, 0), marked by
the cyan point on the instanton. (b) The cyan dots show the orbits of fλ starting from the point
(Re q, Re p) = (0, 0) on the instanton.

As for the dynamics of the map fλ in the complex plane, the multivaluedness of
the potential function V′

λ(q) generates non-trivial behavior. To see this, we focus on the
dynamics at the points (Re q, Re p) = (0, 0), (0,±1/2), and (±1/2,±1/2), respectively.
The equations of motion of the Hamiltonian flow Fλ are written explicitly as

Im q̇(t) = 2π[α1 sinh 2πIm p + α2λ sinh 2π(Im q − Im p)],

Im ṗ(t) = −2πλ[α3 sinh 2πIm q + α4 sinh 2π(Im q − Im p)],

Re q̇(t) = Re ṗ(t) = 0,

(13)
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where (α1, α2, α3, α4) = (1,−1, 1, 1) for (Re q, Re p) = (0, 0), (α1, α2, α3, α4) = (−1,−1,−1, 1) for
(Re q, Re p) = (±1/2,±1/2), and (α1, α2, α3, α4) = (−1, 1, 1,−1) for (Re q, Re p) = (0,±1/2).
Since Re q(t), Re p(t) = const., the solution curves shown in Equation (13) are restricted to
the (Im q, Im p)-plane. Note that the fixed points (Im q, Im p) = (0, 0) of Equation (13) are
all hyperbolic, and the right-hand sides of Equation (13) consist of monotonic and entire
functions so that the solution curves around (Im q, Im p) = (0, 0) diverge monotonically to
Im q(t), Im p(t) → ±∞ under forward time evolution (see Figure 8).

The green dots in Figure 7 show the classical orbits { f k
λ(q0, p0)}k∈Z for which the initial

points (q0, p0) are set along the instanton. We observe that all the orbits { f k
λ(q0, p0)}k∈Z

preserve the energy Hλ = E as expected, but there are exceptions: the orbits starting at
(Re q0, Re p0) = (0, 0) are not bounded on the Hamiltonian flow Fλ. As explained below,
the multivaluedness of the function V′

λ(q) for q ∈ C leads to such anomalous behavior.
In Figure 7b, the cyan dots show the projection of the itinerary of the orbit whose initial
condition is placed on the instanton orbit onto the (Re q, Re p)-plane. We can see that
the real part (Re qk, Re pk) of the orbit jumps among (Re qk, Re pk) = (0, 0), (±1/2,±1/2),
and (0,±1/2), while the real part (Re q(t), Re p(t)) does not change under the Hamiltonian
flow Fλ [see Equation (13)].

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

Figure 8. Flow of Equation (13) in the (Im q, Im p)-plane for λ = −1/3. Vertical dashed lines
represent Im q = q⋄ for λ = −1/3.

This itinerary of the orbit can be understood by considering the derivative V′
λ(q) of

the potential function in the complex q-plane. Introducing the new variable,

z =
λ sin 2πq

1 + λ cos 2πq
, (14)

we find that the derivative V′
λ(z) can be expressed as

V′
λ(z) =

1
π

arctan z , (15)

where the arctangent function has an alternative expression,

arctan z =
1
2i

log
(

1 + iz
1 − iz

)
=

∫ dz
1 + z2 , (16)

which obviously has the branch points in the z-plane at z = ±i, originating from the
logarithmic function. Correspondingly, in the q-plane, V′

λ(q) has the branch points at
q = m ± i 1

2π log(−λ) =: m ± iq⋄, where m ∈ Z (see Figure 9).



Entropy 2024, 26, 414 11 of 16

-π

-π /2

0

π /2

π

0

0.046

0.39

∞

Figure 9. The function V′
λ(q) in the (Re q, Im q)-plane with λ = −1/3. The argument of V′

λ(q) and the
absolute value |V′

λ(q)| are distinguished by color and brightness, respectively. The blue diamond “⋄”
symbol represents the branch point of V′(q). The white line starting from the branch point represents
the branch cut. The black curve shows a contour curve Im V′

λ(q) = 0.

Now, we consider the itinerary of the orbit starting from (Re q, Im q, Re p, Im p) =
(0, Im q0, 0, Im p0). In other words, we set the real part of the initial points to (Re q0, Re p0) =
(0, 0), but take various values for the imaginary parts (Im q, Im p) = (Im q0, Im p0), assum-
ing that |Im q0| < q⋄. Since the V′

λ(q) is a multivalued function in the logarithmic type,
the one-step iteration leads to an infinite number of images. Several studies have explored
the complex dynamics associated with multivalued functions [48], but here we consider
only the one-step iteration to get rid of the complication caused by the multi-step iteration.

Since the stability at the origin (Im q, Im p) = (0, 0) is hyperbolic (see Figure 8a),
for any given Im p0, there exists an initial condition |Im q0| < q⋄ such that the next step
satisfies the condition |Im q1| > q⋄. Recall that the Hamiltonian flow follows Equation (13),
so in the time evolution, the Re q(t) remains constant (Re q(t) = 0), and only the value of
Im q(t) changes. Therefore, in the (Re q, Im q)-plane, the point (0, Im q0) passes over the
branch points (0,±q⋄) before and after being mapped to the point (0, Im q1) . After passing
one of the branch points, the mapped point gains either 1/2+m and −1/2−m′ (m, m′ ∈ Z),
reflecting the multivalued nature of the potential function (15). As a result, the initial point
(Re q0, Re p0) = (0, 0) is mapped to the lattice points (1/2 + m, 1/2 + m′) (m, m′ ∈ Z).
However, these lattice points can be identified as (1/2,±1/2) and (−1/2,±1/2) by apply-
ing the periodic boundary condition. Therefore, the real parts (Re q0, Re p0) = (0, 0) are
mapped to (Re q1, Re p1) = (1/2,±1/2) and (−1/2,±1/2).

For the initial points (0, Im q0) in the (Re q, Im q)-plane that do not pass the branch
points within the single-step iteration, they simply move along the solution curve governed
by Equation (13). The points generated by the multivalued nature of the map are again
identified by applying the periodic boundary condition. Depending on the initial condi-
tion (Re q0, Re p0), the single step iteration in the (Im q, Im p)-plane gives the map from
(Im q0, Im p0) to (Im q1, Im p1) on the same flow curve. Note that the transition between
different (Re q, Re p)-planes does not occur because we assume here that the initial points
(0, Im q0) in the (Re q, Im q)-plane do not pass the branch points.

4.2. One-Step Propagation

As illustrated in Figure 6, the plateau with oscillation observed in the wave function
|ψL⟩ is reproduced by a wave function with relatively short time steps. This should make it
possible to develop the semiclassical analysis in the time domain.

As explained in the previous section, the multivaluedness of the map leads to the tran-
sition that never occurs in the integrable Hamiltonian flow. The orbits of the Hamiltonian
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flow Fλ starting from the unstable fixed point (Re q(0), Re p(0)) = (0, 0) do not change
the real part, i.e., (Re q(t), Re p(t)) = (0, 0) (t > 0) independent of the initial conditions
(Im q0, Im p0), while the orbits generated by the map fλ jump from (Re q0, Re p0) = (0, 0)
to either (Re q1, Re p1) = (1/2,±1/2) or (−1/2,±1/2) when they pass over the branch
points, otherwise they stay at (Re q1, Re p1) = (0, 0). Such a transition should explain the
propagation of the wave function along the separatrix, but some issues need to be clarified
before proceeding.

The first one is that the orbit in the complex plane is bifurcated even in one-step prop-
agation, reflecting the multivaluedness of the map. The transition from (Re q, Re p) =(0, 0)
to (1/2, 1/2) is observed in the one-step propagation of the quantum wave packet [see
Figure 10], while the orbit can jump from (Re q, Re p) = (0, 0) to (±1/2,∓1/2) as ex-
plained in the previous section. We expect that this can be solved by properly treating the
Stokes phenomenon when performing the saddle point approximation. If the path from
(Re q, Re p) = (0, 0) to (±1/2,∓1/2) gives rise to a divergent solution, then it should be
removed from the final solution due to the Stokes phenomenon. For multi-step analysis,
however, the multivaluedness of the map must be treated in each step, which makes semi-
classical analysis difficult. Therefore, we should first perform a single-step semiclassical
calculation. As can be seen from Figure 6, the plateau along the separatrix becomes
more visible as time evolves. It may be a relatively short time, but we have to perform
a semiclassical calculation with multiple time steps. This requires a more sophisticated
approach to the Stokes phenomenon.
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Û
k 6
j*

L
i

(a i)

k = 0
k = 1

-0.5 0 0.5 1
q

-0.5

0

0.5

p

(b i)

-80

-70

-60

-50

-40

-30

-20

-10

(i) 6 = !0:3

-0.5 0 0.5 1
q

-120

-100

-80

-60

-40

-20

0

Û
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Û
k 6
j*

L
i

(a iii)

k = 0
k = 1

-0.5 0 0.5 1
q

-0.5

0

0.5

p

(b iii)

-70

-60

-50

-40

-30

-20

-10

0

(iii) 6 = !0:7

-0.5 0 0.5 1
q

-140

-120

-100

-80

-60

-40

-20

0

Û
k 6
j*

L
i

(a iv)

k = 0
k = 1

-0.5 0 0.5 1
q

-0.5

0

0.5

p

(b iv)

-70

-60

-50

-40

-30

-20

-10

0

(iv) 6 = !0:9

Figure 10. (a) Plot of the wave functions Ûλ|ΨL⟩ (red curve) and |ΨL⟩ (black dashed curve) for
(i) λ = −0.3, (ii) λ = −0.5, (iii) λ = −0.7, and (iv) λ = −0.9. (b) Husimi representation of Ûλ|ΨL⟩.
The cyan dotted line represents a line (q, p) = (0, 0) to (q, p) = (1/2, 1/2) for a guide. The gray
solid curve and the gray dashed curve represent a contour curve of Hλ(q, p) = E0 and the separatrix
starting from (q, p) = (0, 0), respectively.

On the other hand, Figure 10 shows that the plateau can also be made visible by
increasing the parameter −λ. This may give us the impression that the one-step semiclas-
sical analysis is sufficient to explain the observed phenomenon, and one can get rid of
multi-step calculations. However, the problem is not so simple, because as the parameter
−λ is increased, the potential Vλ(q) and its derivative V′

λ(q) become sharper, as shown in
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Figure 1a. This reminds us of the diffraction effect [49], which is expected to occur when the
potential function has discontinuities. We should include higher-order terms in the saddle
approximations, or more legitimately develop uniform approximation-type arguments to
cope with such situations.

5. Conclusions and Discussion

In this paper, we have studied quantum tunneling for a nonlinear integrable map
found by Suris, with a particular focus on the comparison with the corresponding continu-
ous Hamiltonian system. Although the Suris’s map is completely integrable in the sense of
Liouville–Aronld in Hamiltonian systems, and the orbits in the real plane generated by the
Suris’s map lie on the equi-energy curve for the continuous Hamiltonian, our numerical
computations performed with arbitrary precision arithmetic have revealed that the charac-
teristics of the tunneling tails in the eigenfunctions differ from each other. This means that
the behavior of the tunneling tail cannot be deduced from the classical dynamics in real
phase space.

The discrepancy found here between the map and the corresponding Hamilto-
nian system is not surprising. As noted in the introduction, even for the same classial
Hamiltonian, there is an ambiguity in the quantization arising from the choice of the op-
erator ordering, while the magnitude of the tunneling effects is in general exponentially
small with respect to the Planck constant h̄, which cannot be captured by any power
series expansion.

A lesson we learned from this example is that it is necessary to investigate the dynamics
in the complex plane to understand the tunneling effect properly. Here, we have not
performed a fully semiclassical calculation with complex orbits, but it would be reasonable
to expect that the difference in the behavior of the complex dynamics gives rise to the
difference in the tunneling tail. The branch points, appearing in the potential function
of the map, produce the multivaluedness of the complex map whose treatment is one of
the topics in the theory of complex dynamical systems [48]. We have shown that the real
part of the orbits at the fixed point of the Hamiltonian flow remains the same under the
dynamics, while the orbit changes its real part discontinuously before and after crossing
the branch point. This must be the origin of the localization of the wave function along
the separatrix for the fixed point, but note that this is just a speculation and thus has not
been validated yet. Semiclassical analysis remains as future work, so we should perform a
single-step semiclassical calculation first since the multi-step semiclassical analysis for the
multivalued dynamical system has not been established.

The map fλ is slightly complicated compared to the flow Fλ due to the presence of
singularities producing the multivaluedness of the dynamics. This fact reminds us of the
so-called Painlevé conjecture: in integrable systems, singularities appearing in the time
plane are at most limited to the poles [50]. This, in turn, suggests that the system can be
nonintegrable if branch points appear in the complex time plane of the solutions. One can
say that the Suris’s integrable map is completely integrable as far as the dynamics in the
real plane are concerned, whereas it is one step outside of integrable systems. Our present
result shows that this difference is reflected in the tunneling effect.

It is important to note that such subtlety is not limited to the system studied in this
paper. If the system is close enough to the integrable limit, the phase space is almost covered
by Kolmogorov–Arnold–Moser curves. For the classical-to-quantum correspondence,
the size of the Planck cell is an important spatial scale; even if invariant structures such
as nonlinear resonances or stochastic layers appear in phase space, it does not matter
if their sizes are smaller than the size of the Planck cell under consideration. This is a
fundamental working hypothesis when considering the manifestation of classical chaos in
the corresponding systems [51]. According to this principle, the nearly integrable system,
in which the invariant structures inherent in the nonintegrability are all on the sub-Planck
cell scale, should be identified with the completely integrable system.
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This must hold true in the real plane, but not necessarily in the complex plane. This
is because the phase space profile for the nonintegrable system, no matter how close it is
to an integrable system, is dramatically different from that of the completely integrable
system. The KAM curves are analytic in the real plane, but they have natural boundaries in
the complex plane [52–55]. Furthermore, it is highly probable that homoclinic intersections
between stable and unstable manifolds occur beyond the natural boundaries [22]. Chaos
in the complex plane developed there is difficult to ‘see’ from the phase space profile in
the real plane, but tunneling transport is driven by chaotic orbits in such a deep complex
plane [23].

Quantum tunneling is a phenomenon that does not exist in classical mechanics.
There are approaches that try to understand quantum tunneling in terms of invariant
objects in the real phase space [56,57]. These implicitly assume that tunneling tails of
wave functions in nonintegrable systems can be expressed in terms of tunneling tails
of wave functions supported by invariant manifolds in the real phase space. In other
words, the broadening of the wave functions [58] is assumed to be sufficient to capture
the signature of nonintegrable tunneling. However, there is a situation in which such
an approach does not work [23], and there, one needs to make full use of chaos in the
complex plane. Chaos in the complex plane appears beyond natural boundaries and thus
is not reachable from the real plane. We believe that this fact is not necessarily limited to
the situation where no visible invariant structures appear compared to the Planck cell as
reported in Ref. [23], but the mechanism found there works in tunneling processes in
nonintegrable systems in general. The phase spaces used so far to study the tunneling in
nonintegrable systems are too complex to specify purely quantum phenomena, which
could slip through any kind of analysis based on classical dynamics in the real plane.
The question of what the unique characteristics of tunneling effects are in nonintegrable
systems should be revisited.
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