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Abstract: We revisit the well-known Gilbert–Varshamov (GV) bound for constrained systems. In
1991, Kolesnik and Krachkovsky showed that the GV bound can be determined via the solution of
an optimization problem. Later, in 1992, Marcus and Roth modified the optimization problem and
improved the GV bound in many instances. In this work, we provide explicit numerical procedures
to solve these two optimization problems and, hence, compute the bounds. We then show that the
procedures can be further simplified when we plot the respective curves. In the case where the graph
presentation comprises a single state, we provide explicit formulas for both bounds.

Keywords: Gilbert–Varshamov bound; constrained codes; asymptotic rates; sliding window
constrained codes

1. Introduction

From early applications in magnetic recording systems to recent applications in DNA-
based data storage [1–4] and energy-harvesting [5–10], constrained codes have played a
central role in enhancing reliability in many data storage and communications systems (see
also [11] for an overview). Specifically, for most data storage systems, certain substrings are
more prone to errors than others. Thus, by forbidding the appearance of such strings, that is,
by imposing constraints on the codewords, the user is able to reduce the likelihood of error.
We refer to the collection of words that satisfy the constraints as the constrained space S.

To further reduce the error probability, one can impose certain distance constraints on
the codebook. In this work, we focus on the Hamming metric and consider the maximum
size of a codebook whose words belong to the constrained space S and whose pairwise
distance is at least of a certain value d. Specifically, we study one of the most well-known
and fundamental lower bounds of this quantity—the Gilbert–Varshamov (GV) bound.

To determine the GV bound, one requires two quantities: the size of the constrained
space, |S|, and, also, the ball volume, that is, the number of words with a distance of at most
d− 1 from a “center” word. In the case where the space is unconstrained, i.e., S = {0, 1}n,
the ball volume does not depend on the center. Then, the GV bound is simply |S|/V, where
V is the ball volume of a center. However, for most constrained systems, the ball volume
varies with the center. Nevertheless, Kolesnik and Krachkovsky showed that the GV lower
bound can be generalized to |S|/4V, where V is the average ball volume [12]. This was further
improved by Gu and Fuja to |S|/V in [13] (see pp. 242–243 in [11] for additional details).
In the same paper [12], they showed the asymptotic rate of average ball volume can be
computed via an optimization problem. Later, Marcus and Roth modified the optimization
problem by including an additional constraint and variable [14], and the resulting bound,
which we refer to as GV-MR bound, improves the usual GV bound. Furthermore, in most
cases, the improvement is strictly positive.
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However, about three decades later, very few works have evaluated these bounds for
specific constrained systems. To the best of our knowledge, in all works that numerically
computed the GV bound and/or GV-MR bound, the constrained systems of interest have,
at most, eight states [15]. In [15], the authors wrote that “evaluation of the bound required
considerable computation”, referring to the GV-MR bound.

In this paper, we revisit the optimization problems defined by Kolesnik and
Krachkovsky [12] and Marcus and Roth [14] and develop a suite of explicit numerical
procedures that solve these problems. In particular, to demonstrate the feasibility of our
methods, we evaluated and plotted the GV and GV-MR bounds for a constrained system
involving 120 states in Figure 1b.

(a) Lower bounds for R(δ; S) where S is the class of (3, 2)-SWCC

(b) Lower bounds for R(δ; S) where S is the class of (10, 7)-SWCC

Figure 1. Lower bounds for optimal asymptotic code rates R(δ; S) for the class of sliding-window
constrained codes

We provide a high-level description of our approach. For both optimization problems,
we first characterized the optimal solutions as roots of certain equations. Then, using the
celebrated Newton–Raphson iterative procedure, we proceeded to find the roots of these
equations. However, as the latter equations involved the largest eigenvalues of certain
matrices, each Newton–Raphson iteration required the (partial) derivatives of these eigen-
values (in some variables). To resolve this, we made modifications to another celebrated
iterative procedure—the power iteration method—and the resulting procedures computed
the GV and GV-MR bounds efficiently for a specific relative distance δ. Interestingly, if we
plot the bounds for 0 ≤ δ ≤ 1, the numerical procedure can be further simplified. Specif-
ically, by exploiting certain properties of the optimal solutions, we provided procedures
that use less Newton–Raphson iterations.
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Parts of this paper were presented in the IEEE International Symposium on Informa-
tion Theory (ISIT 2022) [16]. In the next section, we provide the formal definitions and state
the optimization problems that compute the GV bound.

2. Preliminaries

Let Σ = {0, 1} be the binary alphabet and let Σn denote the set of all words of length n
over Σ. A labeled graph G = (V,E,L) is a finite directed graph with states V, edges E ⊆ V×V,
and an edge labeling L : E→ Σs for some s ≥ 1. Here, we use vi

σ−→ vj to mean that there is
an edge from vi to vj with label σ. The labeled graph G is deterministic if, for each state, the
outgoing edges have distinct labels.

A constrained system S is, then, the set of all words obtained by reading the labels of
paths in a labeled graph G. We say that G is a graph presentation of S. We further denote
the set of all n-length words S by Sn. Alternatively, Sn is the set of all words obtained by
reading the labels of (n/s)-length paths in G. Then, the capacity of S, denoted by Cap(S),
is given by Cap(S) ≜ lim supn→∞ log |Sn|/n. It is well-known that Cap(S) corresponds
to the largest eigenvalue of the adjacency matrix AG (see, for example, [11]). Here, AG is a
(|V| × |V|)-matrix whose rows and columns are indexed by V. For each entry (u, v) ∈ V×V,
we set the corresponding entry to be one if (u, v) is an edge, and zero otherwise.

Every constrained system can be presented by a deterministic graph G. Furthermore,
any deterministic graph can be transformed into a primitive deterministic graph H such
that the capacity of G is same as the capacity of the constrained system presented by
some irreducible component (maximal irreducible subgraph) of H (see, for example,
Marcus et al. [11]). It should be noted that a graph G is primitive if there exists a positive
integer ℓ such that (AG)

ℓ is strictly positive. Therefore, we henceforth assume that our
graphs are deterministic and primitive. When |V| = 1, we call this a single-state graph
presentation and study these graphs in Section 5.

For x, y ∈ S, dH(x, y) is the Hamming distance between x and y. We fix 1 ≤ d ≤ n,
and a fundamental problem in coding theory is finding the largest subset C of Sn such that
dH(x, y) ≥ d for all distinct x, y ∈ C. Let A(n, d; S) denote the size of largest subset C.

In terms of asymptotic rates, we fix 0 ≤ δ ≤ 1, and our task is to find the highest attain-
able rate, denoted by R(δ), which is given by R(δ; S) ≜ lim supn→∞ log A(n, ⌊δn⌋; S)/n.

2.1. Review of Gilbert–Varshamov Bound

To define the GV bound, we need to determine the total ball size. Specifically, for
x ∈ Sn and 0 ≤ r ≤ n, we define V(x, r; S) ≜ |{y ∈ Sn : dH(x, y) ≤ r}|. We further define
T(n, d; S) = ∑x∈Sn V(x, d− 1; S) . Then, the GV bound, as given by Gu and Fuja [13,17],
states that there exists an (n, d; S) code of size at least |Sn|2/T(n, d; S).

In terms of asymptotic rates, there exists a family of (n, ⌊δn⌋; S) codes such that their
rates approach

RGV(δ) = 2Cap(S)−
∼
T(δ), (1)

where
∼
T(δ) ≜ lim supn→∞ log T(n, ⌊δn⌋; S)/n .

In this paper, our main task is to determine RGV(δ) efficiently. We observe that since
Cap(S) =

∼
T(0), it suffices to find efficient ways of determining

∼
T(δ). It turns out that

∼
T(δ) can be found via the solution of a convex optimization problem. Specifically, given a
labeled graph G = (V,E,L), we define its product graph G′ = (V′,E′,L′) as follows:

• V′ ≜ V× V.

• For (vi, vj), (vk, vℓ) ∈ V′, and (σ1, σ2) ∈ Σs × Σs, we draw an edge (vi, vj)
(σ1,σ2)−−−→

(vk, vℓ) if and only if both vi
σ1−→ vk and vj

σ2−→ vℓ belong to E.
• Then, we label the edges in E′ with the function L′ : E′ → Z≥0, where

L′
(
(vi, vj)

(σ1,σ2)−−−→ (vk, vℓ)
)
= dH(σ1, σ2)/s.
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A stationary Markov chain P on a graph G = (V,E,L) is a probability distribution
function P : E → [0, 1] such that ∑e∈E P(e) = 1 and, for any state u ∈ G, the sum of the
probabilities of the outgoing edges equals the sum of the probabilities of the incoming
edges. We denote by M(G) the set of all stationary Markov chains on G. For a state u ∈ V,
let Eu denote the set of outgoing edges from u in G. The state vector πT = (πu)u∈V of
a stationary Markov chain P on G is defined by πu = ∑e∈Eu P(e). The entropy rate of a
stationary Markov chain is defined by

H(P) = − ∑
u∈V

∑
e∈Eu

πuP(e) log(P(e))

Furthermore,
∼
T(δ) can be obtained by solving the following optimization problem [12,14]:

∼
T(δ) = sup

{
H(P) : P ∈M(G× G), ∑

e∈E′
P(e)D(e) ≤ δ

}
. (2)

To this end, we consider the dual problem of (2). Specifically, we define a (|V|2× |V|2)-
distance matrix TG×G(y) whose rows and columns are indexed by V′. For each entry indexed
by e ∈ V′ × V′, we set the entry to be zero if e /∈ E′ and we set it to be yD(e) if e ∈ E′. Then,
the dual problem can be stated in terms of the dominant eigenvalue of the matrix TG×G(y).

By applying the reduction techniques from [14], we can reduce the problem size by a
factor of two. Formally, in the case of s = 1, we define a (|V|+1

2 )× (|V|+1
2 )-reduced distance

matrix BG×G(y) whose rows and columns are indexed by V(2) ≜ {(vi, vj) : 1 ≤ i ≤ j ≤ |V|}
using the following procedure.

Two states s1 = (vi, vj) and s2 = (vk, vℓ) in G× G are said to be equivalent if vi = vℓ
and vj = vk. The matrix BG×G(y) is then obtained by merging all pairs of equivalent states
s1 and s2. That is, we add the column indexed by v2 to the column indexed by v1 and
then remove the row and column which are indexed by v2. It should be noted that it may
be possible to reduce the size of this matrix BG×G(y) further. However, for the ease of
exposition, we did not consider this case in this work.

Following this procedure, we observe that the entries in the matrix BG×G(y) can be
described by the rules in Table 1. Moreover, the dominant eigenvalue of BG×G(y) is the
same as that of TG×G(y). Then, by strong duality, computing (2) is equivalent to solving
the following dual problem [18,19] (see also, [20]):

∼
T(δ) = inf{−δ log y + log Λ(BG×G(y)) : 0 ≤ y ≤ 1}. (3)

Here, we use Λ(M) to denote the dominant eigenvalue of matrix M. To simplify further,
we write Λ(y; B) ≜ Λ(BG×G(y)).

Since the objective function in (3) is convex, it follows from standard calculus that
any local minimum solution y∗ in the interval [0, 1] is also a global minimum solution.
Furthermore, y∗ is a zero of the first derivative of the objective function. If we consider the
numerator of this derivative, then y∗ is a root of the function

F(y) ≜ yΛ′(y; B)− δΛ(y; B). (4)

In Corollary 1, we showed that there is only one y∗ such that F(y∗) = 0 and F′(y) is
strictly positive for all values of y. Therefore, to evaluate the GV bound for a fixed δ, it
suffices to determine y∗.

Later, Marcus and Roth [14] improved the GV bound (1) by considering certain subsets
of the constrained space S. This entails the inclusion of an additional constraint defined
in the optimization problem (2), and, correspondingly, an additional variable in the dual
problem (3). Specifically, they considered certain subsets S(p) ⊆ S where each symbol in
the words of S(p) appears with a certain frequency dependent on the parameter p. We
describe this in more detail in Section 4.
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Table 1. We set the
(
(vi, vj), (vk, vℓ)

)
entry of the matrix BG×G(y) according to subgraph induced by

the states vi,vj,vk Gilbert–Varshamov vℓ. Here, σ̄ denotes the complement of σ.

BG×G(y) at Entry
(
(vi,vj), (vk,vℓ)

)
Subgraph Induced by the States {vi, vj, vk, vℓ}

0

vi

vj

vk

vℓ

vi

vj

vk

vℓ

vi

vj

vk

vℓ

vi

vj

vk

vℓ

vi

vj

vk

vℓ

1

vi

vj

vk

vℓ

σ

σ

vi

vj

vk

vℓ

σ

σ

vi

vj

vk

σ

σ

y

vi

vj

vk

vℓ

σ

σ̄

vi

vj

vk

vℓ

σ

σ̄

vi

vj

vk

σ

σ̄

2y

vk

vℓ

vi

σ

σ̄

2.2. Our Contributions

(A) In Section 3, we develop the numerical procedures to compute
∼
T(δ) for a fixed δ

and, hence, determine the GV bound (1). Our procedure modifies the well-known
power iteration method to compute the derivatives of Λ(y; B). After that, using these
derivatives, we apply the classical Newton–Raphson method to determine the root
of (4). In the same section, we also study procedures to plot the GV curve, that is, the
set {(δ, RGV(δ)) : 0 ≤ δ ≤ 1}. Here, we demonstrate that the GV curve can be plotted
without any Newton–Raphson iterations.

(B) In Section 4, we then develop similar power iteration methods and numerical pro-
cedures to compute the GV-MR bound. Similar to the GV curve, we also provide a
plotting procedure that uses significantly less Newton–Raphson iterations.

(C) In Section 5, we provide explicit formulas for the computation of the GV bound
and GV-MR bound for graph presentations that have exactly one state but multiple
parallel edges.

(D) In Section 6, we validate our methods by computing the GV and the GV-MR bounds
for some specific constrained systems. For comparison purposes, we also plot a simple
lower bound that is obtained by using an upper estimate of the ball size. From the
plots in Figures 1–3, it is also clear that the GV and GV-MR bounds are significantly
better. We also observe that the GV bound and GV-MR bound for subblock energy-
constrained codes (SECCs) obtained through our procedures improve the GV-type
bound given by Tandon et al. (Proposition 12 in [21]).
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(a) Lower bounds for R(δ; S) where S is the class of (1, 3)-RLL

(b) Lower bounds for R(δ; S) where S is the class of (3, 7)-RLL

Figure 2. Lower bounds for optimal asymptotic code rates R(δ; S) for the class of runlength lim-
ited codes.

Figure 3. Lower bounds for optimal asymptotic code rates R(δ; S) where S is the class of (3, 2)-SECCs
(subblock energy-constrained codes).

3. Evaluating the Gilbert–Varshamov Bound

In this section, we first describe a numerical procedure that solves (3) and, hence,
determine RGV(δ) for fixed values of δ. Then, we show that the procedure can be simplified
when we compute the GV curve, that is, the set of points {(δ, RGV(δ)) : δ ∈ [0, 1]}. Here,
we eschew notation and use [a, b] to denote the interval {x : a ≤ x ≤ b}, if a < b, and the
interval {x : b ≤ x ≤ a} otherwise.
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Below, we provide formal description of our procedure to obtain the GV bound for a
fixed relative distance δ.
Procedure 1 (GV bound for fixed relative distance) .
INPUT: Adjacency matrix AG, reduced distance matrix BG×G(y), and relative minimum
distance δ

OUTPUT: GV bound, that is, RGV(δ) as defined in (1)

(1) Apply the Newton–Raphson method to obtain y∗ such that F(y∗) is approximately
zero.

• Fix the tolerance value ϵ.
• Set t = 0 and pick an initial guess 0 ≤ yt ≤ 1.
• While |yt − yt−1| > ϵ,

– Compute the next guess yt+1 as follows:

yt+1 = yt −
F(yt)

F′(yt)
= yt −

ytΛ′(yt; B)− δΛ(yt; B))
(1− δ)Λ′(yt; B) + ytΛ′′(yt; B)

.

– In this step, apply the power iteration method to compute Λ(yt; B), Λ′(yt; B),
and Λ′′(yt; B).

– Increment t by one.

• Set y∗ ← yt.

(2) Determine RGV(δ) using y∗. Specifically, compute
∼
T(δ) ≜ −δ log y∗ + log Λ(y∗; B),

Cap(S) ≜ log Λ(AG), and RGV(δ) ≜ 2Cap(S)−
∼
T(δ).

Throughout Sections 3 and 4, we illustrate our numerical procedures via a running
example using the class of sliding window-constrained codes (SWCCs). Formally, we fix a
window length L and window weight w, and say that a binary word satisfies the (L, w)-
sliding window weight constraint if the number of ones in every consecutive L bits is at
least w. We refer to the collection of words that meet this constraint as an (L, w)-SWCC
constrained system. The class of SWCCs was introduced by Tandon et al. for the application
of simultaneous energy and information transfer [7,10]. Later, Immink and Cai [8,9] studied
encoders for this constrained system and provided a simple graph presentation that uses
only (L

w) states.
In the next example, we illustrate how the numerical procedure can be used to compute

the GV bound for the value when δ = 0.1.

Example 1. Let L = 3 and w = 2, and we consider a (3, 2)-SWCC constrained system. From [8],
we have the following graph presentation with states x11, 101, and 110:

x11 110 101
0 1

1
1

Then, the corresponding adjacency and reduced distance matrices are as follows:

AG =

1 1 0
0 0 1
1 0 0

, BG×G(y) =



1 2y 0 1 0 0
0 0 1 0 y 0
1 y 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0

 .

To determine the GV bound at δ = 0.1, we first approximate the optimal point y∗ for which
−δ log y + log Λ(y; B) is minimized.
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We apply the Newton–Raphson method to find a zero of the function F(y). Now, with the
initial guess y0 = 0.3, we apply the power iteration method to determine

Λ(0.3; B) = 1.659, Λ′(0.3; B) = 0.694, Λ′′(0.3; B) = 0.183.

Then, we compute that y1 ≈ 0.238. Repeating the computations, we have that y2 ≈ 0238.
Since |y2 − y1| is less than the tolerance value 10−5, we set y∗ = 0.238. Hence, we have that
∼
T(0.1) = 0.9. Applying the power iteration method to either AG or BG×G(0), we compute the
capacity of the (3, 2)-SWCC constrained system to be Cap(S) = 0.551. Then, the GV bound is
given by RGV(0.1) = 2(0.551)− 0.9 = 0.202.

We discuss the convergence issues arising from Procedure 1. We observe that there
are two different iterative processes in Step 1, namely, (a) the power iteration method
to compute the values Λ(yt; B), Λ′(yt; B), and Λ′′(yt; B), and (b) the Newton–Raphson
method that determines the zero of F(y).

(a) We recall that Λ(y; B) is the largest eigenvalue of the reduced distance matrix BG×G(y).
If we apply naive methods to compute this dominant eigenvalue, the computational
complexity increases very rapidly with the matrix size. Specifically, if G has M states,
then the reduced distance matrix has dimensions Θ(M2)× Θ(M2) and finding its
characteristic equation takes O(M6) time. Even then, determining the exact roots of
characteristic equations with at least five degrees is generally impossible. Therefore,
we turn to the numerical procedures like the ubiquitous power iteration method [22].
However, the standard power iteration method is only able to compute the dominant
eigenvalue Λ(y; B). Nevertheless, we can modify the power iteration method to
compute Λ(y; B) and its higher order derivatives. In Appendix A, we demonstrate
that under certain mild assumptions, the modified power iteration method always
converges. Moreover, using the sparsity of the reduced distance matrix, we have that
each iteration can be completed in O(M2) time.

(b) Next, we discuss whether we can guarantee that yt converges to y∗ as t approaches
infinity. Even though the Newton–Raphson method converges in all our numerical
experiments, we are unable to demonstrate that it always converges for F(y). Nev-
ertheless, we can circumvent this issue if we are interested in plotting the GV curve.
Specifically, if our objective is to determine the curve {(δ, RGV(δ)) : δ ∈ [0, 1]}, it turns
out that we do not need to implement the Newton–Raphson iterations and we discuss
this next.

We fix some constrained system S. Let us define its corresponding GV curve to be the
set of points GV(S) ≜ {(δ, RGV(δ)) : δ ∈ [0, 1]}. Here, we demonstrate that the GV curve
can be plotted without any Newton–Raphson iterations.

To this end, we observe that when F(y∗) = 0, we have that δ = y∗Λ′(y∗; B)/Λ(y∗; B).
Hence, we eschew notation and define the function

δ(y) ≜ yΛ′(y; B)/Λ(y; B) . (5)

We further define δmax = δ(1) = Λ′(1; B)/Λ(1; B). In this section, we prove the following
theorem.

Theorem 1. Let G be the graph presentation for the constrained system S. If we define the function

ρGV(y) ≜ 2Cap(S) + δ(y) log y− log Λ(y; B) , (6)

then the corresponding GV curve is given by

GV(S) =
{
(δ(y), ρGV(y)) : y ∈ [0, 1]

}
∪
{
(δ, 0) : δ ≥ δmax

}
. (7)
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Before we prove Theorem 1, we discuss its implications. It should be noted that to
compute δ(y) and ρ(y), it suffices to determine Λ(y; B) and Λ′(y; B) using the modified
power iteration methods described in Appendix A. In other words, no Newton–Raphson
iterations are required. We also have additional computational savings, as we do not need
to apply the power iteration method to compute the second derivative Λ′′(y; B).

Example 2. We continue our example and plot the GV curve for the (3, 2)-SWCC constrained
system in Figure 1a. Before plotting, we observe that when y = 0, we have (δ(0), ρ(0)) =
(0, 0.551) = (0, Cap(S)), as expected. When y = 1, we have δ(1) = δmax = 0.313. Indeed, both
ρ(1) and RGV(δmax) are equal to zero and we have that RGV(δ) = 0 for δ ≥ δmax.

Next, we compute a set of 100 points on the GV curve. If we apply Procedure 1 to compute
RGV(δ) for 100 values of δ in the interval [0, δmax], we require 275 Newton–Raphson iterations
and 6900 power iterations to find these points. In contrast, applying Theorem 1, we compute
(δ(y), ρ(y)) for 100 values of y in the interval [0, 1]. This does not require any Newton–Raphson
iterations and involves only 2530 power iterations.

To prove Theorem 1, we demonstrate the following lemmas. Our first lemma is
immediate from the definitions of RGV, δ, and ρ in (1), (5), and (6), respectively.

Lemma 1. RGV(δ(y)) = ρ(y) for all y ∈ [0, 1].

The next lemma studies the behaviour of both δ and ρ as functions in y.

Lemma 2. In terms of y, the functions δ(y) and ρ(y) are monotone increasing and decreasing,
respectively. Furthermore, we have that (δ(0), ρ(0)) = (0, Cap(S)), (δ(1), ρ(1)) = (δmax, 0) and
RGV(δ) = 0 for δ ≥ δmax.

Proof. To simplify notation, we write Λ(y; B), Λ′(y; B), and Λ′′(y; B) as Λ, Λ′, and Λ′′,
respectively.

First, we show that δ′(y) is positive for 0 ≤ y < 1. Differentiating the expression in (5),
we have that δ′(y) > 0 is equivalent to

Λ(Λ′ + yΛ′′)− y(Λ′)2 > 0. (8)

We recall that (3) is a convex minimization problem. Hence, the second order derivative
of the objective function is always positive. In other words,

δ

y2 +
Λ′′Λ− (Λ′)2

Λ2 > 0.

Substituting δ with yΛ′/Λ and multiplying by yΛ2, we obtain (8), as desired.
Next, we show that ρ is monotone decreasing. We recall that ρ(y) = RGV(δ(y)) =

Cap(S)−
∼
T(δ). Since

∼
T(δ) yields the asymptotic rate of the total ball size, we have that as

y increases, δ(y) increases and so,
∼
T(δ) increases. Therefore, ρ(y) decreases, as desired.

Next, we show that ρ(1) = 0. When y = 1, we have from (6) that ρ(1) = 2Cap(S)−
log Λ(1; B). Now, we recall that BG×G(y) shares the same dominant eigenvalue as the
matrix TG×G(y) [12]. Furthermore, it can be verified that when y = 1, TG×G(1) is tensor
product of AG and AG. That is, TG×G(1) = AG ⊗AG. It then follows from standard linear
algebra that Λ(1; B) = Λ(1; T) = Λ(AG)

2. Thus, log Λ(1; B) = 2Cap(S) and ρ(1) = 0. In
this instance, we also have that

∼
T(δmax) = 2Cap(S).

Finally, for δ ≥ δmax, we have that
∼
T(δmax) = 2Cap(S) and thus, RGV(δ) = 0,

as required.

Theorem 1 is then immediate from Lemmas 1 and 2.
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We have the following corollary that immediately follows from Lemma 2. This corol-
lary then implies that y∗ yields the global minimum for the optimization problem.

Corollary 1. When 0 ≤ δ ≤ δmax = Λ′(1,B)
Λ(1,B) , F(y) ≜ yΛ′(y; B)− δΛ(y; B) has a unique zero in

[0, 1]. Furthermore, F′(y) is strictly positive for all y ∈ [0, 1].

4. Evaluating Marcus and Roth’s Improvement of the Gilbert–Varshamov Bound

In [14], Marcus and Roth improved the GV lower bound for most constrained systems
by considering subsets S(p) of S where p is some parameter. Here, we focus on the case
s = 1 and set p to be the normalized frequency of edges whose labels correspond to one.
Specifically, we set S(p) ≜ {x ∈ S : wt(x) = ⌊p|x|⌋}.

Next, let Sn(p) be the set of all words/paths of length n in S(p) and we define S(p) ≜
lim supn→∞

1
n log |Sn(p)|.

Similar to before, we define
∼
T(p, δ) = lim supn→∞

1
n log T(⌊δn⌋, n; Sn(p)). Since Sn(p)

is a subset of Sn, it follows from the usual GV argument that there exists a family of
(n, ⌊δn⌋; S) codes whose rates approach 2S(p)−

∼
T(p, δ) for all 0 ≤ p ≤ 1. Therefore, we

have the following lower bound on asymptotic achievable code rates:

RMR(δ) = sup{2S(p)−
∼
T(p, δ) : 0 ≤ p ≤ 1} . (9)

Now, a key result from [14] is that both S(p) and
∼
T(p, δ) can be obtained via two dif-

ferent convex optimization problems. For succinctness, we state the dual formulations of
these optimization problems.

First, S(p) can be obtained from the following problem:

S(p) = inf{−p log z + log Λ(CG(z)) : z ≥ 0}. (10)

Here, CG(z) is the following (|V| × |V|) matrix CG(z) whose rows and columns are
indexed by V. For each entry indexed by e, we set (CG(z))e to be zero if e /∈ E, and zL(e)

if e ∈ E.
As before, we simplify notation by writing Λ(z; C) ≜ Λ(CG(z)). Again, following the

convexity of (10), we are interested in finding the zero of the following function:

G1(z) ≜ zΛ′(z; C)− pΛ(z; C). (11)

Next,
∼
T(p, δ) can be obtained via the following optimization:

∼
T(p, δ) = inf

{
− 2p log x− δ log y + log Λ(DG×G(x, y)) : x ≥ 0, 0 ≤ y ≤ 1

}
. (12)

Here, DG×G(x, y) is a (|V|+1
2 )× (|V|+1

2 )-reduced distance matrix indexed by V(2). To define
the entry of matrix DG×G(x, y) indexed by ((vi, vj), (vk, vℓ)), we look at the vertices vi, vj,
vk, and vℓ and follow the rules given in Table 2.

Again, we write Λ(x, y; D) ≜ Λ(DG×G(x, y)). Furthermore, following the convexity
of (12), we have that if the optimal solution is obtained at x and y, then

G2(x, y) ≜ xΛx(x, y; D)− 2pΛ(x, y; D) = 0. (13)

G3(x, y) ≜ yΛy(x, y; D)− δΛ(x, y; D) = 0. (14)

To this end, we consider the function ∆(x) = Λy(x, 1; D)/Λ(x, 1; D) for x > 0 and
set δmax = sup{∆(x) : x > 0}. As with the previous section, we develop a numerical
procedure to solve the optimization problem (9). To this end, we have the following
critical observation.
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Table 2. We set the
(
(vi, vj), (vk, vℓ)

)
entry of the matrix DG×G(x, y) according to the subgraph

induced by the states vi,vj,vk, and vℓ.

DG×G(x, y) at Entry
(
(vi, vj), (vk, vℓ)

)
Subgraph Induced by the States {vi, vj, vk, vℓ}

0

vi

vj

vk

vℓ

vi

vj

vk

vℓ

vi

vj

vk

vℓ

vi

vj

vk

vℓ

vi

vj

vk

vℓ

1

vi

vj

vk

vℓ

0

0

vi

vj

vk

vℓ

0

0

vi

vj

vk

0

0

x2

vi

vj

vk

vℓ

1

1

vi

vj

vk

vℓ

1

1

vi

vj

vk

1

1

xy

vi

vj

vk

vℓ

σ

σ̄

vi

vj

vk

vℓ

σ

σ̄

vi

vj

vk

σ

σ̄

2xy

vk

vℓ

vi

σ

σ̄

Theorem 2. For a given δ < δmax, consider the optimization problem

sup
{
− 2p log z + 2 log Λ(z; C) + 2p log x + δ log y− log Λ(x, y; D) :

G1(z) = G2(x, y) = G3(x, y) = 0
}

.

If (p∗, x∗, y∗, z∗) is an optimal solution, then x∗ = z∗. Furthermore, if 0 ≤ p∗ ≤ 1, then x∗, z∗ ≥ 0
and 0 ≤ y∗ ≤ 1.

Proof. Let λ1, λ2, and λ3 be real-valued variables and we define L(p, x, y, z, λ1, λ2, λ3) ≜
G(p, x, y, z)+λ1G1(z)+λ2G2(x, y)+λ3G3(x, y). Using the Lagrangian multiplier theorem, we
have that ∂L/∂p = ∂L/∂x = ∂L/∂y = ∂L/∂z = 0 for any optimal solution. Solving these equa-
tions with the constraints G1(z) = G2(x, y) = G3(x, y) = 0, we have that λ1 = λ2 = λ3 = 0
and x = z for any optimal solution.

Now, when p∗ ∈ [0, 1], using G1(z) = 0, let us define z(p) ≜ zΛ′(z; C)/Λ(z; C). Then,
proceeding as with the proof of Lemma 2, we see that z(p) is monotone increasing with
z(0) = 0. Therefore, z∗ = z(p∗) is zero.

Similarly, given p∗ and x∗, we use G3(x∗, y) = 0 to define δ(y) = yΛy(x∗, y; D)/Λ(x∗, y; D).
Again, we can proceed as with the proof of Lemma 2 to show that δ(y) is monotone increasing.
Furthermore, since δ(y∗) < δmax = δ(1), we have that y∗ ∈ [0, 1].

Therefore, to determine RMR(δ) for any fixed δ, it suffices to find x, y, z, and p such
that G1(z) = G2(x, y) = G3(x, y) = 0 and x = z.

Now, the optimization in Theorem 2 does not constrain the values of p. Furthermore,
for certain constrained systems, there are instances where p falls outside the interval [0, 1].
In this case, instead of solving the optimization problem (9), we set p to be either zero or
one, and we solve the corresponding optimization problems (10) and (12). Specifically, if
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we have p∗ < 0, then we set p∗ = 0 and x∗ = 0, or if p∗ > 1, then we set p∗ = 1 and
x∗ = ∞. Hence, the resulting rates that we obtain are a lower bound for the GV-MR bound.

Procedure 2
(

RMR(δ) for fixed δ ≤ δmax

)
.

INPUT: Matrices CG(x), DG(x, y)
OUTPUT: RMR(δ) or RLB(δ), where RMR(δ) ≥ RLB(δ).

(1) Apply the Newton–Raphson method to obtain p∗, x∗, and y∗ such that G1(x∗), G2(x∗, y∗),
and G3(x∗, y∗) are approximately zero. Specifically, do the following:

• Fix a tolerance value ϵ
• Set t = 0 and pick an initial guess pt ≥ 0, xt ≥ 0, 0 ≤ yt ≤ 1.
• While |pt − pt−1|+ |xt − xt−1|+ |yt − yt−1| > ϵ ,

– Compute the next guess pt+1, xt+1, yt+1:

pt+1
xt+1
yt+1

 =

pt
xt
yt

−


∂G1
∂p

∂G1
∂x

∂G1
∂y

∂G2
∂p

∂G2
∂x

∂G2
∂y

∂G3
∂p

∂G3
∂x

∂G3
∂y


−1 G1(xt)

G2(xt, yt)
G3(xt, yt)

 .

– Here, apply the power iteration method to compute Λ(xt; C), Λ′(xt; C),
Λ′′(xt; C), Λ(xt, yt; D), Λx(xt, yt; D), Λy(xt, yt; D), Λxx(xt, yt; D), Λyy(xt, yt; D),
and Λxy(xt, yt; D).

– Increment t by one.

• Set p∗ ← pt, x∗ ← xt, y∗ ← yt.

(2A) If 0 ≤ p∗ ≤ 1, set RMR(δ)← 2 log Λ(x∗; C) + δ log y∗ − log Λ(x∗, y∗; D).
(2B) Otherwise,

• If p∗ < 0, set p∗ ← 0, x∗ ← 0, and y∗ ← solution of G3(0, y) = 0.
• If p∗ > 1, set p∗ ← 1, x∗ ← ∞, and y∗ ← solution of G3(∞, y) = 0.

Finally, set RLB(δ)← 2 log Λ(x∗; C) + δ log y∗ − log Λ(x∗, y∗; D).

Remark 1. Let p∗ be the value computed at Step 1. When p∗ falls outside the interval [0, 1], we set
p∗ ∈ {0, 1}, and we argued earlier that the value returned RLB(δ) (at Step 2B) is, at most, RMR(δ).
Nevertheless, we conjecture that RLB(δ) = RMR(δ).

As before, we develop a plotting procedure that minimizes the use of Newton–
Raphson iterations.

We note that we have three scenarios for ∆(x). If ∆(x) is monotone decreasing, then
δmax = limx→0 ∆(x) and we set x# = 0. If ∆(x) is monotone increasing, then δmax =
limx→∞ ∆(x) and we set x# = ∞. Otherwise, ∆(x) is maximized for some positive value
and we set x# to be this value. Next, to obtain the GV-MR curve (see Remark 2); we iterate
over x ∈

[
1, x#]. It should be noted that if y(x#) < 1 or, equivalently, δ(x#) < δmax, we

obtain a lower bound on the GV-MR curve by iterating over y ∈
[
y(x#), 1

]
. Similar to

Theorem 1, we define

ρMR(x) ≜ 2 log Λ(x; C) + δ(x) log y(x)− log Λ(x, y(x); D) , (15)

and
ρLB(y) ≜ 2 log Λ(x#; C) + δ(y) log y− log Λ(x#, y; D) . (16)

Finally, we state the following analogue of Theorem 1.

Theorem 3. We define δmax, x# as before. For x ∈
[
1, x#], we set
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p(x)← xΛ′(x; C)/Λ(x; C),

y(x)← solution of G2(x, y) = 0,

δ(x)← y(x)Λy(x, y(x); D)/Λ(x, y(x); D),

If y(x#) < 1, then for y ∈
[
y(x#), 1

]
, we set

δ(y)← yΛy(x#, y; D)/Λ(x#, y; D) ,

then, the corresponding GV-MR curve is given by{
(δ(x), ρMR(x)) : x ∈

[
1, x#

]}
∪ {(δ(y), ρLB(y)) : y ∈

[
y(x#), 1

]
} ∪

{
(δ, 0) : δ ≥ δmax

}
. (17)

where ρMR and ρLB are defined in (15) and (16), respectively.

Example 3. We continue our example and evaluate the GV-MR bound for the (3, 2)-SWCC
constrained system. In this case, the matrices of interest are

CG(z) =

z 1 0
0 0 z
z 0 0

 and DG×G(x, y) =



x2 2xy 0 1 0 0
0 0 x2 0 xy 0
x2 xy 0 0 0 0
0 0 0 0 0 x2

0 0 x2 0 0 0
x2 0 0 0 0 0

 .

Here, we observe that ∆(x) is a monotone decreasing function and so, we set x# = 0.01 and
δmax = limx→0 ∆(x) ≈ 0.426. If we apply Procedure 2 to compute RMR(δ) for 100 points in
[0, δmax], we require 437 Newton–Raphson iterations and 85,500 power iterations. In contrast, we
use Theorem 3 to compute (δ(x), ρMR(x)) for 100 values of x in the interval

[
1, x#]. This requires

323 Newton–Raphson iterations and involves 22,296 power iterations. The resulting GV-MR curve
is given in Figure 1a.

Remark 2. Strictly speaking, the GV-MR curve described by (17) may not be equal to the curve
defined by the optimization problem (15). Nevertheless, the curve provides a lower bound for the
optimal asymptotic code rates and we conjecture that the GV-MR curve described by (17) is a lower
bound for the curve defined by the optimization problem (15).

5. Single-State Graph Presentation

In this section, we focus on graph presentations that have exactly one state. Here,
we allow these single-state graph presentations to contain the parallel edges and their
labels to be binary strings of length possibly greater than one. Now, for these constrained
systems, the procedures to evaluate the GV bound and its MR improvements can be
greatly simplified. This is because the matrices BG×G(y), CG(z), and DG×G(x, y) are all of
dimensions one by one. Therefore, determining their respective dominant eigenvalues is
straightforward and does not require the power iteration method. The results in this section
follow directly from previous sections and our objective is to provide explicit formulas
whenever possible.

Formally, let S be the constrained system with graph presentation G = (V,E,L) such
that |V| = 1 and L : E→ Σs with s ≥ 1 (existing methods that determine the GV bound for
constrained systems with |V| ≥ 1 assume that the edge-labels have single letters, i.e., s = 1.
In other words, previous methods developed in [12,14] do not apply).

We further define αt ≜ #{(x, y) ∈ L(E)2 : dH(x, y) = t} for 0 ≤ t ≤ s. Then. the
corresponding adjacency and reduced distance matrices are as follows:

AG =
[
|E|
]

and BG×G(y) =
[
∑t≥0 αtyt] .

Then, we compute the capacity using its definition as Cap(S) = (log |E|)/s.
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To compute
∼
T(δ), we consider the following extension of the optimization problem (3)

for the case s ≥ 1:

∼
T(δ) =

1
s

inf{−δs log y + log λ(y; B) : 0 ≤ y ≤ 1}

=
1
s

inf

{
−δs log y + log

(
∑
t≥0

αtyt

)
: 0 ≤ y ≤ 1

}
. (18)

As before, following the convexity of the objective function in (18), we have that the
optimal y is the zero (in the interval [0, 1]) of the function

F(y) ≜ ∑
t≥0

(t− δs)αtyt. (19)

So, for fixed values of δ, we can use the Newton–Raphson procedure to compute the
root y of (19), and, hence, evaluate RGV(δ). It should be noted that the power iteration
method is not required in this case.

On the other hand, to plot the GV curve, we have the following corollary of Theorem 1.

Corollary 2. Let G be the single-state graph presentation for a constrained system S. Then, the
corresponding GV curve is given by

GV(S) ≜
{
(δ, RGV(δ)) : δ ∈ [0, 1]

}
=
{
(δ(y), ρ(y)) : y ∈ [0, 1]

}
∪
{
(δ, 0) : δ ≥ δmax

}
, (20)

where

δmax =
∑t≥0 tαt

s|E|2 ,

δ(y) =
∑t≥0 tαtyt

s
(
∑t≥0 αtyt

) ,

ρ(y) =
1
s

(
log

|E|2

∑t≥0 αtyt −
∑t≥0 tαtyt

∑t≥0 αtyt log y

)
.

We illustrate this evaluation procedure via an example of the class of subblock energy-
constrained codes (SECCs). Formally, we fix a subblock length L and energy constraint w. A
binary word x of length mL is said to satisfy the (L, w)-subblock energy constraint if we
partition x into m subblocks of length L, then the number of ones in every subblock is at
least w. We refer to the collection of words that meet this constraint as an (L, w)-SECC
constrained system. The class of SECCs was introduced by Tandon et al. for the application
of simultaneous energy and information transfer [7]. Later, in [21], a GV-type bound was
introduced (see Proposition 12 in [21] and also, (28)) and we make comparisons with the
GV bound (20) in the following example.

Example 4. Let L = 3 and w = 2 and we consider a (3, 2)-SECC constrained system. It is
straightforward to observe that the graph presentation is as follows with the single state x. Here,
s = L = 3.

x 011

101

110
111

Then, the corresponding adjacency and reduced distance matrices are as follows:

AG =
[
4
]
, BG×G(y) =

[
4 + 6y + 6y2] .
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First, we determine the GV bound at δ = 1/3. We observe that F(y) = −4 + 6y2 and, so, the
optimal point y for (18) is

√
2/3 (the unique solution to F(y) in the interval [0, 1]). Hence, we

have that
∼
T(1/3) ≈ 1.327. On the other hand, the capacity of a (3, 2)-SECC constrained system is

Cap(S) = 2/3. Therefore, the GV bound is given by RGV(1/3) = 0.006.
In contrast, the GV-type lower bound given by Proposition 12 in [21] is zero for δ > 0.174.

Hence, the evaluation of the GV bound yields a significantly better lower bound. In fact, we can
show that RGV(δ) > 0 for all δ ≤ δmax = 3/8.

To plot the GV curve, using the fact that δmax = 3/8, we have that

GV(S) =

{(
y + 2y2

2 + 3y + 3y2 ,
1
3

log
8

2 + 3y + 3y2 +
3y + 6y2

2 + 3y + 3y2 log y
)

: y ∈ [0, 1]
}
∪
{
(δ, 0) : δ ≥ 3

8

}
.

We plot the curve in Section 6.
From this example, we see that our methods yield better lower bounds in terms of asymptotic

coding rates for a specific pair of (L, w). It is open to determine how much improvement can be
achieved for general pairs of L and w.

Next, we evaluate the GV-MR bound. To this end, we consider some proper subset
P ⊂ E and define

αt ≜ #{(x, y) ∈ L(E)2 : dH(x, y) = t, x, y ∈ P},
βt ≜ #{(x, y) ∈ L(E) : dH(x, y) = t, (x ∈ P, y /∈ P) or (x /∈ P, y ∈ P)},
γt ≜ #{(x, y) ∈ L(E) : dH(x, y) = t, x, y /∈ P}.

Then, we consider the following matrices:

CG(z) =
[
|E| − |P|+ |P|z

]
and DG×G(x, y) =

[
∑t≥0(αtx2 + βtx + γt)yt] .

Setting p to be the normalized frequency of edges in P, we obtain S(p) by solving the
optimization problem (10).

Specifically, we have that

S(p) =
1
s
(H(p) + p + log |P|+ (1− p) log(|E| − |P|)) , (21)

and this value is achieved when

z =
p(|E| − |P|)
(1− p)|P| . (22)

To compute
∼
T(p, δ), we consider the following extension of the optimization prob-

lem (12) for the case s ≥ 1.

∼
T(p, δ) =

1
s

inf{−2p log x− δs log y + log λ(y; D) : 0 ≤ y ≤ 1}

=
1
s

inf

{
−2p log x− δs log y + log

(
∑
t≥0

(αtx2 + βtx + γt)yt

)
: 0 ≤ y ≤ 1

}
. (23)

As before, following the convexity of the objective function in (23), we have that the
optimal x and y are the zeroes (in the interval [0, 1]) of the functions

G2(x, y) ≜2(1− p)(∑
t≥0

αtyt)x2 + (1− 2p)(∑
t≥0

βtyt)x− 2p(∑
t≥0

γtyt)

G3(x, y) ≜ ∑
t≥0

(t− δs)(αtx2 + βtx + γt)yt (24)
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So, for fixed values of p and δ, we can use the Newton–Raphson procedure to compute
the roots x and y of (24), and, hence, evaluate RGV(p, δ). It should be noted that the power
iteration method is not required in this case. We find x# as defined in Section 4 and set

ρMR(x) ≜ 2 log(|E| − |P|+ |P|x) + δ(x) log y(x)− log ∑
t≥0

(αtx2 + βtx + γt)y(x)t . (25)

Furthermore, if y(x#) < 1, we set

ρLB(y) ≜ 2 log(|E| − |P|+ |P|x#) + δ(y) log y− log ∑
t≥0

(αt(x#)2 + βtx# + γt)yt . (26)

Next, to plot the GV-MR curve, we have the following corollary of Theorem 3.

Corollary 3. Let G be the single-state graph presentation for a constrained system S. For x ∈[
1, x#], we set

p(x) =
|P|x

(|E| − |P|) + |P|x) ,

δ(x) =
∑t≥1 t(αtx2 + βtx + γt)y(x)t

s ∑t≥0(αtx2 + βtx + γt)y(x)t ,

where y(x) is the smallest root of the equation

2(|E| − |P|)(∑
t≥0

αtyt)x + (|E| − |P| − |P|x)(∑
t≥0

βtyt)− 2|P|(∑
t≥0

γtyt) = 0.

If y(x#) < 1, then for y ∈
[
y(x#), 1

]
, we set

δ(y) =
∑t≥1 t(αt(x#)2 + βtx# + γt)yt

s ∑t≥0(αt(x#)2 + βtx# + γt)yt ,

Then, the corresponding GV-MR curve is given by{
(δ(x), ρMR(x)) : x ∈

[
1, x#

]}
∪ {(δ(y), ρLB(y)) : y ∈

[
y(x#), 1

]
} ∪

{
(δ, 0) : δ ≥ δmax

}
. (27)

where ρMR and ρLB are defined in (25) and (26), respectively.

Example 5. We continue our example and evaluate the GV-MR bound for the (3, 2)-SECC
constrained system. We have the following single-state graph presentation:

A 011
101

110

Then, the matrices of interest are:

CG =
[
1 + 3z

]
, DG×G(x, y) =

[
(3 + 6y2)x2 + 6xy + 1

]
.

Since CG and DG×G(x, y) are both singleton matrices, we have Λ(z; C) = 1+ 3z and Λ(x, y; D) =
(3+6y2)x2 +6xy+1. Then, G1(z) = −p(1+3z)+3z, G2(x, y) = 3(1+2y2)x2(1− p)+3xy(1−
2p)− p and G3(x, y) = 4x2y2− 3δ(1+ 2y2)x2 + 2xy(1− 3δ)− δ. Now, we apply Theorem 2 and
express p, y, and δ in terms of x where x ∈ [1, x#] where x# → ∞.
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p =
3x

(1 + 3x)

y =
x− 1

2x

δ =
2x(x− 1)
(9x2 − 1)

Now, we observe that we have y(x#) = 1/2. Since we can still increase y to 1, we apply the
GV bound with p = 1 and x = z = x# once we reach the boundary that is p = 1. Hence, at the
boundary, we solve the following problem:

S(1) = 2 log 3
∼
T(1, δ) = inf

{
− 2 log x− 3δ log y + log(3(1 + 2y2)x2 + 6xy + 1) : 1/2 ≤ y ≤ 1; x = x# → ∞

}
= inf

{
− 3δ log y + log 3 + log(1 + 2y2) : 1/2 ≤ y ≤ 1

}
RMR(δ) = S(1)−

∼
T(1, δ).

By setting F(y) = −3δ(1+ 2y2) + 4y2 = 0, we get δ = 4y2/3(1+ 2y2) where y ∈ [1/2, 1]
and we plot the respective curve.

6. Numerical Plots

In this section, we apply our numerical procedures to compute the GV and the GV-MR
bounds for some specific constrained systems. In particular, we consider the (L, w)-SWCC
constrained systems defined in Section 3, the ubiquitous (d, k)-runlength limited systems
(see, for example, p. 3 in [11]) and the (L, w)-subblock energy constrained codes recently
introduced in [7]. In addition to the GV and GV-MR curves, we also plot a simple lower
bound. For each δ ∈ [0, 1/2], any ball size is at most 2H(δn). So, for any constrained system
S, we have that T̃(δ) ≤ Cap(S) +H(δ). Therefore, we have that

R(δ; S) ≤ Cap(S)−H(δ) . (28)

From the plots in Figures 1–3, it is also clear that the computations of (7) and (17) yield a
significantly better lower bound.

6.1. (L, w)-Sliding Window Constrained Codes

We fix L and w. We recall from Section 3 that a binary word satisfies the (L, w)-
sliding window weight constraint if the number of ones in every consecutive L bits is
at least w and the (L, w)-SWCC constrained system refers to the collection of words that
meet this constraint. From [8,9], we have a simple graph presentation that uses only (L

w)
states. To validate our methods, we choose (L, w) ∈ {(3, 2), (10, 7)} and the corresponding
graph presentations have 3 and 120 states, respectively. Applying the plotting procedures
described in Theorems 1 and 3, we obtain Figure 1.

6.2. (d, k)-Runlength Limited Codes

Next, we revisit the ubiquitous runlength constraint. We fix d and k. We say that
a binary word satisfies the (d, k)-RLL constraint if each run of zeroes in the word has a
length of at least d and at most k. Here, we allow the first and last runs of zeroes to have
a length of less than d . We refer to the collection of words that meet this constraint as
a (d, k)-RLL constrained system. It is well known that a (d, k)-RLL constrained system has
the graph presentation with k + 1 states (see, for example, [11]). Here, we choose (d, k) ∈
{(1, 3), (3, 7)} to validate our methods and apply Theorems 1 and 3 to obtain Figure 2. For
(d, k) = (3, 7), we corroborate our results with those derived in [15]. Specifically, Winick
and Yang determined the GV bound (1) for the (3, 7)-RLL constraint and remarked that
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the “evaluation of the (GV-MR) bound required considerable computation” for “a small
improvement”. In Table 3, we verify this statement.

Table 3. Comparison of the GV-MR bound with lower bound [15] for (3, 7)-RLL constrained systems.

δ GV-MR Bound (15) GV Bound [15] (see Equation (1))

0 0.406 0.406
0.05 0.255 0.225
0.1 0.163 0.163
0.15 0.095 0.094
0.2 0.048 0.044
0.25 0.018 0.012

6.3. (L, w)-Subblock Energy-Constrained Codes

We fix L and w. We recall from Section 5 that a binary word satisfies the (L, w)-
subblock energy constraint if each subblock of length L has a weight of at least w and the
(L, w)-SECC constrained system refers to the collection of words that meet this constraint.
Then, the corresponding graph presentation has a single state x with ∑w

i=0 (
L
i ) edges, where

each edge is labeled by a word of length L and weight at least w. We apply the methods in
Section 5 to determine the GV and GV-MR bounds.

For the GV bound, we provide the explicit formula for αt and proceed as in Example 4.

αt =

(
L
t

)
(|E| −

t

∑
j=1

⌈ j
2 ⌉−1

∑
k=0

(
L− t

w− j + k

)(
t
k

)
) (29)

Similarly, for GV-MR bound, we provide the explicit formula for αt, βt, and γt and
proceed as in Example 5.

αt =

(
L
w

)(
L− w

i/2

)(
w

i/2

)
if t is even, otherwise, αt = 0. (30)

βt = 2
(

L
w

) ⌊ t
2 ⌋

∑
j=1

(
L− w
t− j

)(
w
j

)
− 2αt (31)

γt =

(
L
t

)
(|E| −

t

∑
j=1

⌈ j
2 ⌉−1

∑
k=0

(
L− t

w− j + k

)(
t
k

)
)− αt − βt (32)

In Figure 3, we plot the GV bound and GV-MR bounds. We remark that the simple
lower bound (28) corresponds to Proposition 12 in [21].
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Appendix A. Power Iteration Method for Derivatives of Dominant Eigenvalues

Throughout this appendix, we assume that A is a diagonalizable matrix with dominant
eigenvalue λ1 and whose corresponding eigenspace has dimension one. Let e1 be the unit
eigenvector whose entries are positive in this space. Then, the power iteration method
is a well-known numerical procedure that finds the dominant eigenvalue λ1 and the
corresponding eigenvector e1 efficiently.

Now, in the preceding sections, the entries in the matrix A are given functions in
either one or two variables and, thus, the dominant eigenvalue λ1 is a function in the same
variables. Moreover, the numerical procedures in these sections require us to compute the
higher order (partial) derivatives of this dominant eigenvalue function λ1. To the best of
our knowledge, we are unaware of any algorithms or numerical procedures that estimate
the values of these derivatives. Hence, in this appendix, we modify the power iteration
method to compute these estimates.

Formally, let A be an irreducible nonnegative diagonalizable square matrix with
dominant eigenvalue λ1 and corresponding unit eigenvector e1. Since A is diagonalizable,
A has n eigenvectors e1, e2, . . . , en that form an orthonormal basis for Rn. Let λ1, λ2, . . . , λn
be the corresponding eigenvalues and, so, we have that

Aei = λiei for all i = 1, 2, . . . , n. (A1)

Since A is irreducible, the dominant eigenspace has dimension one and, also, the dominant
eigenvalue is real and positive. Therefore, we can assume that λ1 > |λ2| ≥ · · · ≥ |λn|.

We first assume that the entries of A are functions in the variable z. Hence, λi and the
entries of ei are functions in z too. Then Power Iteration I then evaluates both λ1 and λ′1
for some fixed value of z, while Power Iteration II additionally evaluates the second order
derivative λ′′1 .

The case where the entries of A are functions in two variables x and y is discussed at
the end of the appendix. Here, Power Iteration III evaluates higher order partial derivatives
of λ1 for certain fixed values of x and y. For ease of exposition, we provide detailed proofs
for the correctness of Power Iteration I and the proofs can be extended for Power Iteration II
and Power Iteration III.

We continue our discussion where the entries of A are univariate functions in z. We
differentiate each entry of A with respect to z to obtain the matrix A′. Furthermore, for all
1 ≤ i ≤ n, we differentiate each entry of eigenvectors ei and the eigenvalue λi to obtain e′i
and λ′i, respectively. Specifically, it follows from (A1) that

A′ei + Ae′i = λ′iei + λie′i for all i = 1, 2, · · · , n. (A2)

Then, the following procedure computes both λ1 and λ′1.

Power Iteration I.
INPUT: Irreducible nonnegative diagonalizable matrix A

OUTPUT: Estimates of λ1 and λ′1

(1) Initialize q(0) such that all its entries are strictly positive.

• Fix a tolerance value ϵ.
• While |q(k) − q(k−1)| > ϵ,

– Set
λ(k) = ∥Aq(k−1)∥,

q(k) =
Aq(k−1)

λ(k)
,
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µ(k) = ∥A′q(k−1) + Ar(k−1) − λ(k)r(k−1)∥,

r(k) =
Ar(k−1) + A′q(k−1) − µ(k)q(k−1)

λ(k)
.

– Increment k by one.

(2) Set λ1 ← λ(k) and λ′1 ← µ(k).

Theorem A1. If A is an irreducible nonnegative diagonalizable matrix and q(0) has positive
components with unit norm, then, as k→ ∞, we have

λ(k) → λ1, q(k) → e1, µ(k) → λ′1 .

Here, q(k) → e1 means that
∥∥∥q(k) − e1

∥∥∥→ 0 as k→ ∞.

Before we present the proof of Theorem A1, we remark that the usual power iteration
method computes only λ(k) and q(k). Then, it is well-known (see, for example, [22]) that
λ(k) and q(k) tend to λ1 and e1, respectively.

Now, since ei spans Rn, we can write q(0) = ∑n
i=1 αiei for any initial vector q(0). The

next technical lemma provides closed formulas for λ(k), q(k), µ(k), and r(k) in terms of λi, ei
and αi.

Lemma A1. Let q(0) = ∑n
i=1 αiei. Then,

q(k) =
∑n

i=1 αiλ
k
i ei

∥∑n
i=1 αiλ

k
i ei∥

, (A3)

λ(k) =
∥∑n

i=1 αiλ
k
i ei∥

∥∑n
i=1 αiλ

k−1
i ei∥

, (A4)

r(k) =
∑n

i=1(αie′i + α′iei)λ
k
i + (kλ′i −∑k

j=1 µ(j))αiλ
k−1
i ei

∥∑n
i=1 αiλ

k
i ei∥

, (A5)

µ(k) =

∥∥∥∥∥∑n
i=1(αie′i + α′iei)λ

k−1
i (λi − λ(k)) + αiλ

k−1
i λ′iei + ((k− 1)λ′i −∑k−1

j=1 µ(j))αiλ
k−2
i (λi − λ(k))ei

∥∥∥∥∥
∥∑n

i=1 αiλ
k−1
i ei∥

. (A6)

Proof. Since q(k) is defined recursively as q(k) = Aq(k−1)

λ(k) = Aq(k−1)

∥Aq(k−1)∥ , we have that

q(k) =
Akq(0)

∥Akq(0)∥
.

Then, it follows from Equation (A1) that

Akq(0) = Ak
n

∑
i=1

αiei =
n

∑
i=1

αi(Akei) =
n

∑
i=1

αiλ
k
i ei, (A7)

and, so, we obtain (A3). Similarly, from (A1), we have that

λ(k) = ∥Aq(k−1)∥ = ∥Akq(0)∥
∥Ak−1q(0)∥

=
∥∑n

i=1 αiλ
k
i ei∥

∥∑n
i=1 αiλ

k−1
i ei∥

,

as required for (A4).
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Next, we note that r(0) = ∑n
i=1 αie′i + ∑n

i=1 α′iei. Then, using the recursive definition of
r(k), we have

r(k) =
Akr(0) + ∑k−1

j=0 AjA′Ak−j−1q(0) − (∑k
j=1 µ(j))Ak−1q(0)

∥Akq(0)∥
. (A8)

Then, from (A1), we have

Akr(0) = Ak

(
n

∑
i=1

αie′i +
n

∑
i=1

α′iei

)
=

n

∑
i=1

αi(Ake′i) +
n

∑
i=1

α′iλ
k
i ei. (A9)

and, from (A2),

A′
n

∑
i=1

αiλ
k−j−1
i ei =

n

∑
i=1

αiλ
k−j−1
i (A′ei) =

n

∑
i=1

αiλ
k−j−1
i (λ′iei + λie′i −Ae′i).

Therefore, using (A1) again,

k−1

∑
j=0

AjA′
n

∑
i=1

αiλ
k−j−1
i ei =

k−1

∑
j=0

Aj
n

∑
i=1

αiλ
k−j−1
i (λ′iei + λie′i −Ae′i)

= k
n

∑
i=1

αiλ
k−1
i λ′iei +

n

∑
i=1

αiλ
k
i e′i −

n

∑
i=1

αi(Ake′i).

Therefore, we obtain (A5).
Finally, we recall that µ(k) is defined as

µ(k) = ∥A′q(k−1) + Ar(k−1) − λ(k)r(k−1)∥.

Then, by replacing r(k−1) and q(k−1) from (A5) and (A3), respectively, and then using
Equation (A2), we obtain (A6).

Finally, we are ready to demonstrate the correctness of Power Iteration I.

Proof of Theorem A1. Since A is an irreducible nonnegative diagonalizable matrix, λ1 is
real positive and there exists 0 < ϵ < 1 such that |λi |

λ1
< ϵ for all i = 2, 3, · · · , n (see, for

example, [11]). For purposes of brevity, we write

Φk =
n

∑
i=1

αiλ
k
i ei (A10)

and, so, we can rewrite (A3) as

q(k) =
Φk
∥Φk∥

=
λk

1
∥Φk∥

Φk

λk
1
=

λk
1

∥Φk∥

(
α1e1 +

n

∑
i=2

αi
λk

i

λk
1

ei

)
.

Now, since λk
i /λk

1 ≤ ϵk for all i = 2, . . . , n, we have that∥∥∥∥∥Φk

λk
1
− α1e1

∥∥∥∥∥ ≤ C1ϵk for some constant C1. (A11)

Then, using the triangle inequality, we have that as k→ ∞,
∣∣∣∣ ∥Φk∥

λk
1
− α1

∣∣∣∣→ 0 and, thus,

λk
1

∥Φk∥
→ 1

α1
. Therefore, ∥q(k) − e1∥ → 0 as required.
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It should be noted that since λk
1

∥Φk∥
tends to a finite limit, we have that λk

1
∥Φk∥

is bounded
above by some constant. In other words, we have that

λk
1

∥Φk∥
≤ C2 for some constant C2. (A12)

Next, we show the following inequality:

|λ(k) − λ1| ≤ C3ϵk−1 for some constant C3. (A13)

Using (A4), we have that

∥Φk − λ1Φk−1∥
∥Φk−1∥

=
λk−1

1
∥Φk−1∥

∑n
i=1 αiλ

k
i ei − αiλ1λk−1

i ei

λk−1
1

=

(
λk−1

1
∥Φk−1∥

)
· λ1 ·

n

∑
i=2

αi

(
λk

i

λk
1
−

λk−1
i

λk−1
1

)
ei .

Now, observe that
(

λk
i

λk
1
− λk−1

i
λk−1

1

)
≤ 2ϵk−1 for i = 2, . . . , n. Since λk−1

1
∥Φk−1∥

≤ C2, we have (A13)

after applying the triangle inequality.
Again, to reduce clutter, we introduce the following abbreviations:

Dk =
n

∑
i=1

(αie′i + α′iei)λ
k−1
i (λi − λ(k)),

Ek =
n

∑
i=1

αiλ
k−1
i λ′iei,

Fk =
n

∑
i=1

(
(k− 1)λ′i −

k−1

∑
j=1

µ(j)

)
αiλ

k−2
i (λi − λ(k))ei.

Thus, we can rewrite (A6) as

µ(k) =
∥Dk + Ek + Fk∥
∥Φk−1∥

≤ λ′1 +
∥Dk∥
∥Φk−1∥

+
∥Ek − λ′1Φk−1∥
∥Φk−1∥

+
∥Fk∥
∥Φk−1∥

.

Next, we bound each of the summands on the right-hand side. Specifically, we show the
following inequalities:

∥Dk∥
∥Φk−1∥

+
∥Ek − λ′1Φk−1∥
∥Φk−1∥

≤ C4ϵk−1 for some constant C4, (A14)

∥Fk∥
∥Φk−1∥

≤ C5(k− 1)ϵk−1 + C5

(
k−1

∑
j=1

µ(k)

)
ϵk−1 for some constant C5. (A15)

To demonstrate (A14), we consider

∥Dk∥
λk−1

1

=

∥∥∥∥∥ n

∑
i=1

(αie′i + α′iei)
λk−1

i

λk−1
1

(λi − λ(k))

∥∥∥∥∥ ≤ ∥α1e′1 + α′1e1∥|λ1 − λ(k)|+ ϵk−1
n

∑
i=2
∥αie′i + α′iei∥|λi − λ(k)|.

We use (A13) to bound the first summand by some constant multiple of ϵk−1. On the other
hand, we have |λi − λ(k)| ≤ |λi − λ1|+ |λ1 − λ(k)| ≤ max{|λi − λ1| : 2 ≤ i ≤ n}+ C3ϵk−1

for 2 ≤ i ≤ n. In other words, the second summand is also bounded by some constant
multiple of ϵk−1. Next, we consider

∥Ek − λ′1Φk−1∥
λk−1

1

=

∥∥∥∥∥ n

∑
i=1

αi
λk−1

i

λk−1
1

(λ′i − λ′1)ei

∥∥∥∥∥ ≤ ϵk−1
n

∑
i=2
|αi(λ

′
i − λ′1)|.
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and, so, ∥Ek−λ′1Φk−1∥
λk−1

1
is also bounded by a multiple of ϵk−1. Therefore, since λk−1

1
∥Φk−1∥

≤ C2,

we have (A14). Using similar methods, we can establish (A15).
Next, we apply (A14) and then recursively apply (A15) until the right-hand side is

free of µ(i)s. Then, it follows that

µ(k) ≤ λ′1 + C4ϵk−1 + C5(k− 1)ϵk−1 +
k−1

∏
j=2

(1 + C5ϵk−j) + C5ϵk−1
k−1

∑
i=1

(λ′1 + C4ϵk−i−1C5(k− i− 1)ϵk−i−1)
i

∏
j=2

(1 + C5ϵk−j)). (A16)

Furthermore, since i ≤ k− 1, ∏i
j=2(1 + C5ϵk−j) ≤ ∏k−1

j=2 (1 + C5ϵk−j), we can rewrite
(A16) as

µ(k) ≤ λ′1 + C4ϵk−1 + C5(k− 1)ϵk−1 +
k−1

∏
j=2

(1 + C5ϵk−j)

(
1 + C5ϵk−1

k−1

∑
i=1

(λ′1 + C4ϵk−i−1C5(k− i− 1)ϵk−i−1)

)
. (A17)

Next, it follows from standard calculus that ∏k−1
j=2 (1 + C5ϵk−j) < e

C5
1−ϵ . Furthermore,

since ϵ < 1, we have ∑k−2
i=0 ϵj < 1

1−ϵ and ∑k−2
i=0 jϵj < 1

(1−ϵ)2 . Putting everything together,
we have

µ(k) ≤ λ′1 + C4ϵk−1 + C5(k− 1)ϵk−1 + C5ϵk−1e
C5

1−ϵ

(
1 + (k− 1)λ′1 +

C4

1− ϵ
+

C5

(1− ϵ)2

)
. (A18)

As k → ∞, since ϵ < 1, we have ϵk → 0 and kϵk → 0. Therefore, limk→∞ µ(k) ≤
λ′1. Using similar methods, we have that limk→∞ µ(k) ≥ λ′1 and, so, limk→∞ µ(k) = λ′1,
as required.

Next, we modify Power Iteration I so as to compute the higher order derivatives. We
omit a detailed proof as it is similar to the proof of Theorem A1.
Power Iteration II.
INPUT: Irreducible nonnegative diagonalizable matrix A

OUTPUT: Estimates of λ1, λ′1, and λ′′1

(1) Initialize q(0) such that all its entries are strictly positive.

• Fix a tolerance value ϵ.
• While |q(k) − q(k−1)| > ϵ,

– Set
λ(k) = ∥Aq(k−1)∥,

q(k) =
Aq(k−1)

λ(k)
,

µ(k) = ∥A′q(k−1) + Ar(k−1) − λ(k)r(k−1)∥,

r(k) =
Ar(k−1) + A′q(k−1) − µ(k)q(k−1)

λ(k)
,

ν(k) = ∥A′′q(k−1) + 2A′r(k−1) + As(k−1) − λ(k)s(k−1) − 2µ(k)r(k−1)∥,

s(k) =
A′′q(k−1) + 2A′r(k−1) + As(k−1) − 2µ(k)r(k−1) − ν(k)q(k−1)

λ(k)
.

– Increment k by one.

(2) Set λ1 ← λ(k), λ′1 ← µ(k) and λ′′1 ← ν(k) .

Theorem A2. If A is an irreducible nonnegative diagonalizable matrix and q(0) has positive
components with unit norm, then, as k→ ∞, we have

λ(k) → λ1, q(k) → e1, µ(k) → λ′1, ν(k) → λ′′1 .
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Finally, we end this appendix with a power iteration method that computes the partial
derivatives when the elements of the given matrix are bivariate functions.

Power Iteration III.
INPUT: Irreducible nonnegative diagonalizable matrix A

OUTPUT: Estimates of λ1, (λ1)x, (λ1)y, (λ1)xx, (λ1)yy, and (λ1)xy

(1) Initialize q(0) such that all its entries are strictly positive.

• Fix a tolerance value ϵ.
• While |q(k) − q(k−1)| > ϵ,

– Set

λ(k) = ∥Aq(k−1)∥,

q(k) =
Aq(k−1)

λ(k)
,

λ
(k)
x = ∥Axq(k−1) + Aq(k−1)

x − λq(k−1)
x ∥,

q(k)x =
Axq(k−1) + Aq(k−1)

x − λ
(k−1)
x q(k−1)

λ(k)
,

λ
(k)
y = ∥Ayq(k−1) + Aq(k−1)

y − λq(k−1)
y ∥,

q(k)y =
Ayq(k−1) + Aq(k−1)

y − λ
(k−1)
y q(k−1)

λ(k)
,

λ
(k)
xx = ∥Axxq(k−1) + 2Axq(k−1)

x + Aq(k−1)
xx − λ(k−1)q(k−1)

xx − 2λ
(k−1)
x q(k−1)

x ∥,

q(k)xx =
Axxq(k−1) + 2Axq(k−1)

x + Aq(k−1)
xx − 2λ

(k−1)
x q(k−1)

x − λ
(k−1)
xx q(k−1)

λ(k)

λ
(k)
yy = ∥Ayyq(k−1) + 2Ayq(k−1)

y + Aq(k−1)
yy − λ(k−1)q(k−1)

yy − 2λ
(k−1)
y q(k−1)

y ∥,

q(k)yy =
Ayyq(k−1) + 2Ayq(k−1)

y + Aq(k−1)
yy − 2λ

(k−1)
y q(k−1)

y − λ
(k−1)
yy q(k−1)

λ(k)

λ
(k)
xy = ∥Axyq(k−1) + Axq(k−1)

y + Ayq(k−1)
x + Aq(k−1)

xy − λ(k−1)q(k−1)
xy − λ

(k−1)
x q(k−1)

y − λ
(k−1)
y q(k−1)

x ∥,

q(k)xy =
Axyq(k−1) + Axq(k−1)

y + Ayq(k−1)
x + Aq(k−1)

xy − λ
(k−1)
xy q(k−1) − λ

(k−1)
x q(k−1)

y − λ
(k−1)
y q(k−1)

x

λ(k)
.

– Increment k by one.

• Set λ(k) ← λ1, λ
(k)
x ← (λ1)x, λ

(k)
y ← (λ1)y, λ

(k)
xx ← (λ1)xx, λ

(k)
yy ← (λ1)yy,

λ
(k)
xy ← (λ1)xy.

Theorem A3. If A is an irreducible nonnegative diagonalizable matrix and q(0) has positive
components with unit norm, then, as k → ∞, we have λ

(k)
xx → (λ1)xx, λ

(k)
yy → (λ1)yy, λ

(k)
xy →

(λ1)xy .
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